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ABSTRACT 
Point estimates of the parameters in real world models convey 
valuable information about the actual system. However, 
parameter comparisons and/or statistical inference requires 
determination of parameter space confidence regions in addition 
to point estimates. In most practical applications, the relation of 
the parameters to model fitness is highly nonlinear and noisy data 
leads to further deviations. Thus the confidence regions obtained 
by using locally linearized models are often misleading. Uniform 
covering by probabilistic rejection (UCPR) is a robust technique 
that has been developed to solve this problem, and has been 
proven to be more efficient than other approximate random search 
techniques. In this paper, we propose a contour particle swarm 
optimization (C-PSO) technique and compare its performance 
against UCPR in predicting the confidence regions. Results 
indicate that for problems with low number of parameters, both 
the algorithms are quite comparable. However, real world models 
such as genetic networks have a large number of parameters and 
the UCPR fails in finding good convergence due to its limited 
search capabilities. In such problems, the C-PSO technique was 
able to find the confidence regions with better resolution and 
efficiency.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search – graph and tree search strategies, heuristic methods. 

General Terms 
Algorithms, Theory. 

Keywords 
Evolutionary algorithms, genomics, confidence regions, particle 
swarm optimization. 

1. INTRODUCTION 
Particle Swarm Optimization (PSO) is one of the most recent 

biologically inspired algorithms for optimization [1-4]. In PSO a 
population of candidate solutions, called particles are maintained. 
The search space is explored by these particles that are allowed to 
move about inside it in a manner similar to the movement of birds 
or fishes in swarms. These particles have their own positions 
(locations within the search space, i.e. candidate solutions) as well 
as their velocities. The particle’ trajectories are guided through 
iterative velocity updates, by their individual memories, i.e. stored 
previous best positions, as well as by their interaction with other 
particles. Eventually, the particles converge to suitable optima 
[3]. 
In this research, a PSO algorithm is proposed to address a specific 
need in modeling gene networks as differential equations, which 
is discussed below. 
1.1 Problem Definition  
For over 40 years plant physiologists and systems modelers have 
used simulation models to predict plant growth and development 
varietal characteristics and environmental inputs.  Recent 
advancements in genomic science has opened the possibility of 
doing the same thing using dynamic models of gene expression 
[7-9].  Gene networks are apparently modular at the small scale 
[10]. Simple single-gene models, when interconnected into one to 
four-gene networks, demonstrate rich signal processing 
capabilities including Boolean logic gates, linear arithmetic units, 
coincidence detectors, delays, differentiators, integrators, 
oscillators, and bi-stable devices [10]. The latter are particularly 
important in linking events at the genome level to whole-plant, 
phenotypic responses because many developmental processes are 
initiated by state changes in a biological switch [e.g., 11].  
 Unfortunately, estimating differential equation model 
parameters to high accuracy is complicated by  (i) model 
imperfections, i.e. discrepancies between the model and the real 
system, (ii) experimental errors in collected data, and (iii) 
inconsistencies present when compiling data from multiple 
sources. Under these circumstances, it is desired to determine for 
each model parameter, a range of values, between which the 
actual parameter are located with a specified probability. 
 For all practical purposes, it can be assumed that the real world 
model is nonlinear and with the presence of noise in the 
prediction data the deviations are more pronounced. This leads to 
a highly nonlinear relationship between the fitness of the model 
and the estimated parameters. UCPR [13] is an approach that aids 
in visualizing confidence regions by plotting a cloud of points. 
The interior of such a cloud is assumed to approximate the 
confidence region. In comparison, with other standard benchmark 
methods this approach has been proven to be efficient [13]. 
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However, the search technique used in this approach is trivial and 
becomes highly inefficient in finding the optima for problems that 
have noisy landscapes. PSO have been applied to such difficult 
problems and have been proven to be able to converge to the 
optima [3]. Another added advantage of the PSO is that at any 
given iteration in the algorithm the population is a cloud of points 
that can potentially be utilized to plot the confidence region. 
 In this paper, we present a comparison of the performance of 
UCPR and C-PSO in robust and efficient prediction of a 
confidence region around the best-fit parameters. The formal 
problem formulation is given in the next section.  

