
A Particle Swarm Optimization Approach for Estimating
Parameter Confidence Regions

Praveen Koduru
Electrical & Computer Engineering

Kansas State University
Manhattan, KS, USA
praveen@ksu.edu

Stephen M. Welch
Department of Agronomy
Kansas State University

Manhattan, KS, USA
welchsm@ksu.edu

Sanjoy Das
Electrical & Computer Engineering

Kansas State University
Manhattan, KS, USA
sdas@ksu.edu

ABSTRACT
Point estimates of the parameters in real world models convey
valuable information about the actual system. However,
parameter comparisons and/or statistical inference requires
determination of parameter space confidence regions in addition
to point estimates. In most practical applications, the relation of
the parameters to model fitness is highly nonlinear and noisy data
leads to further deviations. Thus the confidence regions obtained
by using locally linearized models are often misleading. Uniform
covering by probabilistic rejection (UCPR) is a robust technique
that has been developed to solve this problem, and has been
proven to be more efficient than other approximate random search
techniques. In this paper, we propose a contour particle swarm
optimization (C-PSO) technique and compare its performance
against UCPR in predicting the confidence regions. Results
indicate that for problems with low number of parameters, both
the algorithms are quite comparable. However, real world models
such as genetic networks have a large number of parameters and
the UCPR fails in finding good convergence due to its limited
search capabilities. In such problems, the C-PSO technique was
able to find the confidence regions with better resolution and
efficiency.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods
and Search – graph and tree search strategies, heuristic methods.

General Terms
Algorithms, Theory.

Keywords
Evolutionary algorithms, genomics, confidence regions, particle
swarm optimization.

1. INTRODUCTION
Particle Swarm Optimization (PSO) is one of the most recent

biologically inspired algorithms for optimization [1-4]. In PSO a
population of candidate solutions, called particles are maintained.
The search space is explored by these particles that are allowed to
move about inside it in a manner similar to the movement of birds
or fishes in swarms. These particles have their own positions
(locations within the search space, i.e. candidate solutions) as well
as their velocities. The particle’ trajectories are guided through
iterative velocity updates, by their individual memories, i.e. stored
previous best positions, as well as by their interaction with other
particles. Eventually, the particles converge to suitable optima
[3].
In this research, a PSO algorithm is proposed to address a specific
need in modeling gene networks as differential equations, which
is discussed below.
1.1 Problem Definition
For over 40 years plant physiologists and systems modelers have
used simulation models to predict plant growth and development
varietal characteristics and environmental inputs. Recent
advancements in genomic science has opened the possibility of
doing the same thing using dynamic models of gene expression
[7-9]. Gene networks are apparently modular at the small scale
[10]. Simple single-gene models, when interconnected into one to
four-gene networks, demonstrate rich signal processing
capabilities including Boolean logic gates, linear arithmetic units,
coincidence detectors, delays, differentiators, integrators,
oscillators, and bi-stable devices [10]. The latter are particularly
important in linking events at the genome level to whole-plant,
phenotypic responses because many developmental processes are
initiated by state changes in a biological switch [e.g., 11].
 Unfortunately, estimating differential equation model
parameters to high accuracy is complicated by (i) model
imperfections, i.e. discrepancies between the model and the real
system, (ii) experimental errors in collected data, and (iii)
inconsistencies present when compiling data from multiple
sources. Under these circumstances, it is desired to determine for
each model parameter, a range of values, between which the
actual parameter are located with a specified probability.
 For all practical purposes, it can be assumed that the real world
model is nonlinear and with the presence of noise in the
prediction data the deviations are more pronounced. This leads to
a highly nonlinear relationship between the fitness of the model
and the estimated parameters. UCPR [13] is an approach that aids
in visualizing confidence regions by plotting a cloud of points.
The interior of such a cloud is assumed to approximate the
confidence region. In comparison, with other standard benchmark
methods this approach has been proven to be efficient [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

70

However, the search technique used in this approach is trivial and
becomes highly inefficient in finding the optima for problems that
have noisy landscapes. PSO have been applied to such difficult
problems and have been proven to be able to converge to the
optima [3]. Another added advantage of the PSO is that at any
given iteration in the algorithm the population is a cloud of points
that can potentially be utilized to plot the confidence region.
 In this paper, we present a comparison of the performance of
UCPR and C-PSO in robust and efficient prediction of a
confidence region around the best-fit parameters. The formal
problem formulation is given in the next section.

