
Two Adaptive Mutation Operators for Optima Tracking in
Dynamic Optimization Problems with Evolution Strategies

Claudio Rossi
Claudio.Rossi@upm.es

Antonio Barrientos
Antonio.Barrientos@upm.es

Jaime del Cerro
j.cerro@upm.es

Departamento de Automatica, Ingenieria Electronica e Informatica Industrial
Universidad Politecnica de Madrid

Madrid, 28006, Spain

ABSTRACT

The dynamic optimization problem concerns finding an op-
timum in a changing environment. In the tracking problem,
the optimizer should be able to follow the optimum’s changes
over time. In this paper we present two adaptive muta-
tion operators designed to improve the following of a time-
changing optimum, under the assumption that the changes
follow a non-random law. Such law can be estimated in
order to improve the optimum tracking capabilities of the
algorithm. For experimental assessment, a (1,λ) evolution
strategy has been applied to a dynamic version of the sphere
problem.

Categories and Subject Descriptors

I.2 [Computing Methodologies]: Artificial Intelligence;
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods

General Terms

Algorithms

Keywords

Evolution strategies, dynamic optimization, tracking prob-
lem, time-varying fitness function.

1. INTRODUCTION
Real-world applications must often face a highly noisy and

changing environment. Evolutionary Algorithms (EAs) are
known to be well suited for dealing with noisy input informa-
tion, and can cope with a changing environment, since the
search is performed by constantly (at each new generation)
producing new candidate solutions. Thus, they inherently
consider time: newly generated individuals can be subject to
time-changing constraints and/or evaluated and selected ac-
cording to a time-varying fitness function. Since new candi-
date solutions are generated using information coming from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

the current individuals, at each change the problem is not
solved form scratch, but knowledge regarding the previous
search space is actually used in order to find the new opti-
mum. Whether such knowledge is useful depends on the na-
ture of the change [13]. In many real-world applications such
changes are smooth and respond to physical laws (consider
e.g. the case of visual-based object tracking applications).
In such cases, accumulating information on past can be ef-
fectively used in order do direct the search for the current
optimum.

In the recent years there has been a growing interest in
dynamic and time varying problems. Most of the work on
such problems is aimed at studying techniques that main-
tain a suitable degree of population diversity, either when
a change is detected or continuously throughout the run, in
order to guarantee an adequate level of exploration and to
avoid the algorithm to concentrate on the current optimum.
As several authors have pointed out, an excessive conver-
gence would make the algorithm miss important changes in
the environment, while a spread-out population can adapt to
changes more easily. The literature on dynamic optimization
has focused on dealing with the changing environment by
means of dynamic parameters control and specialized adap-
tive operators, (multi)population control and memory-based
approaches.

Examples of the first approach are parameters control [2],
[4], and specialized adaptive operators [11], also making use
of local search techniques [19] or information theoretic based
methods [1]. The latter try to get an insight of the prob-
lem identifying relevant substructures and exploit them to
respond to changes in the environment. In [20] three dif-
ferent self-adaptive mutation operators are compared on a
two-dimensional dynamic problem.

Population control methods include random migrations
[12], multi-populations approaches [9] and niching [10], and
are aimed at ensuring a sufficient population diversity that
allow the discovery of new optima (or promising regions) in
the case there is a change in the environment.

Memory-based approaches [7] are aimed at keeping track
of good (partial) solutions in order to re-use them in pe-
riodically changing environments. A case-based reasoning
approach has been proposed by [17] in order to recognize
environments and, in case of change, reuse individuals that
have proven to be successful in similar environments. An-
other memory-based approach is presented in [15], inspired
by thermodynamical principles.

Exhaustive reviews and bibliography on dynamic opti-
mization problems can be found in [1], [8] and [13].

697

The approach presented in this work belongs to the cat-
egory of specialized adaptive operators, and is based on
the consideration that in many real-world applications the
changes are not random and are governed by a determined
dynamic system, and can therefore be learnt. Such infor-
mation can be provided to the EA in order to improve its
tracking capabilities. Distinguishing characteristic of our
evolution strategy is that the dynamical law is learnt explic-
itly by an ad-hoc external mechanism, which is then used to
predict future states of the dynamic system. Predictions are
incorporated into the EA by means of two mutation opera-
tors. Once predictions have sufficiently refined, individuals
that are close to the estimated future position can be gen-
erated in order to help the algorithm to keep up with the
moving optima, anticipating its movement. In fact, such
individuals will be generated slightly ahead of the position
at current time, and are thus expected to be closer to the
new optimum’s position. This has the further advantage to
prevent the generation of individuals that are closer to the
optimum, but behind it w.r.t. the direction of movement.
Such individuals could in fact be optimal at current time,
but sub-optimal in the near future.

