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ABSTRACT
In this paper, we utilize a predator-prey model in order
to identify characteristics of single-objective variation op-
erators in the multi-objective problem domain. In detail,
we analyze exemplarily Gaussian mutation and simplex re-
combination to find explanations for the observed behav-
iors within this model. Then, both operators are combined
to a new complex one for the multi-objective case in or-
der to aggregate the identified properties. Finally, we show
that (a) characteristic properties can still be observed in the
combination and (b) the collaboration of those operators is
beneficial for solving an exemplary multi-objective problem
regarding convergence and diversity.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on Discrete Structures; G.3 [Mathematics of Com-
puting]: Probability and Statistics—Markov Processes; I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—Heuristic Methods; I.6.4 [Simulation and
Modeling]: Model Validation and Analysis

General Terms
Experimentation, Algorithm, Theory

Keywords
Multi-Objective Optimization, Predator-Prey Model, Pop-
ulation Dynamics, Variation Operator Design

1. INTRODUCTION
During the last years, various evolutionary algorithms for

multi-objective optimization have been proposed [1] and im-
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provements in this area have mostly been made by enhanc-
ing the performance of selection operators, introducing in-
creasingly complex mechanisms [8]. That is in contrast to
the single-objective case, where variation operators are con-
sidered more important and ubiquitously used. There, so-
phisticated methodologies for accelerating convergence are
legion and employed in many contexts. Approved concepts
like Rechenberg’s 1/5th rule [13], Schwefel’s mutative self-
adaptation [13] and more modern heuristics like Runars-
son’s adaption rule [12] are only examples for the manifold
research in this area.

Against this background, it is surprising that almost no
effort has been put into the design of adequate variation
operators for the multi-objective case: To our knowledge
the research is limited to the use of diploid representations
for two objective test functions [6] and the problem of find-
ing an appropriate controlling mechanism for the mutation
strength in the multi-objective case [11, 4]. Only Schoenauer
and Rudenko [10] addressed the problem of new variation
operator design. Their approach can be seen as a combina-
tion of standard operators from the single-objective domain
to a complex one for multi-objective problems.
Recently, a predator-prey model that was originally intro-
duced by Laummans et al. [7] has been adopted by Grimme
and Lepping [2] to investigate the behavior of single-objec-
tive variation operators in the context of a multi-objective
problem. This model features the idea of interaction be-
tween consuming (predators) and evolving (prey) popula-
tions of individuals classified by a set of species in a self-
contained environment. The prey represent instances in a
multi-objective solution space and have a fixed habitat in
the environment. Predators roam across this environment
randomly and consume prey. By using single-objective eli-
tist selection, each predator favors a certain diet, represented
by a destined objective within the solution space. After the
consumption of a prey individual, it is replaced by a new
offspring which is formed by the consuming predator’s spe-
cific variation operator. On the long run, it is expected that
the evolved population obeys the combined effects of the
operators, thus gains a certain resistance against all hunt-
ing predators, and finally amounts to trade-off solutions in
the search space. The use of spatial populations for multi-
objective evolutionary algorithms is elementary for this al-
gorithm and has been recently subject to investigation in
works of Kirley et al. [5] and Nebro et al. [9].
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In this paper, we will take advantage of this model to an-
alyze the interplay of two variation operators on a spatial
distributed population in detail. To this end, we review
a building block approach for operator design in Section 2
to found our studies. Section 3 features a formal descrip-
tion of the employed predator-prey model. Subsequently,
in Section 4, a technique for visualizing a specific spatial
population’s structure is proposed. With this at hand, we
analyze the behavior of two exemplary variation operators
in Section 5 and show afterward in Section 6 that identified
properties can still be perceived in the combined applica-
tion of both operators. Section 7 concludes this work with
a discussion of our results.

