
Large Language Model based Code Completion is
an Effective Genetic Improvement Mutation

Jingyuan Wang
Department of Computer Science

University College London
London, United Kingdom

andydiantu233@outlook.com

Carol Hanna
Department of Computer Science

University College London
London, United Kingdom

c.hanna@cs.ucl.ac.uk

Justyna Petke
Department of Computer Science

University College London
London, United Kingdom

j.petke@ucl.ac.uk

Abstract—In this work, we introduce a novel large language
model (LLM)-based masking mutation operator for Genetic
Improvement (GI), which leverages code completion capabilities
of large language models to replace masked code segments
with contextually relevant modifications. Our approach was
tested on five open-source Java projects, where we compared
its effectiveness against both traditional GI mutations and an
existing LLM-based replacement mutation operator using ran-
dom and local search algorithms. Results show that the masking
mutation operator creates a search space with more compiling
and test-passing patches, reducing model response time by up to
60.7% compared to the replacement mutation. Additionally, it
outperforms the replacement mutation in achieving the highest
runtime improvement on four out of five projects and discovers
more runtime-improving patches across all projects. However,
combining the masking mutation with traditional GI mutations
yielded inconsistent results, suggesting further investigation is
needed. This study highlights the promise of LLM-based code
completion to boost the efficiency and effectiveness of GI for
automated software optimisation.

Index Terms—Large language Models, Genetic Improvement

I. INTRODUCTION

The growing size and complexity of modern software systems
have increased the manual effort required for maintenance and
optimisation, highlighting the need for automation [1]. Genetic
Improvement (GI) has emerged as a promising solution, op-
timising both functional and non-functional properties such
as runtime performance [2]. However, traditional mutation
operators in GI are limited by a small search space, yielding
a low rate of test-passing patches [3].

Recent advances in large language models (LLMs) have
shown a strong synergy between software engineering tasks
and LLM capabilities, as well as the potential to enhance GI,
though the latter remains underexplored [4]. Brownlee et al.
proposed an LLM-based replacement mutation operator that
utilises LLMs to generate mutations at the function level.
Specifically, the operator provides the LLM with the entire
function code as part of the prompt, instructing it to produce
alternative implementations of the given function. During
benchmarking on five real-world projects, the LLM-based
mutation produced more compiling and test-passing patches,
resulting in significant fitness improvements [5].

Building on this, we propose a new mutation operator
based on LLM code completion, termed the masking mutation

operator. This approach leverages the LLM’s code completion
capabilities, offering semantic coherence, reduced risk of
infeasible code, and lower computational overhead [6], [7].
To evaluate its effectiveness, we applied this approach to five
open-source Java projects, comparing its impact on runtime
improvement against both traditional GI mutations and the
LLM-based replacement mutation.

To understand the validity and efficiency of our masking
mutation operator, we applied our approach to five open-source
projects using four different LLMs. In particular:

(1) Random sampling experiments showed that the masking
mutation operator generated 43.7% more test-passing patches
than the replacement mutation operator and outperformed
both traditional GI mutations and the replacement mutation in
producing unique, valid, compiling, and test-passing patches,
indicating that the masking mutation creates a search space
dense with test-passing patches.

(2) GI searches demonstrated that the masking mutation
achieved an average of 32.6% higher runtime improvement
across four of five projects compared to replacement mutation
using the same model, highlighting the masking mutation’s
ability to find patches with significant runtime improvement.

(3) The masking mutation reduced model response time by
56.7% during random search and by 60.7% when using the
Mistral:7B model in local search compared to the replacement
mutation, showcasing the masking mutation’s efficiency.

(4) Allowing GI to alternate between traditional and mask-
ing mutations decreased the number of valid patches and
did not consistently yield runtime improvements, indicating
further research is needed.

(5) A qualitative analysis revealed common reasons for in-
valid patches, including incomplete code, unexpected formats,
or lack of runtime improvement.

Our results demonstrate the viability of the LLM-based
masking mutation operator for the GI process and provide
valuable insights for future research in this area. All scripts
and code used in our experiments are available at https:
//github.com/SOLAR-group/gin-Masking-llm.

II. BACKGROUND

In this section, we discuss the technical background and
concepts which this paper is based on.

https://github.com/SOLAR-group/gin-Masking-llm
https://github.com/SOLAR-group/gin-Masking-llm


A. Large Language Models
LLMs are neural networks trained on vast text data for tasks
like text generation and question answering [8]. Their core
architecture, the transformer, uses self-attention to process
and contextualise words [9]. LLMs can be fine-tuned after
pretraining on diverse datasets for specific tasks such as
classification and summarisation [10], [11].

LLMs have shown great promise in software engineering
due to their inherent language-based nature, making them
well-suited for tasks that require contextual understanding and
generation of text [12]. They have been employed in various
software engineering applications, including code generation
[13], program repair [7], and mutation testing [6], achieving
competitive or even state-of-the-art performance on several
software engineering tasks.

A key technique driving the success of LLMs in these ap-
plications is masking. This technique selectively hides certain
input tokens to encourage the model to learn the context
and relationships between tokens. Masking is widely used
in training [14], fine-tuning [15], and downstream tasks [7]
phases of LLM development. It facilitates efficient learning of
contextual understanding, enhances generalisation capabilities,
and reduces data and computational requirements [15].