1.2 Problem Formulation  
Given any function to be minimized, ℜ→ℜ⊂ nSf : , where S is 
the search space, and an ascending sequence of level sets, lk, k = 
1, 2… L, such that inf(f(x)) ≤ l1 < l2 <…< lL ≤ sup(f(x)), where L 
is the number of levels, the objective is to find the subsets Sk, k = 
1, 2…L of S, where, 

{ }kk LfSS ≤∈= )(,| xxx .                         (1) 
These sets defined above in equation (1) implicitly describe the 

contours of the function f( ۤ·). This is because a boundary 
separating the region Sk from another region Sk-1 – Sk (where S ≡ 
S0) is the contour defined by f(x) = lk (see also, figure 1 above). 
Appropriate levels lk can be easily defined a priori depending on 
where the contours are desired. 

From each region Sk, one can easily determine the range of any 
given parameter xi, the ith component of x as, 
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i
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k
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The mini(·) and maxi(·) operators are simply the minimum and 
maximum of the ith component of their argument. Figure 2 shows 
this clearly.  A special case of this problem is when the levels are 
defined from probabilities, thus delimiting confidence regions for 
point parameter estimates.  This case is the principle motivation 
for the work reported here. 

Since PSO is only capable of sampling a finite subset of S, the 
algorithm described in this paper can only produce a finite, 
reasonably small number of samples of each Sk. Because of this 
restriction, it is judicious to seek solutions that cover as extensive 
a region of each Sk as possible and are also regularly spaced, a 
desired feature that is termed as diversity in evolutionary 
computation parlance. Diversity is an important consideration in 
multi-objective optimization where the absence of a single 

optimal solution makes it necessary for any algorithm to be able 
to produce an entire set of near-optimal sample solutions [5]. 
Multi-objective optimization algorithms therefore must maintain 
diversity during their search process [5]. Multi-objective versions 
of PSO routinely incorporate features specifically to address 
diversity too (cf. [6]). As shown later in this paper, diversity 
maintenance being a necessary requirement here, the algorithm 
suggested in this paper also implements features borrowed from 
other evolutionary approaches. We will henceforth refer to our 
algorithm as C-PSO (Contour Particle Swarm Optimization). To 
illustrate the effectiveness of C-PSO, we have chosen the 
following minimization problems. 

1.3 Test Functions 
The first three problems were originally used in [13] to evaluate 
the UCPR algorithm.  The fourth problem is a simple gene 
network system of higher dimensionality. 

1.3.1 Problem f1 
This is a model of a simple biological organism, that responds to 
two different external inputs ( ix1 and ix2 ) yielding a trait yi via a 
multiplicative response [13]. The objective is to find the optimal 
pair (p1, p2) that minimizes the least squares function f1 as defined 
in equation (3) . 
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where,  }20,20,15,15{4,3,2,1
1 ==ix , }20,15,20,15{4,3,2,1

2 ==ix , 

}8.0,7.0,7.0,6.0{4,3,2,1
1 ==iy  and parameters p1 and p2 are in the 

range of [12, 22]2. With the given data this function has three 
local optima and one global minimum.  

1.3.2 Problem f2 
This model that represents a common case with poorly spaced 
experimental data ( ix )  [13]. The objective is to minimize the 
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Figure 1. A schematic of the search space of a function 
illustrating how contours are defined by the sets Sk. 

Figure 2. Schematic showing the relationship between 
ranges of acceptable values of a parameter xi and Sk. 
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value of f2 as defined in equation (4), by finding the optimal pair 
(p1, p2). 
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where,  }1,1,9.0,9.0{4,3,2,1
1 ==ix , }6.0,4.0,55.0,4.0{4,3,2,1

1 ==iy  
and p1 and p2 are the parameters to be predicted in the range of [-
1,3] and [-2,3] respectively.  

