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ABSTRACT

In this paper, we examine how adding objectives to a given
optimization problem affects the computation effort required
to generate the set of Pareto-optimal solutions. Experimen-
tal studies show that additional objectives may change the
runtime behavior of an algorithm drastically. Often it is as-
sumed that more objectives make a problem harder as the
number of different trade-offs may increase with the prob-
lem dimension. We show that additional objectives, how-
ever, may be both beneficial and obstructive depending on
the chosen objective. Our results are obtained by rigorous
runtime analyses that show the different effects of adding
objectives to a well-known plateau-function.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms

Theory, Algorithms, Performance

Keywords

Multi-objective optimization, Running time analysis

1. MOTIVATION
In recent years, the number of publications on evolution-

ary multi-objective optimization has been rapidly growing;
however, most of the studies investigate problems where the
number of considered objectives is low, i.e., between two and
four, while studies with many objectives are rare, cf. [4].
The reason is that a large number of objectives leads to
further difficulties with respect to decision making, visu-
alization, and computation. Nevertheless, from a practical
point of view it is desirable with most applications to include
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as many objectives as possible without the need to specify
preferences among the different criteria. An open question
in this context is how the inclusion of additional objectives
affects the search efficiency of an evolutionary algorithm to
generate the set of Pareto-optimal solutions.

There is some evidence in the literature that additional
objectives can make a problem harder. Winkler [25] proved
that the number of incomparable solutions increases, if fur-
ther randomly generated objectives are added. Thereby, on
the one hand the Pareto-optimal front may become larger
and on the other hand the power of the dominance rela-
tion to guide the search may diminish—these are the main
arguments that various researchers, e.g. [9, 12, 5, 4, 8],
list in favor of the assumption that the search becomes
harder the more objectives are involved. That, in fact,
state-of-the-art evolutionary algorithms like NSGA-II and
SPEA2 have problems to find a good approximation of the
Pareto-optimal front for selected test problems was empiri-
cally shown in [24].

In a contrast, a few publications point out that re-
formulating a problem in terms of more objective functions
can reduce the computational cost of the optimization pro-
cess. For example, Jensen [15] successfully used additional
“helper-objectives” to guide the search of evolutionary algo-
rithms in high-dimensional spaces. A similar approach was
proposed by Knowles et al. [16] where single-objective prob-
lems are “multi-objectivized”, i.e., decomposed into multi-
objective problems which are easier to solve than the original
problems. Besides these empirically oriented studies, there
are theoretical results supporting the hypothesis that multi-
objectivization can help: Scharnow et al. [23] showed that
the Single Source Shortest Path problem is easier to solve
for simple EAs when formulated as a bi-criterion problem;
Neumann and Wegener [22] proved for the Minimum Span-
ning Tree problem that a formulation with two objectives
leads to a lower runtime complexity of simple EAs than the
original single-objective version.

This discussion indicates that a general statement on the
effect of increasing the number of objectives is not possible.
For some problems, with a higher number of objectives it
is more difficult to generate the Pareto-optimal front; for
other problems, the opposite is the case. However, given
the previous work, the question arises whether one and the
same problem can be made both easier and harder by adding
adequate objectives. So far, the issue of adding objectives
(which is different from decomposing an objective function
into several ones) has only been investigated empirically,
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and only a recent study [3] considered both directions (less
or more difficult). Inspired by the experimental results pre-
sented in [3], this paper for the first time answers this ques-
tion theoretically. Based on a simple multi-objective opti-
mizer, namely SEMO which is known from various theoret-
ical analyses, we show by means of runtime analyses that

(i) one and the same problem can become both harder and
easier to solve if an objective is added—in contrast to
[23] and [22], where the original objective is replaced
by two other objectives, we here consider the case that
the original objective remains in the objective set;

(ii) the combination of two equally difficult single-objective
functions can yield a bi-criterion problem that is easier
to solve than any of the two single-objective problems.

The basis of the running time analyses to follow is provided
by a well-known plateau function. As objective functions
with plateaus of a similar kind appear in many well-known
combinatorial optimization problems, the proposed analy-
ses can be seen as a first, but general, investigation of how
additional objectives influence the running time behavior of
evolutionary algorithms.