B. Genetic Improvement
GI is an automated process that uses search-based techniques
(SBSE) to enhance both functional and non-functional aspects
of existing software, such as bug fixing and reducing energy
consumption [16], [17]. GI has demonstrated capabilities in
enhancing large and complex software systems in academia
and industry [16], [18]. GI allows for software to automatically
self-optimise to the environments it is run in, with the user
specifying the optimisation objective.

A notable tool in this field is Gin, developed by Brownlee
et al., which serves as a flexible and expandable toolkit for
conducting GI experiments [17]. Gin enhances software by
introducing a series of minor mutations to the original code,
generating a collection of modified patches. These modified
patches are then applied to the code, which is then compiled
and tested to ensure it improves the software’s property of in-
terest. The patch-finding process relies on heuristic approaches
like local search, supported by three main functionalities:

Profiling: Gin includes an integrated profiler that identifies
‘hot methods’ – those that frequently appear at the top of
the execution stack during unit test runs, indicating significant
resource consumption.

Search: To evaluate the quality of the mutation operator’s
search space and its ability to find fitness improvements, we
utilised two search algorithms provided by Gin: local and
random search. Random search samples from the full spectrum
of possible edits, while local search accepts new edits only if
they enhance runtime performance while passing all unit tests.

Applying Mutations: Gin parses programs into an Ab-
stract Syntax Tree (AST) using JavaParser. Mutations are
directly applied to nodes within the AST, allowing precise
modifications to the software’s code structure. Typically, these

mutations are performed at the statement level, involving
deletion, replacement, or insertion of statements from other
locations in the code. Brownlee et al. [5] recently added an
LLM-based replacement mutation operator, which generates
replacement code for a given Java method.

III. APPROACH

An effective mutation operator for GI should provide a search
space that is both rich and dense in valid program variants,
meaning it can quickly identify patches that offer significant
improvements of the target property [17]. To explore the poten-
tial of LLMs as mutation operators, we propose the masking
mutation operator, based on LLM-based code completion.

A. The Masking Mutation Operator

We propose a new mutation type using LLM-based code
completion. Instead of traditional mutations or generating
entire methods, we mask a selected statement and prompt the
LLM to predict it based on context. This approach has shown
promise in mutation testing and program repair [6], [7].

In our experiments, a statement that satisfied our selection
mechanism is selected uniformly at random in the hot method
identified by Gin’s profiling tool. The chosen statement is then
masked using the <PLACEHOLDER>sign, and the masked
code is passed to the LLM with a prompt (Fig. 1) instructing it
to replace the placeholder with a meaningful implementation.

Statement Selection Mechanism: To enhance the masking
mutation’s efficiency, we implemented a statement selection
mechanism targeting statement types more likely to generate
compilable, test-passing patches.

Mini-experiments (detailed in Section V) identified specific
statement types with a higher probability of producing ben-
eficial patches. This mechanism is designed exclusively for
masking mutations, as it operates at the statement level and
cannot be applied to function-level mutations. By focusing on
specific code segments, it aims to optimise the GI process by
focusing on code segments most likely to yield patches that
compile, pass tests, and improve non-functional objectives.

B. Combining the Masking Mutation with Traditional GI

Brownlee et al. [5], [19] demonstrated that LLM-based mu-
tations are more likely to generate patches that compile and
pass tests, while traditional GI mutations produce more diverse
patches. To leverage both strengths, we explore the efficiency
and efficacy of combining these approaches by alternating
between traditional GI and masking mutations in the GI
process. To combine different mutation operators, we extend
Gin’s neighbour selection algorithm.

In Gin’s local search algorithm, the neighbour selection
algorithm generates a patch by selecting and applying a
random traditional GI mutation (which either deletes, replaces,
or inserts a statement extracted from existing codebase). We
extended this by adding the masking mutation as a selectable
option. To fully leverage the benefits of the masking mutation,
we assigned it a higher selection probability compared to an
equal random distribution across all mutation operators.

https://javaparser.org/


IV. RESEARCH QUESTIONS

To evaluate our approach, we pose the following questions:
RQ1: Does the masking mutation create a denser search

space with more unique, compiling, and test-passing patches
compared to the replacement mutation?

This question assesses the masking mutation’s capacity to
explore a broader solution space, providing a richer set of
unique and test-passing patches.

RQ2: Can the masking mutation identify patches that yield
greater runtime improvements compared to the replacement
mutation when using the same LLMs on identical datasets?

This question focuses on the effectiveness of the mask-
ing mutation, evaluating its ability to discover patches that
lead to runtime enhancements. By comparing the runtime
performance of patches generated through masking and the
replacement mutations, we aim to understand their relative
strengths and limitations.

RQ3: What is the runtime efficiency of the masking muta-
tion compared to the replacement mutation?

This question evaluates the runtime efficiency of the mask-
ing mutation. Combined with the first two research questions,
this assessment provides a comprehensive understanding of the
overall performance and practicality of the masking mutation.

If the masking mutation operator proves to be both efficient
and effective, we intend to explore its potential in combination
with traditional GI mutations. To investigate this, we pose
additional research questions:

RQ4: How does the combination of masking and traditional
GI mutations compare to using either method alone?

Understanding the efficiency of the GI process in real-world
applications is crucial. Given the computational demands of
LLMs, we seek to determine if smaller LLMs can sufficiently
perform the required tasks. Thus, we ask:

RQ5: How does the capability of the LLM used in the
masking mutation affect the effectiveness of the GI process,
specifically in finding test-passing patches, runtime improve-
ments, and overall response time?