2. A BUILDING BLOCK APPROACH FOR
OPERATOR DESIGN

The lack of adequate variation operators for evolution-
ary multi-objective algorithms may arise from the difficulty
to obtain both convergence and diversity at the same time
which is in contrast to the single-objective case where the fo-
cus lies on converging as close as possible to one optimum so-
lution. Grimme and Lepping [2] show empirically that their
modified predator-prey model is suitable for the coupling of
single-objective variation operators in order to design com-
plex operators for multi-objective problems in a building
block manner. Each predator is specifically sensitive for one
objective and affects the population with one exclusive vari-
ation mechanism. Observing the variation operators’ single
as well as aggregated effects on the population, one can ap-
ply the gained knowledge to the combination of multiple
operators to possibly benefit from the identified effects or
to cancel out adverse properties. Different predators may
here trigger a variety of operators for the same objective,
allowing flexible tuning and making the whole configuration
scalable.
In order to come toward a general design concept for multi-
objective variation operators that originate from single-ob-
jective ones this model may serve as base for our analysis.
As such, our methodology can be described by the following
steps:

1. Empirical observation of the relevant operators and
their individual behavior within the population.

2. Detailed analysis of the relevant operators in the con-
text of the predator-prey model to identify the impact
of their different inherent characteristics on the popu-
lation.

3. Selection and combination of operators with promising
properties.

4. Identification of possible interference between the com-
bined operators with special regard to their ratio.

While the focus of the aforementioned work was on steps 1
and partly on 3, in this paper we will tackle step 2 for an ex-
emplarily test problem. The empirical studies already made
reveal that a beneficial combination is possible. Here, we
try to find models and explanations for the observed behav-
ior. Finally, we will combine the examined operators and
evaluate their collaboration. As a main result we want to
show that the observed behavior for single operators can still
be identified when applying their combination. This insight

may lead to step 4 of our general design concept, although
this last step is beyond the scope of this paper.
In order to allow a thorough analysis, a formal foundation for
our model is necessary, which will be given and instantiated
in the next section, along with a technique for representing
the population.

3. MODEL
For our studies, we base upon a tailored model loosely

adopting Laumanns [7] ideas, but introducing substantial
changes in order to support our modular approach. In the
following, we will give an informal description of this model
along with a corresponding formal definition.

3.1 General Definition
The interaction environment for our system is represented

by a graph G = (V, E), which is populated by both predator
and prey individuals. The latter represent possible solutions
of a multi-objective optimization problem and are immobile
(each individual inhabits a single, fixed vertex). As such,
there exist card(V ) prey individuals b ∈ B, building the
population. Furthermore, all prey are of equal kind and can
therefore be classified by a single species.
On the contrary, predator individuals can differ from each
other regarding their properties, such as their consumption
characteristics and reproduction model.

C :={� : B ×B 7→ {yes, no}}
O :={oper : P(B) 7→ B}

(1)

The first property is the selection criterion c ∈ C, which
defines a relationship between prey individuals with respect
to a single objective. This may be for example realized as
the elitist selection of the worst prey. The second property
describes a variation operator o ∈ O, which specifies the
creation model for the replacement of consumed prey indi-
viduals. For these variation operators mutation as well as
different recombination schemes may be considered. The
two sets are detailed in Equation (1).
Every predator consists of a pair of one selection criterion
and one variation operator. This determines the kind of a
predator, which will be further on referred to as the preda-
tor’s species. In detail, every predator belongs to one preda-
tor species r, all being gathered in the set of species

R := C ×O = {(c, o)|c ∈ C, o ∈ O} (2)

Now, each predator individual rij can be identified by two
indices: while 0 ≤ i ≤ card(R) denotes the species a preda-
tor belongs to, the j distinguishes one individual from others
of the same species. Consequently, the set of all predators
is given by

R := {rij |ri ∈ R, j ∈ N} (3)

Other than prey, predators are allowed to move within the
interaction environment. This roaming behavior can be
characterized by a general movement function

walk : V 7→ (V 7→ [0, 1]) (4)

where—from a given origin—other nodes can be visited with
a certain probability. Furthermore, we define the consump-
tion frequency δ, denoting the number of walks a predator
does between two consumptions.
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The beat within predators interact with (hunt) prey is re-
stricted to a locally confined area, the neighborhood. For-
mally, a neighborhood is defined as a set of vertices N given
by a neighborhood function

nbh : V × V 7→ [0, 1] (5)

Contrary to Laumanns, we do not allow diverging neighbor-
hoods for selection and reproduction. This is because such a
setup may result in an offspring worse than the influencing
parents in the case of reproduction: the participating par-
ents are of uncertain nature regarding the prior selection [3].
The dynamic behavior of the system is described by its state
and a corresponding transition function. The current state
is specified by S = (sb, sr) where sb : V 7→ B denotes the
current prey setup and sr : R 7→ V the current predator
position. The transition from one state into another is con-

Algorithm 1 Transition function for a single predator rij .