Related work

A recent paper [6] theoretically discusses time-linkage, i.e.
the fact that decisions that are made at a certain time t on
the basis of maximizing a certain score, may influence the
maximum score that can be obtained in the future. In order
to avoid sub-optimal states caused by missing information
about the future, the authors propose the use of learning
techniques to predict it and help the global optimization
problem, and demonstrate the goodness of their approach
on two mathematical problems. In a similar way, we pro-
pose the use of a learning mechanism capable of providing
predictions on the future state of a dynamic system. How-
ever, the goals pursued by the prediction in time-linkage
and in optimum tracking are different. Under time-linkage
the meaning of optimality is only well defined over a time-
interval. Because optimization over a future time-interval is
needed, prediction is required. In our case there is no time-
linkage. The focus is on tracking the optimum as it moves
over time, and the prediction mechanism serves to predict
where the optimum is moving to. In this way the difference
between the actual optimum and the one found by the EA
is smaller. Therefore, the number of evaluations needed to
find an good optimum for the current time is lower.

In [3], an analysis of a (µ/µ, λ)-ES with cumulative step
length adaptation [16] is presented. The evolution strategy
presented therein also relies on a mechanism for accumulat-
ing information on the search process, and to control the
mutation parameter according to the accumulated informa-
tion. The (µ/µ, λ) evolution strategy is popular due to its
proven good performances and mathematical understand-
ing. A brief description of such strategy will be provided in
Section 5. We will use this evolution strategy for comparison
with our approach.

The learning technique we propose is based on the pow-
erful mechanism of Kalman filters [14].

In [18] the use of a fitness-filtering technique based on an
extended Kalman filter is proposed in order to improve the
tracking capabilities of a Genetic Algorithm. The Kalman-
extended Genetic Algorithm is based on the consideration
that in a dynamic environment the fitness of an individual

is affected by uncertainty, since from the time the individ-
ual has been evaluated, the function might have changed.
An additional parameter, computed using a Kalman-based
mechanism on the basis of past fitness evaluations, is added
to each individual of the population, encoding the uncer-
tainty associated to its fitness. Such mechanism provides a
mean to acquire knowledge regarding the changing environ-
ment, and it is used in order to determine the proportion of
new individuals to be generated and whether an individual
should be reevaluated. The main difference with our ap-
proach is that while [18] applies filtering to the fitness of the
individuals, we apply filtering to individual genes, in order
to gather information on their dynamics, and try to exploit
such information to deduce the underlying law ruling their
changes. Then, forecasts can be made based on the deduced
law in order to direct the search towards promising regions.

The rest of the paper is organized as follows: in the fol-
lowing section we introduce the motion estimation technique
adopted. Then, Section 3 describes the mutation opera-
tors proposed that incorporate the prediction. Section 4
describes the (µ/µ, λ)-ES and the cumulative step length
adaptation mechanism. Sections 5 and 6 describe the sphere
model used to test the proposed evolutionary strategy and
the experiments performed. Section 7 concludes the paper.

2. ESTIMATING MOTION
Consider an EA where candidate solutions are real-valued

arrays. Such individuals, as well as the optimum solution,
represent a point on the n-dimensional search space, whose
position change over time. The state of a candidate solution
at time t is the conjunction of its position and velocity, i.e.
the rate at which its position changes. The state of the
optimum is approximated by the state of the current best
solution provided by the EA.

The state of the optimum is governed by a dynamical sys-
tem. In general, the state of a system can only be partially
observed. In our case, the observable part of the state is
given by the EA, which provides an approximate position of
the solution. The whole current state can be estimated with
the current observable part and by considering the sequence
of the previous states, taking into account that they can be
affected by noise.

A powerful technique that performs such an estimation is
the Kalman filter [14]. The Kalman filter is a set of math-
ematical equations that provides an efficient computational
way to estimate the state of a dynamic system, given a se-
quence of noisy observations and a model of the system (dy-
namic law), and it is widely used in control systems engi-
neering and tracking applications. The Kalman filter is a
recursive estimator, which means that only the estimated
state from the previous time step and the current measure-
ment are needed to compute the estimate for the current
state. Kalman filters also provide an estimation of the fu-
ture state of a system and a measure of the goodness of the
estimation: the model is used to predict which will be the
new state of the system, and then this is corrected with the
observation of the real state in order to give a more accu-
rate estimation. Although in this work we will focus on first
order models (constant velocity, see Section 5), the idea can
be extended to more complex motion laws.

Throughout the run, the ES provides to the Kalman filter
a series of observations of the state of the system (corre-

698

sponding to the best individual in generation 0 . . . t − 1).
Using a model of the motion law, the filter adapts its esti-
mation of the velocities in order to match the observed po-
sitions, and after a sufficient number of iterations, is able to
provide an estimation of state of the of the system at time t,
i.e. an estimation of the position and velocity vectors p̂t, v̂t.
Moreover, it provides an estimation of their precision, in
terms of variances (σ̂p

t)2, (σ̂v
t)2.