V. EXPERIMENTAL SETUP

We conducted a series of experiments to address our research
questions, described as follows.

Experiment 1: To address RQ1, we compared the search
spaces generated by the replacement and masking mutations.
We ran the random sampling algorithm for each mutation
operator and compared the number of valid, compiling, and
test-passing patches. Additionally, we analysed a subset of
impactful statement types for the masking mutation.

Mini Experiment 1.1: To improve the efficiency of the
masking mutation, we conducted a mini-experiment to identify
impactful statement types. We applied the random sampling
algorithm 40 times for each statement type, generating 40
patches per type. All statement types present in the projects
and supported by JavaParser 3.24.0, including Block, Expres-
sion, For, If, Return, Throw, While, Break, Switch, and Con-
tinue, were analysed. We then compared the number of valid,
compiling, and test-passing patches generated for each type.

Statement types yielding the highest numbers of test-passing
patches were identified as impactful and will guide our state-
ment selection mechanism in the masking mutation process.

Experiment 2: To address RQ2, this experiment assesses
the ability of both the replacement and masking mutations
to produce runtime-improving patches. We run GI with the
local search algorithm for each mutation operator, comparing
the number of test-passing, runtime-improving patches and the
runtime improvement magnitudes.

Experiment 3: To answer RQ3, we assessed the run-
time efficiency of the masking and replacement mutations
by collecting and comparing model response times from GI
experiments using both local search and random sampling.

Experiment 4: Focusing on RQ4, we examined the effec-
tiveness of combining masking mutation with traditional GI
mutations by running local search and random sampling for
the combined approach, comparing the results to those from
masking and traditional mutations used independently.

Experiment 5: To address RQ5, we repeated Experiments
1, 2, and 3 for the masking mutation using LLMs with sizes
ranging from 2B to 9B parameters to evaluate its scalability
and performance across different model sizes.

A. Target Codebase & Profiling

Following prior studies, we selected five codebases for
GI experiments: Jcodec, JUnit4, Gson, Commons-net, and
Karate [5]. These projects were chosen for their popularity,
open-source availability, compatibility with the Gin frame-
work, and use of Java 17 with Maven or Gradle.

As described in Section II-B, Gin’s profiler samples the
execution stack during unit tests, which can yield variable
results. To reduce this variability, we profiled each project
20 times and aggregated the results. The 10 most frequently
identified hot methods were then chosen as GI targets.

B. Algorithms’ Parameters

To ensure comparability with prior work, we used the same
parameter settings as Brownlee et al. [5] for search algorithms.

Random Sampling: Each experiment run is configured to
generate 1,000 patches, with a timeout of 10,000 milliseconds
to prevent infinite loops. If the time limit is exceeded, the
patch is considered a test failure.

Local Search: Each experiment run conducts 100 evalua-
tions per hot method identified, with each experiment totalling
1,000 evaluations. The initial evaluation assessed baseline
performance, followed by 99 patches for each method. Default
parameters were used unless specified otherwise.

Combined Search: For each combined search experiment,
we conducted both local search and random sampling, updat-
ing the mutation-selection mechanism from equal-probability
random selection to the approach outlined in Listing ??. The
probability of selecting the masking mutation over traditional
GI mutations was set to 30%, 50%, and 70% in different
experimental runs. All other algorithm parameters were kept
consistent with those specified in Section V-B.



TABLE I
NAME, ID, QUANTISATION, NUMBER OF PARAMETERS AND SIZE OF

LLMS UTILISED IN EXPERIMENTS.

Name ID Quantisation Parameters Size
Gemma2:2B 430ed3535049 Q4 0 2.61B 1.7 GB
Gemma2:9B ff02c3702f32 Q4 0 9.24B 5.4 GB
Llama3.1:8B 91ab477bec9d Q4 0 8.03B 4.7 GB
Mistral:7B 61e88e884507 Q4 0 7.24B 4.1 GB

C. LLM Selection
We chose open-source, locally hosted LLMs for two reasons:
first, studies show that smaller local models can perform
comparably to commercial models. For example, Brownlee et
al. [5] found Mistral:7B outperformed GPT-3.5 in GI on three
of five projects. Second, local models improve reproducibility
by maintaining consistent versions, unlike commercial models
that update frequently without legacy access.

For our experiments, we focused on models spanning a
range of 2B to 9B parameters to evaluate the impact of model
scale on mutation performance. Specifically, we selected
Llama3.1:8B [20] and Gemma2:9B [21] due to their state-of-
the-art performance and widespread adoption. Based on the
strong results of Gemma2:9B, we included Gemma2:2B [21]
to assess the lower end of the parameter range. Additionally,
Mistral:7B [22] was chosen as a top performer in previous
work [5]. These models were selected for their open-source
availability, compatibility with our experimental setup, and
strong performance compared to other models with similar
parameter counts [20], [21]. Table I summarizes the specifica-
tions of the selected models.

To host these LLMs locally, we used the Ollama framework,
chosen for its compatibility with many LLMs, ease of use,
and straightforward setup. This framework ensures that our
experiments can be easily replicated and verified.