Input: s = (sb, sr)
Output: s′ = (s′b, s

′
r), initialized with sb, sr

1: for δ times do
2: vt := walk(sr(rij))
3: end for
4: s′r(rij) := vt

5: for all v ∈ V do
6: N := N ∪ v with probability nbh(vt, v)
7: end for
8: Bw := {v ∈ N |∀vk ∈ N, vk 6= v : sb(vk) � sb(v)}
9: if Bw = ∅ then

10: Bw := N
11: end if
12: Choose vc from Bw uniformly distributed
13: s′b(vc) := operi(sb(N))
14: return s′ = (s′b, s

′
r)

ducted by a transition function evol : S 7→ S, the actual
specification of which is shown in Algorithm 1. There, the
predator moves δ times corresponding to the walking func-
tion walk to a target vertex vt (Line 2). Next, the worst
prey Bw within the relative neighborhood N of vt are se-
lected regarding r’s selection criterion (Lines 6 and 8). In
case that the selection process did not yield any individu-
als, the whole neighborhood is assumed. Now, one prey vc is
chosen uniformly distributed from Bc for consumption (Line
12) and replaced by a new individual bred using the preda-
tor’s operator operi (Line 13). This process is repeated for
every rij ∈ R, either sequentially or in parallel.
Summarizing, a predator-prey model is represented by

PPM = (G, B, C, O, R, R, walk, δ, nbh, S, evol) (6)

3.2 Model Instantiation
For the aspired behavior analysis of operators, we need

to substantiate the model for a specific case. Here, we will
examine the multi-sphere problem Fm : Rn → Rm with ~x ∈
Rn and n, m ∈ N, the function of which is defined in Equa-
tion (7).

Fm(~x) =

0
B@

f1(~x)
...

fm(~x)

1
CA =

0
B@

(~x− ~c1)
2

...
(~x− ~cm)2

1
CA (7)

Here, n determines the dimension of the decision space, m

denotes the number of objectives, and the ~c1, . . . ,~cm ∈ Rn

are constants. In the following, we will focus on the two-
dimensional specialization F2(~x) from Equation (8) with
constants ~c1 = (0, 0)T and ~c2 = (2, 0)T . This problem is
convex and has a corresponding Pareto-set described by a
single line given as 0 ≤ x1 ≤ 2 and x2 = 0.

F2(~x) =

�
f1(~x)
f2(~x)

�
=

�
x2

1 + x2
2

(x1 − 2)2 + x2
2

�
with ~x ∈ [−10, 10]2 and n = m = 2 (8)

As the spatial population structure, we assume a two-di-
mensional toroidal grid with a size of 40×40 vertices, which
implies an equally probable accessibility of all grid points [7].
Also, due to the special structure, the neighborhood of a
particular vertex v can be spanned by the number of steps
taken from v, the so-called radius rad.

N(v, rad) =
[

(v,ν)∈E

N(ν, rad− 1) (9)

More formally, a neighborhood N(v, rad) can be generally
described by Equation (9), with a starting point N(v, rad =
0) = v. The number of neighbors for a given radius can
be then determined by cN = (rad + 1)2 + rad2. For our
experiments, we set rad = 1 and thus have a neighborhood
function

nbh(vt, v) =

(
1 if v ∈ N(vt, 1),

0 otherwise.
(10)

The selection criteria for the different predator species can
be directly derived from the aforementioned function F2(~x),
using objective f1(~x) for the first criterion and objective
f2(~x) for the second criterion, respectively. Moreover, we
use two distinct operators for our analysis:

1. Gaussian distributed mutation, which creates an
offspring ~x′ ∈ Rn from one selected parent individual
~x ∈ Rn. The variation is defined by ~x′ = ~x + ~z with
~z ∈ Rn, zi ∈ N (0, σ), 0 ≤ i ≤ n, where σ denotes the
mutation step size [13].