1.3.3 Problem f3 
This is an analytical test function that represents a disconnected 
confidence region [13]. The objective is to minimize the value of 
f3 as defined in equation (5), by finding the optimal pair (p1, p2) in 
the range of [0, 4.34]2.  
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2
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13 ppf −−=     (5) 

1.3.4 Parameter Estimation in a Gene Network 
The effectiveness of the proposed C-PSO algorithm is also tested 
with a real world problem involving a single-gene model.  The 
levels of messenger RNA was measured every 3 hours under 
short-days (9 hours of light, 15 hours of darkness each day) and 
long-days (15 hours of light, 9 hours of darkness per day) for the 
gene HEADING DATE-1 (Hd1), an important flowering time 
control gene in rice (Oryza sativa). The experimental data 
provided [16] had two time series: )(1(exp) tHd LD  and )(1(exp) tHd SD  for 
t = 0 to 54 hours. 
In [10] this data has been modeled with the equations,  

DNND HdtCgRHd
dt
d

λ)1())(()1( −=                  (6) 

under conditions of darkness, and as, 

LNNL HdtCgRHd
dt
d

λ)1())(()1( −=                  (7) 

during light periods. Here, R’s and λ’s are constants associated 
with the gene and the subscripts L and D refer to light and dark 
periods. An input from the plant’s diurnal clock is 
C(t)=A*sin(2π/p + θ) + μ, where A is amplitude, p is period, θ is a 

phase angle, μ is a phase factor and 
)exp(1

1
c

gNN −+
= [7]. The 

state variable, Hd1, is dimensionless as expression levels are 
routinely normalized against laboratory standards. When 
simulating equation (7), two initial conditions for Hd1, are 
required, coresponding to light and dark periods, which are HL 
and HD respectively. Each simulation of Hd1’s RNA level defined 
in equation 4 should be carried out through alternating periods of 
darkness and light for each 24 hour cycle. 

The ten parameters associated with the simulation can be 
regarded as a solution vector x in S as, 

x = [λL λD RL RD A p θ μ HL HD].               (8) 
When the simulation is carried out separately for long day and 

short day conditions using any parameter vector x, two time series 
can be obtained, )(1 )( tHd sim

LD  and )(1 )( tHd sim
SD . The fitness function 

E, is defined as the sum of the root mean square errors  between 
the simulated and a given k number of  experimental data points, 
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The objective is to obtain reliable estimates for the range of 
values of each parameter in equations (6) and (7) that minimize E 
in equation (9). 

2. OUTLINE OF THE ALGORITHMS 
In this section we explain in detail both the algorithms UCPR and 
C-PSO. 

2.1 UCPR 
The main idea of the algorithm is to start with a set of randomly 
generated N number of points in the search region. In each 
iteration the worst point (Gw) is selected and replaced with a 
better solution. This is achieved by randomly generation solutions 
in the search space within a specified boundary region (D). This 
process is iterated until the worst fitness is lies within a boundary 
of an α confidence region of the target boundary value fitness 
(Gc), i.e. until Gw < Gc,. The value of Gc is evaluated using 
equation (10). 

minmin
),,(1 WGG
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nKnnFGc =⎥⎦
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+=
α   (10) 

where,  n is the number of parameters, K is the sample size, F() is 
the Fisher F-value [14] and Gmin represents the best minimum 
fitness value found.  The overall algorithm as detailed in [13], can 
be summarized briefly as below: 

1. Initialize sample size N, parameter domain range D, 
safety factor c and an initial value for Gc,. 

2. Randomly initialize N points uniformly in the search 
domain D, which forms the set X0. 

3. Set j = 0 
4. Calculate the fitness (G(P)) for each point in Xj. 
5.  Termination criteria: If max(G(P)) < Gc, then exit and 

output the current population. Otherwise go to step 6. 
6. Generate a new individual Ptry uniformly distributed 

over D.  
7. If the minimum Euclidian distance to any point in Xj  is 

greater than the safety factor c, then go to step 6. 
Otherwise go to step 8. 