D. LLM Prompt Templates
This section outlines the prompt templates used to guide LLMs
in the masking mutation. The template dynamically includes
function-specific details, such as masked code segments, to en-
able precise LLM responses. The masking mutation template,
shown in Fig. 1, replaces placeholders with specific masked
function code and project names, leveraging the LLM’s ability
to generate relevant code completions or improvements.

We experimented with several prompt variations. Through
testing different approaches, we identified the prompt that
consistently produced the most useful outputs. During this
process, we adhered to prompt engineering best practices,
including clear and concise instructions, ensuring relevant
context, and structuring the prompt to guide the LLM to-
ward generating effective responses [23], [24]. This iterative
process maximised the LLMs’ ability to generate valid and
performance-enhancing patches during the GI experiments.

E. Implementation Details
Our experiments were conducted using the Gin frame-
work [17], with extensions based on the LLM branch commit
f2f6e10 from the Gin GitHub repository. To contribute to
Gin’s development, we submitted a pull request with these

Please replace <<PLACEHOLDER>> sign in the method below with
meaningfull implementation.
<<Masked Code>>
”This code belongs to project <<Project Name>>. Wrap all code in curly
braces, if it is not already. Do not include any method or class declarations.
Label all code as java.

Fig. 1. Prompt template used for the masking mutation operator.

extensions. All experiments were performed on an Ubuntu
22.04 LTS system with an NVIDIA RTX 4060 Laptop GPU
(8GB), Intel Core i7-13650HX, and 16GB RAM, running Java
17, Maven 3.6.3, and Gradle 8.0.2.

For LLM integration, we used Ollama 0.1.48 to host local
LLMs and Ollama4j 1.0.44 to develop extensions for Gin,
facilitating communication with the local Ollama server.

All LLM hyperparameters, including temperature, top-p,
and others, were set to the default values provided by the Ol-
lama framework to maintain consistency across experiments.

VI. EVALUATION

In this section, we conduct both quantitative and qualitative
analyses of the results produced by the GI process with random
and local searches using the masking mutation operator, to
evaluate the operator’s efficacy and efficiency.
1) Random Sampling
We analysed the random sampling results for the GI process
using the masking mutation across different LLMs, focusing
on the total and unique counts of valid, compiled, and test-
passing patches. These results were compared to those gener-
ated by traditional GI mutations and replacement mutations,
with all experiments conducted in the same environment to
ensure consistency. The results are shown in Fig. 2.

The Gemma2:9B model achieved the highest counts of
valid, compiled, and test-passing patches across all projects,
averaging 908 valid, 542 compiled, and 516 test-passing
patches per 1,000 generated. This marks a significant improve-
ment over prior studies, where local LLMs underperformed in
valid patch generation, with the masking mutation surpassing
traditional GI across all five projects.

However, the increase in unique patches was less pro-
nounced. While most models produced similar results to pre-
vious studies, Gemma2:2B generated the most unique patches
in four projects, and Llama3.1:8B led in unique valid patches,
despite generating fewer overall valid and test-passing patches.

To isolate the effects of masking mutation, we compared
masking and replacement mutations using Mistral:7B. On
average, masking generated 8.6% more valid patches, 11.87%
more test-passing patches, but 6.45% fewer unique valid
patches. However, it produced 8.9% more unique test-passing
patches than replacement mutation.

Compared to recreated replacement mutation results, the
masking mutation consistently outperformed in generating
valid, compiled, and test-passing patches across all projects,
even with Mistral:7B.

In summary, the GI process with the masking mutation,
particularly with Gemma2:9B, yielded significant gains in
valid, compiling, and test-passing patches, outperforming both
traditional GI mutations and the replacement mutation. Al-

https://ollama.com/
https://github.com/gintool/gin/tree/llm


0 200 400 600 800 1000
Count

Gemma2 9b (M)
Gemma2 2b (M)
Llama3.1 8b (M)

Mistral 7b (M)
Statement

Mistral 7b (R)
Previous Best (Mistral R)

Junit4
Prompt Templates:
M - Masking
R - Replacement

Valid
Compiled
Passed

0 200 400 600 800 1000
Count

Gemma2 9b (M)
Gemma2 2b (M)
Llama3.1 8b (M)

Mistral 7b (M)
Statement

Mistral 7b (R)
Previous Best (Mistral R)

Karate

0 200 400 600 800 1000
Count

Gemma2 9b (M)
Gemma2 2b (M)
Llama3.1 8b (M)

Mistral 7b (M)
Statement

Mistral 7b (R)
Previous Best (Mistral R)

JCodec

0 200 400 600 800 1000
Count

Gemma2 9b (M)
Gemma2 2b (M)
Llama3.1 8b (M)

Mistral 7b (M)
Statement

Mistral 7b (R)
Previous Best (Mistral R)

Gson

0 200 400 600 800 1000
Count

Gemma2 9b (M)
Gemma2 2b (M)
Llama3.1 8b (M)

Mistral 7b (M)
Statement

Mistral 7b (R)
Previous Best (Mistral R)

Commons-net

Fig. 2. Random sampling results for each LLM and project combination,
illustrating the counts of valid, compiled, and test-passing patches. Blue dots
indicate unique patches. (M) denotes the masking mutation, (R) represents
the replacement mutation, and Statement refers to traditional GI mutations.
“Previous Best (Mistral R)” reflects the results of Mistral:7B from Brownlee
et al.’s work [5], while “Mistral:7B (R)” represents the replacement mutation
results for Mistral:7B, as recreated in our experimental environment.

though unique patch counts were somewhat lower, models like
Gemma2:2B and Llama3.1:8B excelled in this area. Thus:

Answer to RQ1: The GI process using the LLM-based
masking mutation operator provides a denser search space
with compiling and test-passing patches compared to the
LLM-based replacement mutation operator, although it pro-
duces slightly fewer unique valid patches.