2. Simplex recombination, which provides a rotation-
independent variation [3] of an offspring ~x′ ∈ Rn based
on n+1 parent individuals ~xi, with 1 ≤ i ≤ n+1. The
calculation of the new individual ~x′ in the solution
space is done using

~x′ =

n+1X
i=1

 
(1− λi)

i−1Y
j=0

λj

!
~xi

with λ0 := 1 and λn+1 := 0 (11)

The vectors ~xi span the actual simplex, while the λj

values determine the position of ~x′. In order to en-
sure a uniform distribution of selections of ~x′, random
numbers zj ∼ U(0, 1) are generated and applied in

λj = k
√

zj with k = (n + 1)− j (12)

Herewith, the predator species and individuals will be con-
structed for the different behavior analysis below. The walk-
ing function used, see Equation (13), implies a uniform dis-
tribution on the set of directly connected nodes, introducing
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a random walk policy for predators. By d(v) the degree of
vertex v is denoted.

walk(v)(vt) =

� 1
d(v)

if (v, vt) ∈ E

0 otherwise.
(13)

4. VISUALIZING THE SPATIAL POPULA-
TION STRUCTURE

To explain the effects of the predator’s interaction with
the prey, it is important to understand the dynamics of the
evolutionary process. Here, we focus on very local processes
that are involved with a single predator’s move. Therefore,
a simple visualization concept is desired that is able to dis-
play the entire population in both positional mapping and
objective value. Since the development of a general visu-
alization technique is quite difficult for multi-objective op-
timization problems with multi-modal objective functions,
we restrict ourselves to the afore defined test problem F2(~x)
in Equation (8). As mentioned, the Pareto optimal set of
this problem is given by a line between (0, 0) and (2, 0) in
the decision space with the endpoints as optimal solutions
for f1(~x) and f2(~x) respectively. Thus, a good solution for
f1(~x) is a bad solution for f2(~x) simultaneously and vice
versa. This yields the following construction rule for a two
dimensional representation of the population:
Let C = (c1, . . . , cl, cl+1) be a discrete color scale containing
l + 1 colors. We apply the following mapping: l intervals
of objective function f1(~x), ~x = (x1, x2)

T with 0 ≤ x1 ≤ 2
are mapped to l colors. One color l + 1 is assigned to all
remaining values of the objective function in order to mark
them as being outside the considered range. Further, let
Q = {qij |i, j ∈ {1, . . . , k}} be a square divided in k2 sub-
squares. Here, k is equal to the side length of the toroidal
grid. Any subsquare qij ∈ Q denotes a prey’s position on
the torus. Finally, coloring subsquares from Q with col-
ors from C results in a depiction of the population concern-
ing both objectives. The color of an optimal solution re-
garding objective f1(~x) is given by c1 while the optimum
of objective f2(~x) is represented by cl. All other trade-off
solutions are displayed by intermediate colors. An exam-
ple of the introduced visualization method is shown in Fig-
ure 1 along with its corresponding color scale. Note that

Figure 1: Schematic depiction of the population vi-
sualization. The color of each subsquare denotes
the proximity of the represented individual to the
respective objective.

this method only holds for a small set of multi-objective
optimization problems which show similar characteristics as
the assessed problem F2(~x). Furthermore, this visualization
does not express anything about the convergence behavior
to the Pareto-set and only yields a restricted statement on
diversity due to the quadratic nature of both objectives.

5. BEHAVIOR OF OPERATORS
In this section we analyze the two operators Gaussian mu-

tation and simplex recombination as defined in Section 3.2.
In most investigations a model is provided first and obser-
vations only serve as a proof of concept. However, we start
from the observations that can be made in the population
behavior and try to find a simple model to explain the re-
sults.