The paper is organized as follows. First, we review basic
concepts such as relation graphs and objective conflicts and
discuss how additional objectives can affect the dominance
structure (Sec. 2). In Sec. 3, we detail the algorithms con-
sidered in this study and define the setting for the runtime
analyses to follow. Sec. 4 provides the proofs showing that a
simple plateau function can become both harder and easier
with an additional objective; Sec. 5 extends these results and
demonstrates that even the combination of two equally diffi-
cult single-objective functions can yield an easier bi-criterion
problem. Conclusions are presented in Sec. 6.

2. ADDING OBJECTIVES:

FOUNDATIONS AND EFFECTS
Without loss of generality, we consider maximization prob-

lems with k objective functions fi : X → R, 1 ≤ i ≤ k,
where the vector function f := (f1, . . . , fk) maps each solu-
tion x ∈ X to an objective vector f(x) ∈ Rk. Furthermore,
we assume that the underlying dominance structure is given
by the weak Pareto dominance relation which is defined as
follows: �F′ := {(x, y) ∈ X2 | ∀fi ∈ F

′ : fi(x) ≥ fi(y)},
where F ′ is a set of objectives with F ′ ⊆ F := {f1, . . . , fk}.
We say x weakly dominates y w. r. t. the objective set F ′

(x �F′ y) if (x, y) ∈�F′ and distinguish between the fol-
lowing three cases:

• The solution pair x, y is called comparable if x weakly
dominates y and/or y weakly dominates x;

• Two solutions x, y are incomparable if neither weakly
dominates the other one;

• Two solutions having the same objective vector are
called indifferent.

A solution x∗ ∈ X is called Pareto optimal if any x ∈ X
is either indifferent to x∗ or does not weakly dominate x∗

w. r. t. the set of all objectives. The set of all Pareto opti-
mal solutions is called Pareto (optimal) set, its image in the
objective space is called Pareto front.

f1 f2 f3

a 1 2 3
b 2 3 2
c 3 1 1

1

2

3

f1 f2 f3

objectives

c

b

a

values

(a) (b)

Figure 1: Objective values (a) and correspond-
ing parallel coordinates plot (b) for three solutions
a, b, c ∈ X.

Given these basic terms, we will now illustrate on the basis
of a simple example what happens if objectives are added.
To this end, we recapitulate some concepts introduced in [1,
2]. Assume the search space X consists of three solutions
a, b, and c and F consists of three objective functions f1,
f2, and f3. In Fig. 1, the objective functions are shown and
the solutions are depicted in a parallel coordinates plot. To
see what happens when merging, e.g., the objectives f1 and
f2 into a bi-criterion problem, the visualization of the dom-
inance relations �f1

, �f2
, and �f1∪f2

as relation graphs is
useful. In such a relation graph, each solution corresponds
to a vertex and a direct edge from vertex v to vertex w
is drawn iff v �F w. Figure 2 shows the relation graphs
for �f1

, �f2
, �f3

and the corresponding combinations of
them. With only a single objective, the three solutions are
pairwisely comparable, see Fig. 2(a), 2(b), and 2(c). When
merging f1 and f2 to a bi-criterion problem, comparabili-
ties disappear, cf. Fig. 2(d). For example, the edge between
a and c is not present in the resulting relation graph of
�{f1,f2}. Because f1(c) > f1(a), solution c weakly domi-
nates a with respect to f1 but the opposite does not hold.
With respect to f2, solution a weakly dominates c because
f2(a) > f2(c). When taking both f1 and f2 into account,
neither a is weakly dominating c nor c is weakly dominating
a by definition of �; the solution pair (a, c) is incomparable,
i.e., no edge between a and c is drawn in �{f1,f2}. The same
holds for the solution pair (b, c).

What happens now if f3 is added to the bi-criterion prob-
lem, described by f1 and f2? The comparable solutions a
and b become also incomparable because f3(a) > f3(b), but
b weakly dominates a with respect to {f1, f2}, i.e., f1(b) >
f1(a) and f2(b) > f2(a). The edge between a and b is also
removed in the relation graph of �{f1,f2,f3}, cf. Fig. 2(f).