1.2 Problem Formulation
Given any function to be minimized, ℜ→ℜ⊂ nSf : , where S is
the search space, and an ascending sequence of level sets, lk, k =
1, 2… L, such that inf(f(x)) ≤ l1 < l2 <…< lL ≤ sup(f(x)), where L
is the number of levels, the objective is to find the subsets Sk, k =
1, 2…L of S, where,

{ }kk LfSS ≤∈=)(,| xxx . (1)
These sets defined above in equation (1) implicitly describe the

contours of the function f(ۤ·). This is because a boundary
separating the region Sk from another region Sk-1 – Sk (where S ≡
S0) is the contour defined by f(x) = lk (see also, figure 1 above).
Appropriate levels lk can be easily defined a priori depending on
where the contours are desired.

From each region Sk, one can easily determine the range of any
given parameter xi, the ith component of x as,

[])(max),(min k
i

k
i

k
i SSR = (2)

The mini(·) and maxi(·) operators are simply the minimum and
maximum of the ith component of their argument. Figure 2 shows
this clearly. A special case of this problem is when the levels are
defined from probabilities, thus delimiting confidence regions for
point parameter estimates. This case is the principle motivation
for the work reported here.

Since PSO is only capable of sampling a finite subset of S, the
algorithm described in this paper can only produce a finite,
reasonably small number of samples of each Sk. Because of this
restriction, it is judicious to seek solutions that cover as extensive
a region of each Sk as possible and are also regularly spaced, a
desired feature that is termed as diversity in evolutionary
computation parlance. Diversity is an important consideration in
multi-objective optimization where the absence of a single

optimal solution makes it necessary for any algorithm to be able
to produce an entire set of near-optimal sample solutions [5].
Multi-objective optimization algorithms therefore must maintain
diversity during their search process [5]. Multi-objective versions
of PSO routinely incorporate features specifically to address
diversity too (cf. [6]). As shown later in this paper, diversity
maintenance being a necessary requirement here, the algorithm
suggested in this paper also implements features borrowed from
other evolutionary approaches. We will henceforth refer to our
algorithm as C-PSO (Contour Particle Swarm Optimization). To
illustrate the effectiveness of C-PSO, we have chosen the
following minimization problems.

1.3 Test Functions
The first three problems were originally used in [13] to evaluate
the UCPR algorithm. The fourth problem is a simple gene
network system of higher dimensionality.

1.3.1 Problem f1
This is a model of a simple biological organism, that responds to
two different external inputs (ix1 and ix2) yielding a trait yi via a
multiplicative response [13]. The objective is to find the optimal
pair (p1, p2) that minimizes the least squares function f1 as defined
in equation (3) .

()∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−+−+
=

4

1

2

2211
1

))(1(*))(1(
1

i
iii y

pxpx
f (3)

where, }20,20,15,15{4,3,2,1
1 ==ix , }20,15,20,15{4,3,2,1

2 ==ix ,

}8.0,7.0,7.0,6.0{4,3,2,1
1 ==iy and parameters p1 and p2 are in the

range of [12, 22]2. With the given data this function has three
local optima and one global minimum.

1.3.2 Problem f2
This model that represents a common case with poorly spaced
experimental data (ix) [13]. The objective is to minimize the

S1

S3

S2

S
S1

S3

S2

S

Figure 1. A schematic of the search space of a function
illustrating how contours are defined by the sets Sk.

Figure 2. Schematic showing the relationship between
ranges of acceptable values of a parameter xi and Sk.