We are interested in the values p̂t and σ̂p
t , that give an

indication of where the next optimum will most likely be,
and a measure of how much confident is the filter in its
prediction. In the following, we will refer to such values as
the prediction and its accuracy.

2.1 The Kalman filter
In the following, a brief description of the Kalman filters

is presented.
The Kalman filter estimates a system by using a feedback

control: the filter estimates the process state, and then ob-
tains feedback in the form of (noisy) measurements. The
kind of dynamical system considered by Kalman filters is
the following;

xt = Axt−1 + Cut−1 + wt−1,
zt = Hxt + vt.

(1)

where xt ∈ IRn is the state of the system at time t, A is the
state transition model (n× n matrix) and C is an optional
control input model. The value zt ∈ IRm is the observation
of the system (measurement) at time t and H ∈ IRm×n

is the model thay relates the measurement to the state,
since not necessarily all variables of the state are being ob-
served: in our case we only measure position, while the state
also contains velocities. The quantities w and v are ran-
dom variables that represent the process and measurement
noise, and are assumed to have a Gaussian distribution with
covariance matrices Q ∈ IRn and R ∈ IRm, respectively
(p(w) ∼ N(0, Q), p(v) ∼ N(0, R)).

The model provides an a priori estimation of the new
state x−t . The new state is computed correcting the a priori
estimation with the real observation zt through the Kalman
gain matrix Kt ∈ IRn×m according to the formula:

x̂t = x−t + Kt(zt −Hx−t)

The gain matrix is computed recursively and balances the
two terms x−t and zt according to their respective covariance.

To begin to work, the filter needs an initial state x0, an
initial error covariance matrix P0, usually set to a default
value, and the matrices Q and R, usually measured during
the early testing of the system.

Then, the filter loops through a series of steps. The first
step is to generate the a priori estimate using the model and
to calculate the a priori error covariance P−t . The a priori
estimation and the a priori covariance provide the values we
refer to as the prediction and its accuracy throughout the
paper.

Then, the measurement update phase takes place, first
computing the Kalman gain Kt. The matrix Kt is com-
puted in such a way that minimizes the a posteriori error
covariance Pt. The next step is to actually measure the pro-
cess (obtain the observation zt, in our case corresponding
to the best individual at time t), and then to generate an a
posteriori state estimate xt by incorporating the measure-
ment, which is the estimation usually employed in practical

applications. The final step is to obtain an a posteriori error
covariance estimate Pt. Note how the corrected values for xt

and Pt will be used in the next time step to predict the new
state and its error, hence the model actually incorporates
the information coming from the measurement to correct its
predictions and adapt to the measurements.

In our case, xt = [pt, vt]
T , and a first order model can be

written as

xt = Axt−1, A =

»

In ∆t · In

0 In

–

(2)

In being the n × n identity matrix, ∆t = 1 and there is no
control input, i.e. C = [0].

The computational cost of the Kalman predictor is essen-
tially due to matrix algebra and a matrix inversion, which
has a polynomial computational cost.

The main disadvantage of filters is the need of off-line set-
ting of initial noise (co)variances for optimal performances.
In this work we used fixed pre-calculated values, estimated
during early testing of the algorithm.

3. INCORPORATING MOTION

INFORMATION TO THE EA
The information provided by the estimator can be used in

order to bias the exploration, directing it towards the region
where the new optimum will most likely be, according to the
prediction. The technique proposed in this work consists in
the design two new mutation operators.

A mutation operator modifies one or more genes of a se-
lected individual. Such modification can be done by ignoring
the previous value (new random gene value), or performing
some operation on the original value of the gene (perturba-
tion), the simplest operation being adding or subtracting a
small random quantity to the gene. Instead of using ran-
dom quantities, the predicted values can be used to mutate
existing individuals. In the first case, the new random gene
will be generated directly in the region indicated by the pre-
diction, while in the second the perturbation will be biased
in the direction of the prediction (cf. Fig. 1). In this way,
the mutation operator adapts to the changing environment
thanks to the hints provided by the motion estimation mech-
anism.

3.1 The Kmut-N and Kmut-P operators
Let s be the chromosome selected for mutation and s′

the chromosome after mutation. Given that all the genes of
the optimum can change at each generation, the proposed
operators act on all the genes i = 1 . . . n, n being the number
of genes (chromosome length).

Let p̂ and σ̂ be the predicted position and its accuracy.