We observe that additional objectives result in the omis-
sion of edges in the relation graphs—new edges cannot ap-
pear if objectives are added. On the one hand, if a solution
pair is comparable with respect to all objectives, i.e., an edge
is drawn, the two solutions are comparable with respect to
any subset of objectives and the edge is already included in
the relation graphs for all objective subsets. On the other
hand, if a solution x is better than solution y with respect
to the objectives in F1, i.e., an edge in �F1

is only drawn
from x to y but not the other way round, and y is better
than solution x with respect to the objective set F2, i.e.,
(y, x) ∈�F2

, but (x, y) ∈�F1
, the solution pair becomes in-

comparable with respect to F1 ∪ F2; the edges between x
and y disappear in �F1∪F2

. Resumed, in our example, the
edges of the new relation graphs can always be derived from
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(b) relation graph of
�{f2}
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(c) relation graph of
�{f3}
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(d) relation graph of
�{f1,f2}
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(e) relation graph of
�{f2,f3}

a

c

b

(f) relation graph of
�{f1,f3}=�{f1,f2,f3}

Figure 2: Relation graphs for the three solutions a,
b, and c and different objective subsets.

the relation graphs of the smaller objective sets: An edge is
drawn iff the edge is present in the relation graphs of both
objective subsets; the new edge set is the intersection of the
previous edge sets. This observation can be summarized as
follows, see [1] for details:

Let F ′ ⊆ F := {f1, . . . , fk} be a set of objective
functions. Then

T

i∈F′ �i =�F′.

Based on this result, one can define two sets of objectives as
conflicting according to [2] if the relation graphs are differ-
ent:

Let F1,F2 ⊆ F be two sets of objectives. F1 is
conflicting with F2 iff �F1

6=�F2
.

Note that the addition of an objective to a problem can,
therefore, affect the runtime of a dominance relation based
evolutionary algorithm, e.g., SEMO, only if the additional
objective is conflicting with the set of objectives, defining
the original problem. As the example in Fig. 1 and Fig 2
shows, the addition of f2 to the problem defined by f1 and
f3 does not change the underlying dominance relation and,
therefore, does not change the runtime of evolutionary algo-
rithms which consider the dominance relation solely. Now,
the question arises, how the addition of a non-conflicting
objective affects the complexity of a problem, or more pre-
cisely, how an additional objective changes the running time
of an evolutionary algorithm.

Addressing the above mentioned question, we sketch the
fundamental idea of this paper. When adding an objective
fi to an objective set F ′, there can be two situations:

(i) Comparable solutions can become incomparable, and

(ii) an indifferent relation between solutions can become a
comparable one.

Of course, both cases can occur simultaneously, if an objec-
tive is added1. Surprisingly, in both cases, a problem can
1The other way round, an omission of an objective can

become easier and harder to solve, as was shown experi-
mentally in [3] and is proved analytically in the following
sections.

Generally speaking, case (i) turns a region with given
search space direction into a plateau of incomparable so-
lutions, whereas case (ii) turns a plateau of indifferent so-
lutions into a region where the weak Pareto dominance in-
dicates a direction. The different behavior of additional ob-
jectives in both cases depends on the direction in which the
weak Pareto dominance points. In case (i), where compa-
rable solutions become incomparable, the comparability be-
tween solutions can either lead to the Pareto-optimal front
or be deceptive. The addition of an objective will cause a
new plateau of incomparable solutions but in the latter case,
the incomparability will help to solve the problem, whereas
in the former case the incomparability will make the problem
harder. In case (ii), the problem can both become harder
or easier when changing the dominance structure from a
plateau of indifferent solutions into a region of comparable
solutions. Depending on whether the newly introduced com-
parability will lead to the Pareto-optimal front or behave
deceptively, the computational effort to identify the Pareto
optima may decrease or increase.

3. ALGORITHMS
This section defines the setting for the running time analy-

ses to follow. As to the search space, we consider only pseudo
boolean functions f : {0, 1}n → R

k, i.e., X = {0, 1}n. Con-
cerning the algorithms, we examine both a single-objective
EA and a multi-objective EA.