Sk

xi

Ri
k

Sk

xi

Ri
k

71

value of f2 as defined in equation (4), by finding the optimal pair
(p1, p2).

()∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

4

1

2

2

1
2)exp(

*)exp(

i
i

i

i y
xp
xpf (4)

where, }1,1,9.0,9.0{4,3,2,1
1 ==ix , }6.0,4.0,55.0,4.0{4,3,2,1

1 ==iy
and p1 and p2 are the parameters to be predicted in the range of [-
1,3] and [-2,3] respectively.

1.3.3 Problem f3
This is an analytical test function that represents a disconnected
confidence region [13]. The objective is to minimize the value of
f3 as defined in equation (5), by finding the optimal pair (p1, p2) in
the range of [0, 4.34]2.

)sin()sin(3 2
2

2
13 ppf −−= (5)

1.3.4 Parameter Estimation in a Gene Network
The effectiveness of the proposed C-PSO algorithm is also tested
with a real world problem involving a single-gene model. The
levels of messenger RNA was measured every 3 hours under
short-days (9 hours of light, 15 hours of darkness each day) and
long-days (15 hours of light, 9 hours of darkness per day) for the
gene HEADING DATE-1 (Hd1), an important flowering time
control gene in rice (Oryza sativa). The experimental data
provided [16] had two time series:)(1(exp) tHd LD and)(1(exp) tHd SD for
t = 0 to 54 hours.
In [10] this data has been modeled with the equations,

DNND HdtCgRHd
dt
d

λ)1())(()1(−= (6)

under conditions of darkness, and as,

LNNL HdtCgRHd
dt
d

λ)1())(()1(−= (7)

during light periods. Here, R’s and λ’s are constants associated
with the gene and the subscripts L and D refer to light and dark
periods. An input from the plant’s diurnal clock is
C(t)=A*sin(2π/p + θ) + μ, where A is amplitude, p is period, θ is a

phase angle, μ is a phase factor and
)exp(1

1
c

gNN −+
= [7]. The

state variable, Hd1, is dimensionless as expression levels are
routinely normalized against laboratory standards. When
simulating equation (7), two initial conditions for Hd1, are
required, coresponding to light and dark periods, which are HL
and HD respectively. Each simulation of Hd1’s RNA level defined
in equation 4 should be carried out through alternating periods of
darkness and light for each 24 hour cycle.

The ten parameters associated with the simulation can be
regarded as a solution vector x in S as,

x = [λL λD RL RD A p θ μ HL HD]. (8)
When the simulation is carried out separately for long day and

short day conditions using any parameter vector x, two time series
can be obtained,)(1)(tHd sim

LD and)(1)(tHd sim
SD . The fitness function

E, is defined as the sum of the root mean square errors between
the simulated and a given k number of experimental data points,

()

()
k

tHdtHd

k

tHdtHd
E

LDi
sim

LDi

SDi
sim

SDi

∑

∑

−
+

−
=

2(exp))(

2(exp))(

)(1)(1

)(1)(1

 (9)

The objective is to obtain reliable estimates for the range of
values of each parameter in equations (6) and (7) that minimize E
in equation (9).

2. OUTLINE OF THE ALGORITHMS
In this section we explain in detail both the algorithms UCPR and
C-PSO.

2.1 UCPR
The main idea of the algorithm is to start with a set of randomly
generated N number of points in the search region. In each
iteration the worst point (Gw) is selected and replaced with a
better solution. This is achieved by randomly generation solutions
in the search space within a specified boundary region (D). This
process is iterated until the worst fitness is lies within a boundary
of an α confidence region of the target boundary value fitness
(Gc), i.e. until Gw < Gc,. The value of Gc is evaluated using
equation (10).

minmin
),,(1 WGG

nK
nKnnFGc =⎥⎦

⎤
⎢⎣

⎡
−
−

+=
α (10)

where, n is the number of parameters, K is the sample size, F() is
the Fisher F-value [14] and Gmin represents the best minimum
fitness value found. The overall algorithm as detailed in [13], can
be summarized briefly as below:

1. Initialize sample size N, parameter domain range D,
safety factor c and an initial value for Gc,.

2. Randomly initialize N points uniformly in the search
domain D, which forms the set X0.

3. Set j = 0
4. Calculate the fitness (G(P)) for each point in Xj.
5. Termination criteria: If max(G(P)) < Gc, then exit and

output the current population. Otherwise go to step 6.
6. Generate a new individual Ptry uniformly distributed

over D.
7. If the minimum Euclidian distance to any point in Xj is

greater than the safety factor c, then go to step 6.
Otherwise go to step 8.

8. Evaluate the fitness of Ptry,:G(Ptry). If G(Ptry) >
max(G(P)), then go to step 6. Otherwise, replace current
worst point in Xj. If G(Ptry) < Gmin, then replace Gmin
with the new value and revaluate the value of Gc is
updated. Increment j by 1, and return to step 5.

2.2 C-PSO
2.2.1 Particle Swarm Optimization

This section describes the variant of the standard PSO
algorithm that has been used for the rest of the paper. The
algorithm maintains a population of M particles whose positions,

72

Figure 3. Schematic showing the effect of mutation and
crossover on a moving cloud

X(i), i = 1, 2, … M, are initialized to random values at the start.
These positions are updated in each iteration of the algorithm by
adding the particles instantaneous velocity Vt(i) during iteration t
to it, as follows,

Xt+1(i) = Xt(i) + Vt(i) (11)
The velocity is updated in each iteration, so that the particle can
eventually move towards a better location. The velocity update
takes place using each particle’s recorded previous best position,
and the current location of the other particles. It is given by,

 Vt+1(i) = χ(Vt(i) + C1×U[0,1]×(Xib(i) – Xt(i))
+ C2×U[0,1]×(Xgb,t – Xt(i))) (12)

In the above equation, C1 and C2 are two constants, called the
cognitive and the social constants, and χ is called the constriction
coefficient, that helps in maintaining stability [3]. The quantity
U[0,1] is a uniformly distributed random number in [0, 1]. The
quantity Xib is the individual best recorded position of the ith
particle so far, Xib(i) = Xt’(i), such that ∀s ∈ {0, 1, … t}, e(Xt’(i))
≤ e(Xs(i)), where e(·) is the objective function to be minimized.
The other quantity, Xgb,t is called the global best, and is the
position of the best particle in the current iteration t. In other
words, Xgb,t = Xt(j), for some j, such that ∀k ∈ {0, 1, … N},
e(Xt(j)) ≤ e(Xt(k)).

2.2.2 Hybridized PSO Algorithm
Hybridizing the Nelder-Mead simplex approach with

evolutionary algorithms has been a very popular approach to
speed up convergence. Koduru et al. have extended this work to
hybridizing PSO [1, 2] using Nelder-Mead simplex [15]. In this
approach, the k-means algorithm is used within each iteration to
divide the entire population into separate clusters, each containing
points in close proximity. Each cluster is then improved
separately through the Nelder Mead search. The results presented
in [1,2] suggest that using the clustering approach has provided
better convergence results with the simplex hybrid PSO. For this
reason we have opted to use this approach of hybrid simplex PSO
for the current work.

2.2.3 Archiving
The hybridized PSO algorithm has a good convergence rate but is
unsuitable, as given, for problem at hand. This section describes
the modifications we have made in response. In general, the
objective of a PSO algorithm is to direct the swarm of particles to
the global minima. However, in the current work, our goal is form
a cloud of points that shows the confidence region. Hence, it is
necessary to have an archive that stores all that solutions that have
a fitness value less than Gc in equation (11). Such an archive
when plotted gives a confidence region with the target boundary
fitness of Gc. Hence we modify the basic algorithm to have an
external archive in addition to the global best solution, which
stores all the individuals that have a better fitness than Gc in every
generation.