8. Evaluate the fitness of Ptry,:G(Ptry). If G(Ptry) > 
max(G(P)), then go to step 6. Otherwise, replace current 
worst point in Xj. If G(Ptry) < Gmin, then replace Gmin 
with the new value and revaluate the value of Gc is 
updated.  Increment j by 1, and return to step 5.   

2.2 C-PSO 
2.2.1 Particle Swarm Optimization 

This section describes the variant of the standard PSO 
algorithm that has been used for the rest of the paper.  The 
algorithm maintains a population of M particles whose positions, 
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Figure 3. Schematic showing the effect of mutation and 
crossover on a moving cloud 

X(i), i = 1, 2, … M, are initialized to random values at the start. 
These positions are updated in each iteration of the algorithm by 
adding the particles instantaneous velocity Vt(i) during iteration t 
to it, as follows, 

Xt+1(i) = Xt(i) + Vt(i)                              (11) 
The velocity is updated in each iteration, so that the particle can 
eventually move towards a better location. The velocity update 
takes place using each particle’s recorded previous best position, 
and the current location of the other particles. It is given by, 

      Vt+1(i) = χ(Vt(i) + C1×U[0,1]×(Xib(i) – Xt(i)) 
+ C2×U[0,1]×(Xgb,t – Xt(i)))             (12) 

In the above equation, C1 and C2 are two constants, called the 
cognitive and the social constants, and χ is called the constriction 
coefficient, that helps in maintaining stability [3]. The quantity 
U[0,1] is a uniformly distributed random number in [0, 1]. The 
quantity Xib is the individual best recorded position of the ith 
particle so far, Xib(i) = Xt’(i), such that ∀s ∈ {0, 1, … t}, e(Xt’(i)) 
≤ e(Xs(i)), where e(·) is the objective function to be minimized. 
The other quantity, Xgb,t is called the global best, and is the 
position of the best particle in the current iteration t. In other 
words, Xgb,t = Xt(j), for some j, such that ∀k ∈ {0, 1, … N}, 
e(Xt(j)) ≤ e(Xt(k)). 

2.2.2 Hybridized PSO Algorithm 
Hybridizing the Nelder-Mead simplex approach with 

evolutionary algorithms has been a very popular approach to 
speed up convergence. Koduru et al. have extended this work to 
hybridizing PSO [1, 2] using Nelder-Mead simplex [15]. In this 
approach, the k-means algorithm is used within each iteration to 
divide the entire population into separate clusters, each containing 
points in close proximity. Each cluster is then improved 
separately through the Nelder Mead search. The results presented 
in [1,2] suggest that using the clustering approach has provided 
better convergence results with the simplex hybrid PSO. For this 
reason we have opted to use this approach of hybrid simplex PSO 
for the current work.  

2.2.3 Archiving 
The hybridized PSO algorithm has a good convergence rate but is 
unsuitable, as given, for problem at hand. This section describes 
the modifications we have made in response. In general, the 
objective of a PSO algorithm is to direct the swarm of particles to 
the global minima. However, in the current work, our goal is form 
a cloud of points that shows the confidence region. Hence, it is 
necessary to have an archive that stores all that solutions that have 
a fitness value less than Gc in equation (11). Such an archive 
when plotted gives a confidence region with the target boundary 
fitness of Gc. Hence we modify the basic algorithm to have an 
external archive in addition to the global best solution, which 
stores all the individuals that have a better fitness than Gc in every 
generation. 