For single-objective optimization problems (where k = 1),
our analyses are based on the (1+1) EA which has been
considered in theoretical investigations on pseudo boolean
functions [7] as well as some of the best-known combinatorial
optimization problems [11, 21, 26]. The algorithm works
with a population of size 1 together with elitism-selection
and creates in each iteration one offspring by flipping each
bit with probability 1/n:

Algorithm 1. (1+1) EA

1. Choose x ∈ {0, 1}n uniformly at random.

2. Repeat

• Create x′ by flipping each bit of x with probability
1/n.

• If f(x′) ≥ f(x), set x := x′.

Analyzing single-objective randomized search heuristics
with respect to their runtime behavior, we are interested in
the number of constructed solutions until an optimal one has
been created for the first time. This is called the runtime
or optimization time of the considered algorithm. Often,
the expectation of this value is considered and called the
expected optimization time or expected runtime.

We compare the (1+1) EA with its multi-objective coun-
terpart called Global SEMO (Global Simple Evolutionary
Multi-objective Optimizer) [17, 10] which has been investi-
gated in the context of different multi-objective problems,
e.g., spanning tree problems [19, 22]. Global SEMO starts

make incomparable solutions comparable and comparable
solutions indifferent.
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with an initial population P that consists of one single ran-
domly chosen individual. In each generation, an individual
x of P is chosen randomly to produce one child x′ by mu-
tation. In the mutation step, each bit of x is flipped with
probability 1/n to produce the offspring x′. After that, x′

is added to the population if it is not dominated by any in-
dividual in P . If x′ is added to P all individuals of P that
are dominated by x′ or have the same fitness vector as x′

are removed from P . In detail, Global SEMO is defined as
follows.

Algorithm 2. Global SEMO

1. Choose x ∈ {0, 1}n uniformly at random.

2. Determine f(x).

3. P ← {x}.

4. Repeat

• Choose x ∈ P uniformly at random.

• Create x′ by flipping each bit of x with probability
1/n.

• Determine f(x′).

• If x′ is not dominated by any other search point in
P , include x′ into P and delete all solutions dom-
inated by x′ or with fitness vector f(x′) from P .

Analyzing multi-objective evolutionary algorithms with
respect to their runtime behavior, we consider the number
of constructed solutions until for each Pareto optimal objec-
tive vector a solution has been included into the population
and call this the optimization time of the algorithm—the
expected optimization time refers to the expectation value
of the optimization time.

Let |x|1 denote the number of ones and |x|0 denote the
number of zeros in a given bitstring x. We are also interested
in variants of the introduced algorithms using the following
asymmetric mutation operator proposed in [13].

Algorithm 3. Asymmetric Mutation Operator

• Create x′ by flipping each bit of x with probability 1/(2|x|1)
if xi = 1 and with probability 1/(2|x|0) otherwise.

We denote by (1+1) EAasy and Global SEMOasy the algo-
rithms that differ from the (1+1) EA and Global SEMO by
using the mutation operator given in Algorithm 3.

4. ADDING OBJECTIVES TO

A PLATEAU
Our aim is to examine the effect of adding different ob-

jectives to a well-known plateau function. Plateaus are re-
gions in the search space where all search points have the
same fitness. Consider a function f : {0, 1}n → R and as-
sume that the number of different objective values for that
function is V . Then there are at least 2n/V search points
with the same objective vector. Often, the number of dif-
ferent objective values for a given function is polynomially
bounded. This implies an exponential number of solutions
with the same objective value. Nevertheless, such functions
are easy for evolutionary algorithms if for each non-optimal
solution there is a better Hamming neighbor, which means
that an improvement can be reached by flipping a single bit

1110

1111

1101 1011 0111

1100 1010 1001 0110 0101 0011

1000 0100 0010 0001

0000

Figure 3: Relation graph for the objective func-
tion plateau1 : {0, 1}4 → R. Reflexive and transitive
edges are omitted for clarity.

of a non-optimal solution. If this is not the case, the search
for a randomized search heuristic may become much harder.
In the extreme case, we end up with the function needle

where only one single solution has objective value 1 and the
remaining ones get an objective value of 0, cf. [14]. The be-
havior of the (1+1) EA on plateaus of different structures
has been studied in [14] by a rigorous runtime analysis.