2.2.4 Crossover and Mutation
In general, when any PSO algorithm is allowed to run for a
sufficient number of iterations, the swarm converges to single
optimum. However, in order to form the confidence regions, we
need the swarm to form a cloud of points rather than a dense

region. This effect is achieved by using the crossover and
mutation operators in the hybrid PSO algorithm.
The mutation operator is applied as turbulence to the velocity
update of particle i as:

Vt+1(i)wt = Vt+1(i) + δ×U[-1,1] × Vt+1(i) (13)

Where δ is a turbulence factor, and the quantity U[-1,1] is a
uniformly distributed random number in [-1, 1]. This updated,
turbulent velocity (Vt+1(i)wt) is then used to update the particles
position [17].

The mutation operator creates a spreading cloud of particles,
some of which are inevitably far outliers in fitness. Hence a
countervailing correction mechanism, crossover, is incorporated
into the algorithm. This can be visualized as a solar flare in space
that expands as it progresses. The flare continues in directions
where the conditions are favorable and expands in that direction.
However, in other directions the flame loses intensity and
eventually disappears. The mutation drives the expansion, while
the crossover limits the effect of turbulence by maintaining the
flow in favorable directions (see Figure 3).
Uniform crossover is implemented by replacing the worst fitness
particle (outlier, w

tX) with a new particle ('
tX), which is

generated using equation (14), using a good fitness particle (core,
b
tX).

b
t

w
tt XXX)1(' ηη −+= (14)

where η is a uniformly distributed random number in [0.5, 1]. In
the present work, we subjected any particles outside the 95%
confidence region to crossover with a randomly selected particle
within the 10% confidence region.

2.2.5 C-PSO Algorithm
The complete algorithm that is implemented is as follows:

1. t = 0.
2. Randomly initialize the particle positions X0(i).
3. Initialize all velocities, V0(i), to zeroes.
4. Check for termination criteria. If condition met then

73

terminate, otherwise continue to step 5.
5. Assign each particle i to clusters using k-means.
6. Evaluate the objective function at each Xt(i).
7. Update each particle i’s individual best.
8. Update global best and Gmin and reevaluate Gc.
9. Remove any solutions in the archive have fitness

greater than or equal to Gc, as defined by Equation
(10). Add any solutions in the new population that do
satisfy the condition.

10. Apply the simplex approach to each cluster.
11. Update positions Xt(i) according to (11).
12. Apply uniform crossover on outlier particles.
13. Update velocity according to (12) and (13).
14. T = t + 1. If t > tmax, stop, else go to 4.

3. EXPERIMENTAL SETUP
The performance of both the algorithms was compared on the
different test functions that have been described in Section 1.3. To
permit comparisons, the termination criterion for both algorithms
was the same as in [13]. Specifically, iteration stops when the
search domain D contains a set of 200 points that all satisfy the
condition G(P) < Gc. The value of Gc is evaluated using equation
(10), where the value of W is fixed at 1.2 for all the test problems
except for test function f1, for which W is set to be 1.4 [13]. Both
the algorithms have many settings to be specified a priori. These
quantities are discussed next.
In UCPR, an initial population of 200 points is uniformly
generated in the specified search domain range (D) for each
problem. However, such large size populations are not commonly
used in PSO algorithm [2, 3 and 6]. In order to maintain
uniformity over all the problems, we have fixed the population
size such that a total of 10 k-means clusters can be formed with
each cluster each having (n+1) points, where n represents the
number of parameters to be estimated. This number is determined
by the prerequisites necessary to apply the Nelder-Mead simplex
within each cluster. The total number of k-means steps to divide
the population into different clusters is restricted to a maximum of
10 iterations. With each cluster, the Nelder-Mead simplex is used
to improve the worst individuals by doing reflection and
contraction operations as necessitated. The parameters used with
the simplex operation are the reflection and contraction
coefficients, which are fixed at 1.5 and 0.5 respectively. In the
preliminary runs, it was observed that use of more simplex
operations would cause the swarm to rapidly converge to local
optima. Hence, to avoid the loss of diversity in the swarm, one
simplex flip per instance is used. This allowed for a faster
convergence rates while maintaining the diversity of the swarm.
For the mutation operation, a turbulence factor (δ) of 0.1 is used.
Each of the algorithms is run five times for each test problem and
the average of the results obtained are reported.