2) Local Search

We analysed the local search results for the GI process
using the masking mutation across each LLM, focusing on
maximum and median runtime improvements achieved by
fitness-improving patches. These results were compared to
those produced by GI processes using traditional GI mutations
and the replacement mutation. The results for each project are
shown in Fig. 3.

For both maximum and median fitness improvements, the
GI process using the Gemma2:9B model with the masking
mutation yielded the best results across all projects. Notably,
despite its smaller size, the Gemma2:2B model achieved the
second-best maximum improvements in 3 out of 5 projects.

To isolate the impact of the masking mutation, we compared
results between masking and replacement mutations using
Mistral:7B. The masking mutation consistently outperformed
the replacement mutation in maximum and median improve-
ments across all projects except JUnit. Additionally, when
compared to traditional GI mutations, the masking mutation
consistently delivered higher maximum and median fitness
improvements across all models and projects.

We also analysed the number of runtime-improving patches
generated during the local search experiments (Table II). The
Gemma2:9B model with the masking mutation consistently
produced the most runtime-improving patches, averaging 122
per run —- significantly higher than traditional GI mutations
(38.2). Comparing the Mistral model’s performance, the mask-
ing mutation consistently outperformed the replacement mu-
tation across all projects, highlighting the masking mutation’s
advantage in identifying performance-improving patches.

Answer to RQ2: The LLM-based masking mutation out-
performed the LLM-based replacement mutation in 4 out
of 5 projects. Additionally, the masking mutation generated
more performance-improving patches and consistently out-
performed traditional GI mutations across all experiments.

3) Model Response Time

To evaluate GI process efficiency across mutation operators,
we analysed the average model response time for the GI pro-
cess of each mutation and model combination. The results are
shown in Fig. 4. Comparing local search to random sampling,
we found that local search generally had a higher average
response time along with greater standard deviation, largely
due to shorter execution times in the Gson and Commons-net
projects, which identified fewer than 10 hot methods.

When comparing the masking and replacement mutations,
the masking mutation consistently showed lower average re-
sponse times across all models, in both local and random
sampling experiments. With the Mistral:7B model, the mask-
ing mutation achieved a 56.7% reduction in response time
in random sampling and a 60.7% reduction in local search
compared to the replacement mutation. Gemma2:2B exhibited
the lowest average response times overall, with response times
62.8% lower than replacement mutations in random sampling
and 64.8% lower in local search.

These findings indicate that masking mutation, especially
with the Gemma2:2B model, significantly reduces model re-
sponse time, suggesting potential benefits for power efficiency.

Answer to RQ3: The GI process using the LLM-based
masking mutation operator offers competitive performance
while significantly reducing model response time compared
to the replacement mutation.



0 200 400 600 800
Runtime Improvement (ms)

Gemma2:9b(M)
Gemma2:2b(M)
Llama3.1:8b(M)

Statement
Mistral:7b(M)
Mistral:7b(R)

870.00

655.00

410.00

310.00

470.00

362.00

320.00

210.00

230.00

30.00

210.00

57.00
Jcodec

M - Masking
R - Replacement

MAX
MEDIAN

0 5 10 15 20
Runtime Improvement (ms)

Gemma2:9b(M)
Gemma2:2b(M)
Llama3.1:8b(M)

Statement
Mistral:7b(M)
Mistral:7b(R)

23.00

11.00

18.00

6.00

14.00

12.00

12.00

8.00

10.00

3.00

11.00

6.00
Gson

0 1000 2000 3000 4000 5000 6000 7000 8000
Runtime Improvement (ms)

Gemma2:9b(M)
Gemma2:2b(M)
Llama3.1:8b(M)

Statement
Mistral:7b(M)
Mistral:7b(R)

7700.00

5232.00

2460.00

1194.00

2106.00

996.00

620.00

61.00

354.00

223.50

152.50

178.00
Karate

0 50 100 150 200 250
Runtime Improvement (ms)

Gemma2:9b(M)
Gemma2:2b(M)
Llama3.1:8b(M)

Statement
Mistral:7b(M)
Mistral:7b(R)

273.00

208.00

198.00

81.00

162.00

192.00

70.00

59.00

39.00

19.50

34.00

67.00
Junit

0 20 40 60 80
Runtime Improvement (ms)

Gemma2:9b(M)
Gemma2:2b(M)
Llama3.1:8b(M)

Statement
Mistral:7b(M)
Mistral:7b(R)

92.00

73.00

79.00

34.00

63.00

45.00

35.00

19.00

27.00

15.00

17.00

16.00
Commons-net

Fig. 3. Local search results for each LLM and project combination, showing
the maximum and median runtime improvements. (M) denotes masking
mutation results, and (R) denotes replacement mutation results. Statement
represents the traditional GI mutations.

TABLE II
NO. OF RUNTIME IMPROVING PATCHES VIA GI USING LOCAL SEARCH.