We consider the function plateau1 similar to the function
spcn already investigated in [14], which is defined as

plateau1(x) :=

8

<

:

|x|0 : x 6∈ {1i0n−i, 1 ≤ i ≤ n}
n + 1 : x ∈ {1i0n−i, 1 ≤ i < n}
n + 2 : x = 1n.

The relation graph of plateau1 for n = 4 is shown in
Fig. 3. plateau1 contains a set of n− 1 search points that
form a short path having fitness value n + 1. We denote
by SP := {1i0n−i, 1 ≤ i < n} the set of all these search
points. In addition, the search is directed to the all zero-
string as long as no search point with objective value at
least n+1 has been produced. This has the effect for simple
randomized search heuristics such as the (1+1) EA that after
having reached the plateau the Hamming distance to the
optimal search point is large. Nevertheless, the structure
of the plateau admits a fair random walk. The following
theorem shows an expected optimization time of Θ(n3).

Theorem 1. The expected runtime of the (1+1) EA on
plateau1 is Θ(n3).

Proof. As the relative structure of plateau1 and spcn (as
defined in [14]) are identical besides the inclusion of 0n in
the plateau or not, we can reuse all ideas used in the proof
of [14] for the expected runtime O(n3) of the (1+1) EA on
spcn. Therefore, also on plateau1 the expected runtime of
the (1+1) EA can be bounded by O(n3). To the best of our
knowledge, there is up to now no matching lower bound in
the literature.

We will now prove a lower bound of Ω(n3). In the ini-
tialization step of the (1+1) EA, a solution x ∈ {0, 1}n is
produced that fulfills |x|1 ≤

2
3
n with probability 1 − o(1)
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by Chernoff bounds. As long as the current solution is not
in SP and not equal to 0n, the value |x|1 is non-increasing.
Thus, the first individual x chosen by the (1+1) EA that
is in the set SP has the property |x|1 ≤

2
3
n with probabil-

ity 1− o(1). Once the current search point is in the set SP,
only children also from the set SP are accepted. Hence, only
the following mutations are allowed for an accepted muta-
tion step. The first components of x that are 0’s or the last
components of x that are 1’s can be flipped. The probabil-
ity to flip 4 or more components in an accepted step is at
most

Pn
i=4 2( 1

n
)i(n−1

n
)n−i = O(n−4). Thus, with probabil-

ity 1−o(1) no such mutation will be accepted in time Θ(n3).
The probability for a mutation step consisting of 3 flips to
be accepted is at most 2( 1

n
)3(n−1

n
)n−3 = O(n−3). With

probability 1 − o(1) there will be only a constant number
of such mutation steps in time Θ(n3). By the same argu-
ments, there are only O(n) accepted mutation steps with
exactly two flips and only O(n2) accepted mutation steps
with exactly one flipped bit in time Θ(n3). Therefore, in
time Θ(n3) the two and three bit flip mutations can only
decrease the Hamming distance of the current search point

x to the point 1n by at most O(n
1

2 ) with probability 1−o(1),
since the two bit flip mutations and the three bit flip mu-
tations both perform a random walk on the line SP. Thus,
the search point has to cover a distance of order Θ(n) by
one-bit flip mutations. This takes Θ(n2) accepted one-bit
flips with probability 1− o(1). Since the expected time for
an accepted one-bit flip is Θ(n), the time until the (1+1) EA
has reached the search point 1n is Ω(n3).

The analyses of variants of the (1+1) EA in [6, 11, 20]
point out that some of the well-known combinatorial opti-
mization problems such as maximum matching or Eulerian
cycle have natural objective functions where plateaus have
a similar structure as in plateau1. Therefore, this function
plays a key role when considering the behavior of random-
ized search heuristics on plateaus and understanding the ef-
fect of adding objectives to that function may lead to more
efficient search heuristics by using additional objectives.

We investigate the effect of adding two of the simplest
non-trivial objective functions to the problem and consider
the behavior of Global SEMO on these functions.