5.1 Mutation Analysis and Evaluation
First, we focus on the Gaussian mutation as an exclusive

operator and apply the previously introduced problem F2(~x)
to our analysis. Both predators apply Gaussian mutation ex-
clusively and we evaluate 100, 000 predator walk steps with
a consumption frequency of δ = 1 within a randomly initial-
ized population on the torus. The results of the optimiza-
tion are shown in Figure 2. Obviously, the whole population
crowds at the extremal points of both objectives within the
Pareto-set, see Figure 2(a), while there are no intermedi-
ary solution found. The population structure is depicted
in Figure 2(b) where it comes apparent that both extreme
solutions are represented by a more or less large contiguous
zones on the torus. They lead us to the assumption that

(a) Pareto-set (b) Population

Figure 2: Population and Pareto-set after 100,000
evaluations of F2 with exclusive mutation.

only similar offspring are generated: on the long run only
an interchange of individuals takes place and it is not possi-
ble to create innovations concerning intermediary solutions
in the population. In those contiguous areas the evolution-
ary process is similar to the single-objective case.
Furthermore, there are squared edges between the different
extreme solution representations while also no intermedi-
ary solutions are found at these borders. This is quite con-
trary to the original assumption that the development of a
predator-prey model with exclusive mutation was founded
on [7]. Laumanns et al. trusted in the automatic adap-
tation of prey to all objectives in analogy to the natural
assimilation processes in predator-prey interplay. However,
our results do not support this assumption. In the following,
we try to find explanations for the made observations.
Remember that in the predator-prey model, while the preda-
tor is moving randomly, the worst prey is replaced by a po-
tentially better one. Thus, whenever a predator visits the
same selection neighborhood again, it becomes more likely
that a prey is bred which is superior regarding the preda-
tor’s objective. Thus, there is a strong tendency to move all
prey within the selection neighborhood toward the preda-
tor’s objective. This, however, comes along with a loss of
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diversity: once a prey has reached the almost optimum for
the objective, it will not be consumed by the predator any-
more and, respectively, the replacement of this individual is
becoming very unlikely.
In order to explain this phenomenon, we use a simple Markov
chain that describes the transition probabilities of possible
neighborhood states, see Table 1. We assume a single preda-
tor that has a static position within the torus and is not
affected by any other predator. Furthermore, we consider a
neighborhood with rad = 1 which results in five prey. Now,
let us assume a representation where one extreme solution
is displayed as black prey and the other as white ones. For
simplicity reason, we assume that the whole torus is already
occupied by white prey and our predator selects regarding
the black objective. If the neighborhood consists of five

System State s0 s1 s2 s3 s4 s5

# Black Prey 0 1 2 3 4 5
# White Prey 5 4 3 2 1 0

Table 1: Possible configuration of black and white
prey within mutation neighborhood.

white prey we can always expect a white new mutated in-
dividual on the free position if the mutation step size σ is
not too large. Therefore, the probability of starting from
state s0 and end up in s0 is equal to 1. The same holds for
the opposite in this case. This means that once the whole
neighborhood is covered with kindred individuals, it is not
possible to leave this state anymore if σ is small. To be more
precise, there is a probability of ε̄ = (1−ε) that a black prey
is the descendant of a mutated white parent. We can com-
pute all possible transition probabilities between the states
and formulate the transition matrix T of the Markov chain:

T =

2
666664

ε̄ ε 0 0 0 0
0 0.75 − 0.5ε 0.25 + 0.5ε 0 0 0
0 0 0.5 0.5 0 0
0 0 0 0.25 + 0.5ε 0.75 − 0.5ε 0
0 0 0 0 ε ε̄
0 0 0 0 ε ε̄

3
777775

Within this matrix, transition probabilities are arranged in
ascending order of states for rows and columns respectively.
Using this model, we can compute the final transition prob-
abilities after many steps of selections and mutations by
computing the resulting transition matrix T∞ = lim

t→∞
Tt

for a fixed mutation step size. Note that we refer to prob-
lem F2(~x) where the maximum distance of the Pareto-set
has the length 2, see Equation (8) and Figure 2(a). Thus,
we compute ε as the Gaussian distributed probability to per-
form a jump within the search space of length 2 which would
result in a direct change of a black prey into a white prey,
see Equation 14.

ε =
1

σ
√

2π

∞Z
2

exp

�
− x2

2σ2

�
dx (14)

The resulting matrices T∞σ for σ1 = 0.5 and σ2 = 1 are
shown in Equation (15).

T
∞
σ1

=

2
666664

0 · · · 1

.

.

.
. . .

1
1
1
1
1

3
777775

, T
∞
σ2

=

2
666664

0 · · · 0.023 0.977

.