4. RESULTS
Table I lists the average number function evaluations utilized by
each algorithm in order find the 200 points in the parameter space
that satisfy the condition G(P) < Gc.
It can be clearly seen in all the problems that C-PSO was able to
satisfy the termination criteria with least number of function
evaluations. In the case of the gene network problem, the UCPR

method failed to satisfy the termination condition in any of the 5
different runs even after 30,000 function evaluations. This
suggests the failure of UCPR method in converging to the optima
in a high dimensional search space. Table II and III provide the
average of the best and worst fitness obtained in the final
population. Again it is clearly evident that C-PSO was able to
converge to better optima than UCPR. Hence, C-PSO is not only
efficient in convergence, but also robust in finding the optima in
comparison with UCPR.
Figures 4 and 5 show comparison of the confidence regions
obtained from all the different runs by UCPR and C-PSO on the
test functions f1 and f3, respectively. Comparing the contour
formed by joining the exterior of the point clouds with the actual
nonlinear shaped contour in the background, it can be clearly
observed that C-PSO has been able to get a much better
approximation of the confidence regions. The algorithms were
also capable of finding the confidence regions in disconnected
regions. Figure 6 shows the scatter plot of the particle cloud form
one of the run of UCPR on gene network problem for the two
parameters RD and RL. The RMS prediction error is the vertical
axis, and the points have a spectrum that is proportional to the
goodness of fit of the solution. The algorithm was not able to
converge to any good solution in all the runs and the near even
distribution of the points search space, strongly suggests the
failure of the algorithm in forming the confidence region.

Table I. Comparison of Number of Function Evaluations
necessary for convergence for both algorithms

PROBLEM UCPR C-PSO

f1 893 820

f2 1304 1220

f3 1274 860

Gene Network 30000* 20240

Table II. Comparison of Best solution obtained

PROBLEM UCPR C-PSO

f1 1.231474 1.2302278

f2 0.03130862 0.0312501

f3 1.00875927 1.00000

Gene Network 3.6190199* 2.4919667

Table III. Comparison of Worst solution obtained

PROBLEM UCPR C-PSO

f1 1.4159113 1.43431408

f2 0.04692051 0.03585649

f3 1.38366209 1.19575342

Gene Network 5.099656* 2.570873

74

75

76

In comparison, Figure 7 shows the particle distribution in the
parameter space for three different sets of parameters. From these
plots it can be noted that this real world problem has narrow
valley optima surfaces, which renders common purpose
optimization algorithms incapable of finding good fit solutions.
To illustrate the effect of the varying parameters a plot of the
simulated output and the actual experimental data is provided in
Figure 8. The wide band of solid lines depicts the regions of
prediction for the various parameters values that are present in the
cloud of points shown in Figure 7.

5. CONCLUSIONS
Statistical inferences for complex models must be based on
accurate confidence regions. Such regions may have convoluted
shapes not readily revealed by linearized analysis. We have
compared UCPR with a novel algorithm (C-PSO) based on
particle swarm optimization.. For lower dimensional problems,
C-PSO was able to find somewhat better minima in somewhat
less time. But, to the eye at least, UCPR had better uniformity
and tended to find more portions of disconnected confidence
intervals. More importantly, however, is the fact that C-PSO was
able to find confidence regions for higher dimensioned problems
where UCPR failed. This result provides justification for
additional work that should be able to enhance C-PSO
performance across the board. Such work is underway.