Namely, we consider the bi-objective problems

plom(x) := (plateau1(x), |x|1)

plzm(x) := (plateau1(x), |x|0)

and show that Global SEMO is faster (cf. Thm. 2) on plom

and exponentially slower on plzm (cf. Thm. 4) compared
to the (1+1) EA on plateau1. Note that the optimum of
plateau1 is included in the Pareto-optimal sets of plom and
plzm. In addition, the Pareto fronts of the bi-objective prob-
lems plom and plzm are of constant size 1, and 2 respec-
tively. According to [16], multi-objectivization only makes
sense if the single-objective optimum is included in the not
too large Pareto front of the new problem which is given for
both plom and plzm.

We now consider Global SEMO on the problem plom.
The first observation is that all x ∈ SP are comparable
in plom while they are indifferent in plateau1. The sec-
ond objective |x|1 of plom also gives the Global SEMO the
“right direction” to move on the former plateau (n+1, ·) up
to the only Pareto optima 1n. This can be seen nicely in
the relation graph of plom in Fig. 4. The following theorem
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Figure 4: Relation graph for the bi-criterion prob-
lem plom : {0, 1}4 → R

2. Reflexive and transitive
edges are omitted for clarity.

shows that Global SEMO is indeed significantly faster on
plom than (1+1) EA on plateau1.

Theorem 2. The expected optimization time of Global
SEMO on plom is O(n2 log n).

Proof. The single Pareto optimum of plom is 1n with the
corresponding objective vector (n + 2, n). The population
size is bounded by O(n) as each objective function attains at
most n+3 different values. If the initial random x ∈ {0, 1}n

is in SP, Global SEMO will walk along the objective vectors
(n+1, ·) up to 1n in expected O(n2 log n) steps. This follows
from the Coupon Collector’s Problem [18] and the fact that
in each step the algorithm chooses with probability ≥ 1/n
the uppermost search point of SP. If the initial solution
is not in SP, Global SEMO produces solutions that trade
off between the number of ones and zeros. In this case, we
consider the number of steps until a solution with objective
vector (n+1, ·) is included or solution 1n is found. Since the
population size is bounded by O(n), the expected number
of steps to go from an x with |x|1 = k to an x′ with |x′|1 =
k+1 is O(n ·n/(n−k)). Therefore, after O(n2Pn

k=1 1/k) =
O(n2 log n) steps, the single Pareto optimal search point 1n

is found.

Using the asymmetric mutation operator, the function
plateau1 becomes much harder. Jansen and Sudholt [13]
have shown that the probability that (1+1) EAasy optimizes

plateau1 in 2O(n1/4) steps is bounded above by 2−Ω(n1/4).
In contrast to this, the search gets easier for Global SEMOasy

on plom.

Theorem 3. The expected optimization time of Global
SEMOasy on plom is O(n2)

Proof. First assume that the population contains an element
x ∈ {1i0n−i, 1 ≤ i ≤ n}. For such an element x, Global
SEMOasy behaves on plom like the (1+1) EAasy on onemax.
According to [13], (1+1) EAasy needs an expected time of
O(n) to optimize onemax. As the population size is at most
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O(n), the optimum is reached after an expected number of
O(n2) steps.

Now assume that we start with an element x 6∈
{1i0n−i, 1 ≤ i ≤ n}. We will analyze the expected num-
ber of steps to reach the optimum assuming that no element
from {1i0n−i, 1 ≤ i ≤ n} enters the population. Otherwise
we already know that we need at most an additional number
of O(n2) steps in expectation to reach the optimum. To mu-
tate an element x towards the optimum, a mutation which
flips no one-bit and at least one zero-bit can be used. The
probability that such a mutation happens for a given x is

p(x) :=

„

1−
1

2|x|1

«|x|1
 

1−

„

1−
1

2|x|0

«|x|0
!

.