.

.
. . .

0.023 0.977
0.023 0.977
0.023 0.977
0.023 0.977
0.023 0.977

3
777775

(15)

The convergence of T is pretty fast as for t > 5 the ma-
trix T only slightly differs from the final matrix T∞. Yet
after few mutations within the same neighborhood, all indi-
viduals will be black regardless of the starting state. If we
exemplarily set the mutation step size to σ1 = 0.5, we can
expect that—on the long run—the neighborhood will consist
of only similar prey not depending on the initial represen-
tation. However, if the mutation is quite strong it becomes
more likely that a white prey is created from only black prey
in states s4 and s5, see T∞σ2 .
If we also consider the walk of the predator, the observed
structures in the population can be explained as follows. As
δ is notably small in this experiment it is likely that the
same area is considered for mutation several times. There-
fore, once the neighborhood only consists of nearly optimal
prey, the predator tends to conserve or even expand this
area. If both predators act in this fashion nothing but an
interchange of solutions takes place. Furthermore, an in-
crement of σ is expected to only delay but never prevent
the crowding of the population at extreme points. Note
that this process can already be observed within the initial
population where it contributes to the formation of stable
areas. However, those areas do not yet represent a single
objective’s extremal solution but agglomerate around the
neighborhood’s best individual. On the long run, the areas
touch and the one containing the worse individuals with re-
spect to the predator’s objective is extinct. This again is
due to the aforementioned principle.
However, if we increase δ significantly, the interaction with
the same local neighborhood cannot be guaranteed. In Fig-
ure 3 the results for δ = 40, which is equal to the torus
size are shown. Now, the mutation is performed with ap-

(a) Pareto-set (b) Population

Figure 3: Population and Pareto-set after 100,000
evaluations of F2 with exclusive mutation and con-
sumption frequency δ equal to the torus size.

proximately equal distribution over the whole torus and no
local contiguity or connectivity is observable. The inter-
action of the two predators however comes more into play
and the population consequently tends towards the center of
the Pareto-set. As expected, the whole population consists
of similar prey, see Figure 2(b), that are resistant against
both predator species. Therefore, the mutation operator is
closely connected to δ. As such, the consumption frequency
favors the interaction between predator species and the in-
termediary solutions while a small δ guarantees a strong
convergence to the solutions’ extrema and favors the conser-
vation of those points in contiguous areas within the popula-
tion structure. A similar effect was observed in the original
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predator prey model, see Laumanns [7], when increasing the
number of predators. Both are ways to increase the predator
changing frequency.

5.2 Recombination Analysis and Evaluation
In contrast to preliminary assumptions for the predator

prey model [7], the importance of recombination has re-
cently been shown empirically [3, 2]. Thus, this section
takes a closer look to the population’s dynamics under the
influence of a special kind of intermediate recombination,
namely simplex recombination. To this end, we apply the
afore introduced methodology of representing a population,
see Section 4, and exclude mutation predators from the evo-
lutionary process. Instead, for each objective one predator
triggering simplex recombination is used.
In previous studies, the simplex recombination was consid-
ered to support convergence to the Pareto-set as well as
diversity preservation. These interpretations are based on
observing global characteristics of the mechanism. In the
following, both global and local properties of simplex re-
combination on a spacial population will be reviewed.

Global properties
An obvious property of simplex recombination is to collapse
an initial population in its convex hull. If there is no se-
lection pressure at all, the individuals urge to the center
of gravity. Otherwise, the center of gravity is dislocated
depending on the objectives. As a consequence, the final
position of a collapsed population strongly correlates to the
area the initial population covers and the objectives obeyed.
Hence, an initial population with a convex hull surrounding
the set of Pareto optimal solutions will collapse near by this
set while a population initially located in a distance from
the Pareto-set will collapse close to the border of the ini-
tial convex hull. Because of the lack of mutation and thus
innovation, these bounds cannot be crossed. Figure 4(a) ex-
emplarily shows those two cases of initial populations where
a multi-objective problem’s Pareto optimal set covered and
not covered respectively. The objectives’ global influence on

(a) Initial populations (b) Feasible area

Figure 4: Exemplary depiction of an initial popula-
tion not covering the optimal set of solutions (a) and
the feasible area (b) in which predators objective do
not collaborate.

convergence only differs in its rate. Replacing the elitist se-
lection in Algorithm 1 by a uniform random selection mecha-
nism would result in a slower but still ongoing contraction of
the population. Until now, this effect of simplex recombina-
tion seems to somehow foster convergence. In combination
with elitist selection mechanisms it probably even leads to

best possible closeness to the Pareto optimal solution. This
however depends on the bounds of the initial population
given by the convex hull.