2.2.4 Crossover and Mutation 
In general, when any PSO algorithm is allowed to run for a 
sufficient number of iterations, the swarm converges to single 
optimum. However, in order to form the confidence regions, we 
need the swarm to form a cloud of points rather than a dense 

region. This effect is achieved by using the crossover and 
mutation operators in the hybrid PSO algorithm.  
The mutation operator is applied as turbulence to the velocity 
update of particle i as: 

Vt+1(i)wt = Vt+1(i) + δ×U[-1,1] × Vt+1(i)            (13) 

Where δ is a turbulence factor, and the quantity U[-1,1] is a 
uniformly distributed random number in [-1, 1]. This updated, 
turbulent velocity (Vt+1(i)wt) is then used to update the particles 
position [17]. 

The mutation operator creates a spreading cloud of particles, 
some of which are inevitably far outliers in fitness. Hence a 
countervailing correction mechanism, crossover, is incorporated 
into the algorithm. This can be visualized as a solar flare in space 
that expands as it progresses. The flare continues in directions 
where the conditions are favorable and expands in that direction. 
However, in other directions the flame loses intensity and 
eventually disappears.  The mutation drives the expansion, while 
the crossover limits the effect of turbulence by maintaining the 
flow in favorable directions (see Figure 3).  
Uniform crossover is implemented by replacing the worst fitness 
particle (outlier, w

tX ) with a new particle ( '
tX ), which is 

generated using equation (14), using a good fitness particle (core, 
b
tX ).  

b
t

w
tt XXX )1(' ηη −+=   (14) 

where η is a uniformly distributed random number in [0.5, 1]. In 
the present work, we subjected any particles outside the 95% 
confidence region to crossover with a randomly selected particle 
within the 10% confidence region.  

2.2.5 C-PSO Algorithm 
The complete algorithm that is implemented is as follows: 

1. t = 0. 
2. Randomly initialize the particle positions X0(i). 
3. Initialize all velocities, V0(i), to zeroes. 
4. Check for termination criteria. If condition met then 
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terminate, otherwise continue to step 5.  
5. Assign each particle i to clusters using k-means. 
6. Evaluate the objective function at each Xt(i). 
7. Update each particle i’s individual best. 
8. Update global best and Gmin and reevaluate Gc. 
9. Remove any solutions in the archive have fitness 

greater than or equal to Gc, as defined by Equation 
(10). Add any solutions in the new population that do 
satisfy the condition. 

10. Apply the simplex approach to each cluster. 
11. Update positions Xt(i) according to (11). 
12. Apply uniform crossover on outlier particles. 
13. Update velocity according to (12) and (13). 
14. T = t + 1. If t > tmax, stop, else go to 4. 

3. EXPERIMENTAL SETUP 
The performance of both the algorithms was compared on the 
different test functions that have been described in Section 1.3. To 
permit comparisons, the termination criterion for both algorithms 
was the same as in [13].  Specifically, iteration stops when the 
search domain D contains a set of 200 points that all satisfy the 
condition G(P) < Gc. The value of Gc is evaluated using equation 
(10), where the value of W is fixed at 1.2 for all the test problems 
except for test function f1, for which W is set to be 1.4 [13]. Both 
the algorithms have many settings to be specified a priori. These 
quantities are discussed next.  
In UCPR, an initial population of 200 points is uniformly 
generated in the specified search domain range (D) for each 
problem. However, such large size populations are not commonly 
used in PSO algorithm [2, 3 and 6]. In order to maintain 
uniformity over all the problems, we have fixed the population 
size such that a total of 10 k-means clusters can be formed with 
each cluster each having (n+1) points, where n represents the 
number of parameters to be estimated. This number is determined 
by the prerequisites necessary to apply the Nelder-Mead simplex 
within each cluster. The total number of k-means steps to divide 
the population into different clusters is restricted to a maximum of 
10 iterations. With each cluster, the Nelder-Mead simplex is used 
to improve the worst individuals by doing reflection and 
contraction operations as necessitated. The parameters used with 
the simplex operation are the reflection and contraction 
coefficients, which are fixed at 1.5 and 0.5 respectively. In the 
preliminary runs, it was observed that use of more simplex 
operations would cause the swarm to rapidly converge to local 
optima. Hence, to avoid the loss of diversity in the swarm, one 
simplex flip per instance is used. This allowed for a faster 
convergence rates while maintaining the diversity of the swarm. 
For the mutation operation, a turbulence factor (δ) of 0.1 is used. 
Each of the algorithms is run five times for each test problem and 
the average of the results obtained are reported.  