Since

1

2
≤

„

1−
1

2k

«k

≤ e−1/2,

we can bound this probability by p(x) ≥ 1−e−1/2

2
. As two el-

ements x, y ∈ ({0, 1}n \{1i0n−i, 1 ≤ i ≤ n}) with |x|0 6= |y|0
do not dominate each other, as soon as a mutation creates
an element with k ones, the population will contain one such
element until the end of the algorithm. Hence, we need an
expected number of

O

 

n ·

n−1
X

i=0

2

1− e−1/2

!

= O(n2)

steps to reach the optimum, as a specific element of the
population is picked with probability Ω(1/n).

It remains to examine the problem plzm. An exponential
deceleration comes from the x ∈ SP. These search points are
now comparable in plzm, but this time, the second objective
|x|0 of plzm is leading Global SEMO and Global SEMOasy

in the opposite direction of the Pareto optimum 1n. The
following theorem shows the more than clear effect of adding
the “wrong objective”.

Theorem 4. The optimization times of Global SEMO
and Global SEMOasy on plzm are exponential with high
probability.

Proof. The objective vectors (n, n) and (n + 2, 0) with the
corresponding search points 1n and 0n are the two Pareto
optima of plzm. The population size is at each time step at
most three as the two objectives are not in conflict for search
points x 6∈ SP ∪ {1n}. Search points of SP are comparable
such that always the one with the largest |x|0 is kept in the
population. Considering in addition the remaining search
point 1n the claim on the population size follows. Using
the ideas of the proof of Thm. 2 and 3 together with the
bound on the population size, the expected time to obtain
the solution 0n is O(n log n) for Global SEMO and O(n) for
Global SEMOasy. Now we show that the time to find the
other Pareto optimal search point 1n is exponential. Start-
ing with a random x ∈ {0, 1}n, both algorithms only accept
solutions x′ with |x′|0 ≥ |x|0 or the search point 1n. With
probability exponentially close to 1, the initial random start
point x satisfies |x|1 < 2

3
n. Hence, the only chance to pro-

duce the search point 1n is to do one big jump by flipping
at least n

3
0-bits. The corresponding probabilities O(n−n/3)

for Global SEMO and O(2−n/3) for Global SEMOasy are

exponentially low. Therefore, the optimization times are
exponential with high probability.

5. COPINGWITH TWO PLATEAUS
In Sec. 4, the added objectives were easy to solve individ-

ually for the (1+1) EA. The main reason for the smaller run-
time of plom as compared to plateau1 is that both func-
tions have the same global optimum. The question arises
whether combining two objectives may result in a faster op-
timization process than optimizing the different objective
functions separately. We show that the combination of two
equally complex problems yields an easier problem if both
functions are optimized as a bi-criterion problem.

We know from Thm. 1 that Global SEMO has an expected
running time of Θ(n3) on plateau1. The same holds for the
following function

plateau2(x) =

8

<

:

|x|1 : x 6∈ {0i1n−i, 1 ≤ i ≤ n}
n + 1 : x ∈ {0i1n−i, 1 ≤ i < n}
n + 2 : x = 0n

due to the symmetry with plateau1. We now consider the
multi-objective function

plateaus = (plateau1(x),plateau2(x))

where Global SEMO has to cope with a plateau in each
objective and show that this may be easier than solving the
single-objective problems separately.

Theorem 5. The expected optimization time of Global
SEMO on plateaus is O(n2 log n).

Proof. The objective vectors (n+2, n) and (n, n+2) with the
corresponding search points 1n and 0n are Pareto optimal as
they are the optima of the two objective functions plateau1

and plateau2. There does not exist an objective vector
(n + 1, n + 1) for the considered problem which shows that
the search points 1n and 0n are the only Pareto optimal
ones.