Local Properties
Apparently, predators with different objectives collaborate
as long as prey solutions are outside the feasible area. Ex-
emplary, the feasible area for a test problem similar to ours
is depicted in Figure 4(b). In general, we consider this area
to be given by a subset of the decision space above and be-
low the Pareto-set, bounded by normal lines through the ex-
tremal points. Outside the feasible area, an advancement to-
ward one objective is most probably an advancement toward
the other objectives if the angle between the respective gra-
dients is small. Inside the feasible area, predators favoring

Figure 5: Maximum expansion of the population’s
convex hull considering decision space components
for simplex recombination.

objective f1(~x) judge prey individuals which are good con-
cerning objective f2(~x) as being bad concerning their own
objective. This, however, results in a significant slowdown
referring to the contraction of the population in the direction
of the objectives’ connection line. This effect is displayed
in Figure 5 which shows the contraction of population re-
ferring the coordinate directions of decision space over time.
The contraction process can obviously be subdivided in four
phases of different behavior. First, the global effect result-
ing from the collaboration of both predator species yields to
an equal contraction in x1 and x2 direction (phase 1). In
phase 2, the population is inside the feasible area. Here, the
population keeps on collapsing regarding x2, as both preda-
tors favor this direction the same, while the predators’ con-
flicting objectives seem to lead to a stagnation concerning
the collapse of x1. Thereafter, phase 3 is characterized by
total stagnation in both directions. However, in this phase
the objectives become less important for the selection pro-
cess as the individuals begin to collapse to the center of the
population. This effect becomes apparent with the begin-
ning of phase 4, where individuals in the barycenter of the
population are more frequently produced than those at the
boundaries of the convex hull. Thus, they increasingly often
participate in the reproduction process which leads to more
intermediary solutions in the evolving population. Finally,
this increased participation rate results in a contraction of
equal strength for both coordinate directions. Regarding
phases 2 and 3, we focus on different processes inside the
population when predators work against each other with re-
spect to objective f1(~x). Generally, there are two cases of
neighborhood constellations in which the predators may re-
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Figure 6: Simplified neighborhood constellation on
the spatial structure and its development under re-
combination.

side. This is shown in Figure 6, where the black colored
prey is preserved by predator r1 while r2 spares white prey.
Following, these cases are detailed:

1. All prey in the spanned neighborhood are black for r1

or all white for r2 (Figure 6, cases 1 and 4). In this case
the recombination has rather no effect as the predator
can only create an offspring in the convex hull of quite
similar prey. This effect is for some time similar to the
replacement during mutation, see Section 5.1.

2. The predator resides on the border between areas with
white and black prey individuals (Figure 6, cases 2
and 3). If more than one prey is bad concerning the
predators objective, the recombination mixes the pa-
rental prey to a intermediary solution. This leads to
an increasing number of intermediary solutions over
time, while two boundary regions emerge (Figure 6,
cases 5 and 6). In one region black prey exist next to
gray ones and in the analogue region white prey border
gray ones. If the gray population has an appropriate
size, it becomes more stable against both predators
than the remaining black and white prey. This finally
leads to a faster contraction to the barycenter of the
population.

The before described behavior results in the slowdown of
contraction in the feasible area. As individuals representing
a inter-mixture of both objectives are generated only on the
border of two conflicting regions, compromises arise just in a
friction of the reproduction processes. Nevertheless, as Fig-
ure 7 shows, even this initially slow process leads to contrac-
tion after of a lot of steps. The pictures of the population
development where taken after 100, 000 function evaluations
(phase 2), 500, 000 function evaluation (phase 3), and 2 ·106

function evaluations (phase 4).