JCodec Gson Commons-net Karate Junit
Previous Best
Mistral:7B (R) 28 47 24 83 74

Statement 18 17 34 65 57
Mistral:7B(R) 74 3 25 29 25
Mistral:7B(M) 59 59 27 124 98

Llama3.1:8B(M) 45 35 19 98 37
Gemma2:2B(M) 98 27 52 132 78
Gemma2:9B(M) 132 66 115 152 145

4) Combined Search

We evaluated the efficiency of a combined search approach
that alternates between traditional GI mutations and the
masking mutation, using the Mistral:7B model in both local
search and random sampling. Probabilities of selecting the
masking mutation (30%, 50%, 70%) were tested, with results
compared to using masking mutation alone.

Random Sampling: As shown in Fig. 5, in the random sam-
pling scenario, decreasing the masking mutation probability
led to an increase in both total and unique valid patches. For

Fig. 4. Avg. model response time across all projects for each model and
mutation combination. (M) denotes masking, and (R) replacement mutation.

0 200 400 600 800 1000
Count

Combined (30%LLM)

Masking (100%LLM)
Junit4

Prompt Templates:
M - Masking
R - Replacement

Valid
Compiled
Passed

0 200 400 600 800 1000
Count

Combined (30%LLM)
Combined (50%LLM)

Masking (100%LLM)
Karate

0 200 400 600 800 1000
Count

Combined (30%LLM)
Combined (50%LLM)

Masking (100%LLM)
JCodec

0 200 400 600 800 1000
Count

Combined (30%LLM)
Combined (50%LLM)

Masking (100%LLM)
Gson

0 200 400 600 800 1000
Count

Combined (30%LLM)
Combined (50%LLM)

Masking (100%LLM)
Commons-net

Combined (50%LLM)
Combined (70%LLM)

Combined (70%LLM)

Combined (70%LLM)

Combined (70%LLM)

Combined (70%LLM)

Fig. 5. Random sampling results for the combined search using the masking
mutation and Mistral:7B model, showing the number of valid, compiled, and
test-passing patches. The blue dot indicates the number of unique patches.

example, a 30% masking probability produced 19.8% more
valid patches and 21.5% more unique valid patches than using
the masking mutation alone, although it generated 7.2% fewer
compiling and 6.9% fewer test-passing patches.

Local Search: Local search results, shown in Fig. 6,
indicate that the combined approach outperformed the masking
mutation alone only in the Gson project, achieving a 5% higher
maximum runtime improvement. For the other projects, no
combined configuration surpassed the runtime improvements
achieved by the masking mutation alone.

Among combined configurations (30%, 50%, 70%), no
consistent trend emerged in identifying the best patches. The
30% masking probability performed best in two projects, 70%
in two others, and 50% in the remainder, with only marginal
differences in runtime improvements across configurations.

Overall, the combined search approach delivered mixed
results. While it enhanced the number of valid and unique
patches in random sampling, it was inconsistent in local search
and did not consistently outperform the masking mutation
alone or traditional GI mutations. Further research is needed.



0 100 200 300 400 500 600
Runtime Improvement (ms)

Masking(100% LLM)

Combined(70% LLM)

Combined(50% LLM)

Combined(30% LLM)

470.00

310.00

442.00

410.00

198.00

98.00

102.00

45.00
Jcodec

M - Masking
R - Replacement

MAX
MEDIAN

0 5 10 15 20 25
Runtime Improvement (ms)

Masking(100% LLM)

Combined(70% LLM)

Combined(50% LLM)

Combined(30% LLM)

14.00

10.00

5.00

26.00

11.00

1.00

5.00

14.00
Gson

0 250 500 750 1000 1250 1500 1750 2000
Runtime Improvement (ms)

Masking(100% LLM)

Combined(70% LLM)

Combined(50% LLM)

Combined(30% LLM)

2106.00

958.00

703.00

491.00

152.50

205.00

262.00

156.00
Karate

0 25 50 75 100 125 150 175
Runtime Improvement (ms)

Masking(100% LLM)

Combined(70% LLM)

Combined(50% LLM)

Combined(30% LLM)

162.00

189.00

176.00

152.00

34.00

31.00

38.00

21.00
Junit

0 10 20 30 40 50 60
Runtime Improvement (ms)

Masking(100% LLM)

Combined(70% LLM)

Combined(50% LLM)

Combined(30% LLM)

63.00

36.00

29.00

46.00

17.00

15.00

13.00

3.50
Commons-net

Fig. 6. Local search results for the combined search using the masking muta-
tion and Mistral:7B model, displaying max and median runtime improvements.

Answer to RQ4: Alternating between traditional GI mu-
tations and LLM-based masking mutations generates more
valid patches than masking alone, but inconsistent runtime
improvements suggest further investigation is needed to
maximise this approach’s effectiveness.

A. Qualitative Analysis
While the masking mutation provides a denser search space
than traditional GI and replacement mutations, many patches
remain invalid, fail to compile, or do not pass tests. To address
these issues and guide future improvements, we conducted
a qualitative analysis of LLM responses and Gin’s parsing
outputs, categorising issues into three main types:

Category 1: Incomplete Code Returned: LLMs some-
times returned partial or incomplete code instead of a complete
solution, an issue observed across all LLM and project com-
binations. Responses occasionally included only instructions
or examples instead of executable code. For instance, models
from the Gemma family (e.g., Gemma2:2B, Gemma2:9B)
sometimes returned only function signatures with explanatory
text and no implementation.