The population size is always bounded by O(n) as each
objective function attains at most n + 3 different values.
We consider the number of steps until solutions with ob-
jective vectors (n + 1, ·) and (·, n + 1) have been included
into the population and assume that the Pareto optimal
solutions with objective vectors (n + 2, n), and (n, n + 2)
respectively, have not been obtained before. We investigate
the case to obtain (n + 1, ·). As long as such a solution
has not been obtained, we consider the solution x with the
largest plateau1-value in the population. This is deter-
mined by the number of zeros in x. Assume that |x|0 = k
holds. Then, the probability to produce from x a solution x′

with a higher number of zeros is at least (n− k)/(en). The
probability of choosing x in the next step is Ω(1/n). Hence,
the number of zeros increases after an expected number of
O(n2/(n − k)) steps. Summing up over the different values
of k, the search point 0n with objective vector (n, n + 2)
has been obtained after O(n2 log n) steps if no solution with
objective vector (n + 1, ·) has been produced before. Flip-
ping the first bit in 0n leads to a solution with objective
vector (n + 1, ·) and can be obtained in an additional phase
of O(n2) steps. The expected time to obtain a solution with
objective vector (·, n + 1) can be bounded by O(n2 log n)
using the same arguments.
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After P includes solutions with objective vectors (n+1, ·)
and (·, n + 1) or a subset of Pareto optimal solutions domi-
nating these vectors, the population size is always bounded
by 2. We consider how to obtain the search point 1n. Let
x be the search point with objective vector (n + 1, k) in the
population. Flipping the bit xk+1 in x leads to a solution
x′ with objective vector (n + 1, k + 1). The population size
is at most 2 and the probability of flipping one single spe-
cific bit is at least 1/(en) which implies that the expected
waiting time for such a step is O(n2). The value of k will
be increased at most n − 1 times until the search point 1n

has been included into P . Hence, the expected time until
this solution has been obtained is O(n2). The same holds
for including the search point 0n using the same arguments.
Altogether the expected optimization of Global SEMO on
plateaus is O(n2 log n).

Jansen and Sudholt [13] have shown that the (1+1) EAasy

is totally inefficient on plateau1. The same arguments hold
for plateau2 as it differs from plateau1 only by exchanging
the roles of zeros and ones. Surprisingly, this does not hold
for Global SEMOasy and plateaus. In the following, we
show that Global SEMOasy is quite efficient on plateaus.

Theorem 6. The expected optimization time of Global
SEMOasy on plateaus is O(n2).

Proof. As in the proof of Thm. 5, we first bound the ex-
pected number of steps until the population includes search
points of fitness (n + 1, ·) and (·, n + 1) and assume that
the Pareto optimal objective vectors (n + 2, n) respectively
(n, n+2) have not been obtained before. For obtaining (n+
1, ·), consider the search point x with the largest plateau1

value. Assume that it has |x|0 = k zeros. The probability
to obtain from x a solution with more zeros can be bounded
by (1 − e−1/2)/2, as shown in the proof of Thm. 3. Sum-
ming this up for all values of k and using the fact that the
population size is always bounded by O(n), a solution with
fitness (n + 1, ·) is obtained after an expected number of
O(n2) steps. By symmetry, the same holds for obtaining a
search point of fitness (·, n + 1).

Now assume that two search points of fitness (n + 1, ·)
and (·, n + 1) are included in the population. Since they
dominate all other points, the population size is bounded
by 2 in this case. If the fitness of the first search point is
(n + 1, k), it consists of k ones followed by n − k zeros. Its
fitness can be improved by flipping the (k+1)th zero to one.
The probability for this to happen is

p(x) :=

„

1−
1

2k

«k „
1

2(n− k)

«„

1−
1

2(n− k)

«n−k−1

which can be bounded by

p(x) ≥
1

2

1

2(n− k)

„

1−
1

2(n− k)

«

1

2
= Ω

„

1

n

«

.

Hence, after an expected number of O(n2) steps the fitness
will reach (n + 2, n). By symmetry, the same holds for ob-
taining the search point with fitness (n, n + 2).

6. CONCLUSIONS
We have investigated the effect of adding an objective to a

given problem. This can make the solutions of the original
problem either incomparable or make indifferent solutions

comparable. The effect of these changes in the dominance
relations has been investigated via a rigorous runtime anal-
ysis. We have pointed out situations where such changes
can both speed up or slow down the optimization process
on one and the same problem. In the extreme case, the ef-
fect of adding objectives can make the difference between
a polynomial and an exponential runtime. In our investi-
gations, we considered a well-known plateau function. As
objective functions with plateaus of a similar kind appear
in some well-known combinatorial optimization problems,
adding objectives might be useful for a broad class of such
problems.
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