6. REFERENCES
[1] S. Das, P. Koduru, S. M. Welch, M. Gui, M. Cochran, A.

Wareing, B. Babin, Adding Local Search to Particle Swarm
Optimization, Proceedings, World Congress on
Computational Intelligence, Vancouver, Canada, 2006.

[2] P. Koduru, S. Das, S. M. Welch, A Particle Swarm
Optimization-Nelder Mead Hybrid Algorithm for Balanced
Exploration and Exploitation in Multidimensional Search
Space, Proceedings, International Conference on Artificial
Intelligence, Las Vegas, Nevada, 457–464, 2006.

[3] M. Clerc and J. Kennedy, The particle swarm-explosion,
stability, and convergence in a multidimensional complex
space, IEEE Transactions on Evolutionary Computation, vol.
6, no. 1, 58-73, 2002.

[4] Mendes, R.; Kennedy, J.; Neves, J., The fully informed
particle swarm: simpler, maybe better, IEEE Transactions on
Evolutionary Computation, vol. 8, no. 3, 204 – 210, June
2004.

[5] Kalyanmoy Deb, Multi-Objective Optimization Using
Evolutionary Algorithms, Wiley, London, 2001.

[6] Coello, C.A.C., Pulido, G.T., Lechuga, M.S., Handling
multiple objectives with particle swarm optimization, IEEE
Transactions on Evolutionary Computation, vol. 8, no. 3, 256
– 279, June 2004.

[7] S. M. Welch, J. L. Roe and Z. Dong, Z., A genetic neural
network model of flowering time control in Arabidopsis
thaliana, Agron. J. Vol. 95, 71-81, 2003.

[8] S. M. Welch, Z. Dong and J. L. Roe, Modelling gene
networks controlling transition to flowering in Arabidopsis,
Proceedings of the 4th International Crop Science Congress,
Brisbane, Australia, Sep 26 – Oct 1, 2004.

[9] Z. Dong, Incorporation of genomic information into the
simulation of flowering time in Arabidopsis thaliana, Ph.D.
dissertation, Kansas State University, 2003.

[10] S. M. Welch, J. L. Roe, S. Das, Z. Dong, R. He, and M. B.
Kirkham, Merging genomic control networks with soil-plant-
atmosphere-continuum (SPAC) models, Agricultural
Systems, 2004.

[11] A. V. Hill, The possible effect of aggregation of molecules
of haemoglobin on its dissociation curves, J. Physiol. 40
(1910), iv-viii.

[12] S. Das, P. Koduru, S. M. Welch, M. Gui, M. Cochran, A.
Wareing, B. Babin, Adding Local Search to Particle Swarm
Optimization, Proc. of the World Congress on
Computational Intelligence, Vancouver, BC, Canada, 2006.

[13] O. Klepper, E.M.T. Hendrix, A comparison of algorithms for
global characterization of confidence region for nonlinear
models, Environmental Toxicology and Chemistry, vol. 13,
1887-1899, 1994.

[14] N.R. Draper, H. Smith, Applied Regression Analysis, John
Wiley, New York, 1966.

[15] J. A. Nelder and R. A. Mead, A simplex method for function
minimization, Computer Journal, Vol. 7 no. 4, 308-313,
1965.

[16] S. Kojima, Y. Takahashi, Y. Kobayashi, L. Monna, T. Saski,
T. Araaki and M. Yano, Hd3a, a rice ortholog of the
Arabidopsis FT gene, promotes transistion to flowering
downstream of Hd1 under short-day conditions, Plant Cell
Physiology, 43, 1096-1105, 2002.

[17] J.E. Fieldsend and S. Singh, A multi-objective algorithm
based upon particle swarm optimization, an efficient data
structure and turbulence, In Proceedings of the 2002 U.K.
Workshop on Computational Intelligence, Birmingham, UK,
37-44, September, 2002.

Figure 8. Comparison of Predicted and Actual values of
Hd1 expression levels for LD and SD for all the 200

solutions obtained in a single run of C-PSO

77