Figure 7: Population development under simplex re-
combination, taken after 100, 000 and 500, 000 as well
as 2 · 106 function evaluations (from the left to the
right).

6. COMBINED APPLICATION OF
REVIEWED OPERATORS

Until now, we analyzed the behavior of the two operators
independently and were able to identify several properties
for each. Regarding Gaussian mutation, we identified a ten-
dency for spatial populations to loom contiguous areas of
similar prey with respect to a single objective. Accompany-
ing to this, there is a strong convergence towards extremal
solutions, while no intermediary solutions are being created.
Thus, the mutation operator’s behavior degenerates to a
plain replacement strategy. This holds independently from
the variation of mutation step size σ, since an increase of this
parameter only delays the crowding at extremal solutions
as the final status. However, the consumption frequency δ
directly influences the aforementioned behavior, as this pa-
rameter softens the spatial structure. With an increase of δ,
this leads to an aggregated selection mechanism on a pan-
mictic population.
The simplex recombination—as already shown empirically—
supports global convergence and has a strong notion to-
wards an emergence of intermediary solutions on the long
run. The former, however, highly depends on the initial
solution distribution in decision space as the collapsing be-
havior is only convergent to the true Pareto-set if it is en-
closed by the convex hull of the population. Generally, this
operator has mainly blending character which can be di-
vided into four phases: global contraction (phase 1), mu-
tual exchange (phase 2), accumulation of intermediary solu-
tions (phase 3), and mixture dominance (phase 4).
In order to show these properties for the combined appli-
ance of both operators, we analyzed the test problem F2

with a total of four predators, covering all possible permuta-
tions of selection criteria and operators. Here, we set δ = 1,
σ = 0.1, and made 107 function evaluations. As depicted in

Figure 8: Maximum expansion of the population’s
convex hull considering decision space components
for both operators. For comparison, the develop-
ment of simplex recombination is also depicted.

Figure 8, the combination of mutation and recombination
operators reveals several characteristics that have been al-
ready identified for the non-combined operators. Although
the behavior of the combined operators is different to the
one shown for its building blocks, it is still explainable by
the single operators’ properties. At the beginning of the
evolutionary process, the collapsing of the initial popula-
tion towards the Pareto-set visualizes the strong influence
of the recombination. Thereafter, the mutation operator
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dominates further development by preserving the extent of
the population at both extremal solutions: apparently, the
population keeps maximum expansion for the x1 component
while simultaneously oscillating on the x2 component within
the scale of the constant mutation step size σ. Due to the

Figure 9: S-Metric development over 107 function
evaluations for the two combined operators. The
maximum value is at 13.3̄ for test problem F2.

influence of the recombination operator we would expect
that besides the extremal points intermediary solutions are
also found which would result in an increased diversity of
individuals in the solution space. To quantify this effect,
we computed the S-Metric [14] value of our approximated
solution set for every function evaluation during the evo-
lutionary process. Clearly, the diversity of the population
increases strongly and, after approximately 100,000 function
evaluations, nearly reaches the maximum value of 13.3̄, see
Figure 9. Finally, in Figure 10 the solution sets in the de-

Figure 10: Approximated Pareto-sets for the two-
dimensional multisphere test problem, see Equa-
tion (8). From left to right we applied only muta-
tion, only simplex recombination and both operators
in combination.

cision space for both non-combined operators as well as the
cooperating variant are shown. This impressively demon-
strates that the proposed use of a building block approach
yields better results due to the preservation of beneficial
properties of the single-objective evolutionary operators.

7. CONCLUSION AND FUTURE WORK
In the presented work, we analyzed two single-objective

variation operators within the multi-objective problem do-
main using a modified predator-prey model. We reviewed
the independent influence of each on the dynamics in a spa-
tial structured population and identified different proper-
ties. Then, we applied both in combination and were able

to show that the advantageous properties of both can still
be perceived. From this we conclude that a structured de-
sign of complex variation operators for evolutionary multi-
objective optimization can be based on an adroit combina-
tion of single-objective operator characteristics in a building
block manner.
Finding an appropriate combination ratio is, however, an
open research problem. Further on, additional single-ob-
jective operators should be analyzed in the here proposed
fashion in order augment the repertoire of basic building
blocks.
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