4. RESULTS 
Table I lists the average number function evaluations utilized by 
each algorithm in order find the 200 points in the parameter space 
that satisfy the condition G(P) < Gc.  
It can be clearly seen in all the problems that C-PSO was able to 
satisfy the termination criteria with least number of function 
evaluations. In the case of the gene network problem, the UCPR 

method failed to satisfy the termination condition in any of the 5 
different runs even after 30,000 function evaluations. This 
suggests the failure of UCPR method in converging to the optima 
in a high dimensional search space.  Table II and III provide the 
average of the best and worst fitness obtained in the final 
population. Again it is clearly evident that C-PSO was able to 
converge to better optima than UCPR. Hence, C-PSO is not only 
efficient in convergence, but also robust in finding the optima in 
comparison with UCPR.  
Figures 4 and 5 show comparison of the confidence regions 
obtained from all the different runs by UCPR and C-PSO on the 
test functions f1 and f3, respectively. Comparing the contour 
formed by joining the exterior of the point clouds with the actual 
nonlinear shaped contour in the background, it can be clearly 
observed that C-PSO has been able to get a much better 
approximation of the confidence regions. The algorithms were 
also capable of finding the confidence regions in disconnected 
regions. Figure 6 shows the scatter plot of the particle cloud form 
one of the run of UCPR on gene network problem for the two 
parameters RD and RL. The RMS prediction error is the vertical 
axis, and the points have a spectrum that is proportional to the 
goodness of fit of the solution. The algorithm was not able to 
converge to any good solution in all the runs and the near even 
distribution of the points search space, strongly suggests the 
failure of the algorithm in forming the confidence region.  
 

Table I. Comparison of Number of Function Evaluations 
necessary for convergence for both algorithms 

PROBLEM UCPR C-PSO 

f1 893 820 

f2 1304 1220 

f3 1274 860 

Gene Network 30000* 20240 

 
Table II. Comparison of Best solution obtained  

PROBLEM UCPR C-PSO 

f1 1.231474 1.2302278 

f2 0.03130862 0.0312501 

f3 1.00875927 1.00000 

Gene Network 3.6190199* 2.4919667 

 
Table III. Comparison of Worst solution obtained  

PROBLEM UCPR C-PSO 

f1 1.4159113 1.43431408 

f2 0.04692051 0.03585649 

f3 1.38366209 1.19575342 

Gene Network 5.099656* 2.570873 
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In comparison, Figure 7 shows the particle distribution in the 
parameter space for three different sets of parameters. From these 
plots it can be noted that this real world problem has narrow 
valley optima surfaces, which renders common purpose 
optimization algorithms incapable of finding good fit solutions. 
To illustrate the effect of the varying parameters a plot of the 
simulated output and the actual experimental data is provided in 
Figure 8. The wide band of solid lines depicts the regions of 
prediction for the various parameters values that are present in the 
cloud of points shown in Figure 7.   

5. CONCLUSIONS 
Statistical inferences for complex models must be based on 
accurate confidence regions. Such regions may have convoluted 
shapes not readily revealed by linearized analysis.  We have 
compared UCPR with a novel algorithm (C-PSO) based on 
particle swarm optimization..  For lower dimensional problems, 
C-PSO was able to find somewhat better minima in somewhat 
less time.  But, to the eye at least, UCPR had better uniformity 
and tended to find more portions of disconnected confidence 
intervals.  More importantly, however, is the fact that C-PSO was 
able to find confidence regions for higher dimensioned problems 
where UCPR failed.  This result provides justification for 
additional work that should be able to enhance C-PSO 
performance across the board.  Such work is underway.   
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