Category 2: Code Not in Expected Format: We imple-
mented a code extraction mechanism to detect and extract code
blocks, marked by ‘‘‘<CODE>‘‘‘. Although this worked
in 80% of cases, some responses deviated from the expected
format. Models like Llama3.1:8B and Gemma2:9B sometimes
included unrelated helper functions or returned entire classes
rather than just methods, making extraction challenging. Due

to the statistical nature of LLM responses, defining extraction
rules that accommodate all variations remains difficult. This
highlights an opportunity for future research to develop more
sophisticated extraction methods.

Category 3: Meaningful Code Without Improvement:
The most frequent failure type involved LLMs generating
meaningful code that, while executable, failed to pass tests or
improve performance. Specific subcases included (1) returning
the input code unchanged, (2) replacing the placeholder with
comments, and (3) producing repetitive outputs with no new
variation across runs.

VII. THREATS TO VALIDITY

Our experiments used four locally hosted LLMs to evaluate the
masking mutation’s validity and efficiency. A primary threat to
validity is the inherent black-box nature of LLMs, as updates
to models can lead to variability in results. To address this,
we specified LLM versions and hosting tools.

A common challenge in search-based software engineering,
including this study, is accurately measuring runtime improve-
ments. Additionally, we relied on the validity of the provided
test suites. To address these concerns, we followed established
GI guidelines for all measurements and used benchmarks from
prior studies to mitigate inadequate testing risks [5].

Prompts used in this study, while informed by best prac-
tices, were not developed through a strictly scientific method,
which may limit performance if prompts do not fully leverage
the LLMs’ capabilities. This challenge is inherent in LLM
research, and we adhered to literature-backed prompt engi-
neering guidelines to mitigate potential issues.

The non-deterministic behaviour of LLMs also poses a risk
to validity. Our experiments required approximately 225 com-
putational hours. Despite these limitations, our findings align
with prior conclusions regarding replacement and traditional
GI mutation operators established by Brownlee et al.

VIII. RELATED WORK

In this section, we discuss related work in the areas of
LLM-enhanced GI mutation and LLM-based code completion,
focusing on the limitations and breakthroughs in related work.

GI enables software self-optimisation based on user-
defined objectives, effectively optimising functional and non-
functional properties in large software systems [16]. However,
traditional GI is limited by a narrow set of mutations [25].

Recent work has used LLMs to expand mutation scope in
GI. Kang and Yoo [4] employed code-davinci-002 to improve
time and memory efficiency in functions, though some LLM
outputs were incorrect. In this work, we consider more fine-
grained level changes. Brownlee et al. [19] integrated LLM-
based mutations into the GI toolkit Gin and introduced the
replacement mutation operator. This operator employs LLMs
to generate mutations at the function level by providing the en-
tire function code as input and prompting the model to produce
alternative implementations. Benchmarking this approach on
real-world projects revealed that, while traditional mutations
generated more diverse patches, LLM-based mutations con-
sistently produced more test-passing patches. Extending this



work, Brownlee et al. [5] tested the replacement mutation
operator on three LLMs across five projects, with results show-
ing LLM-based mutations outperformed traditional methods,
underscoring the potential of LLMs in enhancing GI. Brownlee
et al. do not employ masking. This could prompt LLM to
generate similar (inefficient) solutions. Moreover, we restrict
statement level types to boost probability of test-passing
variants. Our results show that masking strategy outperforms
the previous approach.

Unlike code generation, which creates code from scratch,
LLM-based code completion fills missing segments, providing
flexible, fine-grained integration with traditional GI mutations.
This approach leverages LLMs’ pattern-matching capabilities
and has been widely adopted in code completion tools [26].

In related fields, LLM-based code completion has shown
promising results in mutation testing and program repair.
Ribeiro et al. [7] framed automated program repair as a
completion task, using CodeGPT to repair buggy lines with
a 27% repair rate on the ManySStuBs4J dataset [27].

IX. CONCLUSIONS

We introduced a masking mutation operator, leveraging LLM-
powered code completion, to improve the GI process. Eval-
uated on five open-source projects with four locally hosted
LLMs, the operator was benchmarked against traditional GI
mutations and Brownlee et al.’s replacement mutation [5].
Additionally, a mini-experiment identified key statement types
to enhance patch pass rates, and we tested the combined effect
of masking and traditional GI mutations.

The masking mutation demonstrated strong performance,
generating up to 38.2% more test-passing patches than the
replacement mutation and producing a diverse set of valid and
compiled patches. It consistently outperformed the replace-
ment mutation in runtime improvements across four of five
projects, with an average gain of 32.6%. The Gemma2:9B
model showed the highest performance, while the smaller
Gemma2:2B model also ranked second in three projects.

Efficiency gains were evident, with the masking mutation
reducing response times by 56.7% during random sampling
and 60.7% in local search. Combining masking with traditional
GI mutations increased valid patch counts but yielded fewer
compiling and test-passing patches, with inconsistent runtime
improvements, suggesting further refinement is needed.

In summary, the masking mutation operator provides a
richer search space of test-passing patches, greater runtime
improvements, and significant efficiency gains over traditional
GI and LLM-based replacement operators, making it a promis-
ing tool for future GI research.

REFERENCES

[1] M. Benaroch and K. Lyytinen, “How much does software complexity
matter for maintenance productivity? the link between team instability
and diversity,” IEEE TSE, vol. 49, no. 4, pp. 2459–2475, 2023.

[2] F. Sarro, “Search-based software engineering in the era of modern
software systems,” in Proc. of RE, vol. 2023. IEEE, 2023, pp. 3–5.

[3] J. Petke, B. Alexander, E. T. Barr, A. E. Brownlee, M. Wagner, and D. R.
White, “Program transformation landscapes for automated program
modification using gin,” EMSE, vol. 28, no. 4, p. 104, 2023.

[4] S. Kang and S. Yoo, “Towards objective-tailored genetic improvement
through large language models,” in GI@ICSE. IEEE, 2023, pp. 19–20.

[5] A. E. I. Brownlee, J. Callan, K. Even-Mendoza, A. Geiger, C. Hanna,
J. Petke, F. Sarro, and D. Sobania, “Large language model based
mutations in genetic improvement,” ASE, 2024.

[6] A. Khanfir, R. Degiovanni, M. Papadakis, and Y. L. Traon, “Efficient
mutation testing via pre-trained language models,” arXiv:2301.03543,
2023.

[7] F. Ribeiro, R. Abreu, and J. Saraiva, “Framing program repair as code
completion,” in APR@ICSE, 2022, pp. 38–45.

[8] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. Dementieva,
F. Fischer, U. Gasser, G. Groh, S. Günnemann, E. Hüllermeier et al.,
“ChatGPT for good? On opportunities and challenges of llms for
education,” Learning & individual differences, vol. 103, 2023.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[10] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong et al., “A survey of large language models,”
arXiv:2303.18223, 2023.

[11] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[12] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering:
Survey and open problems,” arXiv:2310.03533, 2023.

[13] G. Antal, R. Vozár, and R. Ferenc, “Assessing gpt-4-vision’s capabilities
in uml-based code generation,” arXiv:2404.14370, 2024.

[14] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” MLR, vol. 21.

[15] C. Chen, X. Wang, T.-E. Lin, A. Lv, Y. Wu, X. Gao, J.-R. Wen, R. Yan,
and Y. Li, “Masked thought: Simply masking partial reasoning steps
can improve mathematical reasoning learning of language models,” in
Proc. of the 62nd Meet. of the Assoc. for Comp. Linguistics, L.-W. Ku,
A. Martins, and V. Srikumar, Eds. Assoc. for Comp. Linguistics, 2024.

[16] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: a comprehensive
survey,” TEVC, vol. 22, no. 3, pp. 415–432, 2017.

[17] A. E. I. Brownlee, J. Petke, B. Alexander, E. T. Barr, M. Wagner,
and D. R. White, “Gin: genetic improvement research made easy,” in
GECCO. ACM, 2019, p. 985–993.

[18] S. Kirbas, E. Windels, O. McBello, K. Kells, M. Pagano, R. Szalanski,
V. Nowack, E. R. Winter, S. Counsell, D. Bowes, T. Hall, S. Haraldsson,
and J. Woodward, “On the introduction of automatic program repair in
bloomberg,” IEEE Software, vol. 38, no. 4, pp. 43–51, 2021.

[19] A. E. Brownlee, J. Callan, K. Even-Mendoza, A. Geiger, C. Hanna,
J. Petke, F. Sarro, and D. Sobania, “Enhancing genetic improvement
mutations using large language models,” in SBSE.

[20] A. D. et al., “The llama 3 herd of models,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.21783

[21] G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak,
L. Sifre, M. Rivière, M. S. Kale, J. Love et al., “Gemma: Open models
based on gemini research and technology,” arXiv:2403.08295, 2024.

[22] M. AI, “Announcing mistral 7b,” https://mistral.ai/news/
announcing-mistral-7b/, 2024, accessed: 28-Aug-2024.

[23] S. Schulhoff, M. Ilie, N. Balepur, K. Kahadze, A. Liu, C. Si, Y. Li,
A. Gupta, H. Han, S. Schulhoff et al., “The prompt report: A systematic
survey of prompting techniques,” arXiv:2406.06608, 2024.

[24] OpenAI, “Openai api documentation: Prompt engineering guide,” https:
//platform.openai.com/docs/guides/prompt-engineering, 2024, accessed:
28-Aug-2024.

[25] J. Petke, B. Alexander, E. T. Barr, A. E. Brownlee, M. Wagner, and D. R.
White, “A survey of genetic improvement search spaces,” in GECCO,
2019, pp. 1715–1721.

[26] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” SIGPLAN Not., vol. 49, no. 6, p. 419–428, 2014.

[27] R.-M. Karampatsis and C. Sutton, “How often do single-statement bugs
occur? the manysstubs4j dataset,” in MSR, 2020, pp. 573–577.

https://arxiv.org/abs/2407.21783
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering

	Introduction
	Background
	Large Language Models
	Genetic Improvement

	Approach
	The Masking Mutation Operator
	Combining the Masking Mutation with Traditional GI

	Research Questions
	Experimental Setup
	Target Codebase & Profiling
	Algorithms' Parameters
	LLM Selection
	LLM Prompt Templates
	 Implementation Details

	Evaluation
	Random Sampling
	Local Search
	Model Response Time
	Combined Search

	Qualitative Analysis

	Threats to Validity
	Related Work
	Conclusions
	References