The Kmut-N mutation operator

The Kmut-N operator sets the value of the genes ignoring
their previous values. If the prediction was fully trusted, one
could let s′i = p̂i, and the new value of the ith gene would
equal to the predicted one. However, since predictions are
not perfect, a better strategy is to generate a value in the
neighborhood of the prediction. Since the accuracy value
provide a measure of the confidence of the prediction, it can

699

p̂si i

r ·i i!̂

p̂

r ·

s
bias

i

i i

i!̂

Figure 1: New random gene and perturbation. The
index i refers to the i−th gene of the individual, and
the time subscripts are dropped.

be used to compute the range of such neighborhood (see
Figure 1, top):

s′i = N(p̂i, ri · σ̂i) (3)

ri > 0 being a parameter that acts on the size of the range,
and that can be either fixed at design time or controlled at
run time according to some heuristic rule. In this way, the
more accurate is the prediction, the closer to it the values
will be generated.

The Kmut-P mutation operator

The Kmut-P mutation is a perturbation operator. A com-
mon perturbation strategy is the Gaussian perturbation cen-
tered in 0 and with a certain standard deviation ri, N(0, ri).
In our case, the perturbation is desired to generate values
that take s′i close to the estimation p̂i, depending on the
accuracy σ̂i, and that are in a range also depending of the
accuracy. The perturbation strategy that we consider in this
work is

s′i = si + pert(ri, p̂i, σ̂i) (4)

pert(ri, p̂i, σ̂i) =

»

1

1 + σ̂i

· (p̂i − si)

–

+ N(0, ri · σ̂i)

where the first term is a direction bias (Fig. 1, bottom),
that gives the amount of shift we want to give to the per-
turbation, in the direction of the prediction. Bad prediction
accuracy produces a low bias: if the prediction is considered
not good, it must not be taken too much into considera-
tion. The second term determines the perturbation range,
making it bigger or smaller according to the accuracy of the
prediction. As for the Kmut-N operator, the parameter ri

controls the range of the perturbation.

3.2 Discussion
In principle, when the optimum has been found by the

Evolutionary Algorithm, and a sufficient number of tracking
steps have been performed to let the estimator get enough
information on the dynamics, one could let the estimator
follow it, and stop the EA. In fact, if the current optimum
and the motion estimation were perfectly determined, one

could simply compute the new optimum. However, the un-
certainty regarding both the current and the sequence of the
previous optima makes such option unfeasible.

In general, we do not know when the EA found a satis-
factory optimum and tracking should begin. Moreover, the
estimator needs time to adjust, and when it can be trusted
is also an issue that must be dealt with. The selection mech-
anism of the EA can be used to cope with these issues. The
estimator can be started at the same time as the EA, pro-
viding almost useless predictions, and the individuals gen-
erated using them will most likely be sub-optimal and be
discarded by the selection mechanism of the EA. While the
EA evolves, the sequence of optima becomes more coher-
ent, reflecting the fact that the algorithm got close to the
optimum and began to follow it. Then, the predictions of
the estimator will refine, and individuals incorporating them
will take advantage of the information they carry.

Noise can heavily affect the outcome of the EA, making
observations unreliable. Although estimators like Kalman
filter are very good in dealing with noisy information, we do
not want to fully rely on them. Moreover, the model used
by the filter can be approximate. Thus, the estimator con-
stantly needs real observations in order to adapt to the real
motion laws. Also, without constant update the estimator
would not detect changes in the trajectory of the moving
optima: the estimator needs new observations to keep refin-
ing.

Finally, better solutions must be constantly looked for,
as the algorithm could be following optimum. Even in the
tracking phase, there could be better solutions than the cur-
rent EA’s best individual, close to it or in unexplored re-
gions. Then, the algorithm has to be given the capacity to
reach them, and not just focus on the current optimum. In
other words, while the estimator is helping in the exploita-
tion task, a suitable degree of exploration must be ensured.
This can be only provided by the EA, that is also indis-
pensable in the case the moving is lost. In fact, the EA
can get stuck and not successfully follow the optimum, be-
cause of noise in the input data, or to a change of motion
of the optimum not captured by the estimator’s model. If
this happens, the algorithm must be able to recover track-
ing, and this can be achieved only by the EA’s exploration
capabilities.

4. THE (µ/µ, λ)-ES WITH CSLA
The (µ/µ, λ) evolution strategy consists in repeatedly up-

dating a search point x ∈ IR that is the centroid of the
population of candidate solutions, using the following steps:

1. Generate λ offspring candidate solutions

yi = x + σzi, i = 1, . . . , λ

where the quantity σ > 0 is referred to as the mutation
strength that determines the step length, and the zi are
vectors consisting of n independent, standard normally
distributed components, referred to as the mutation
vectors;

2. Determine the objective function values of the offspring
candidate solutions and compute the average 〈z〉 of the
vectors zi corresponding to the µ best offspring. Vec-
tor 〈z〉 is referred to as the progress vector;

700

3. Update the search point according to

x← x + σ〈z〉.

The notation µ/µ indicates that all µ parents participate
in the in the creation of every offspring candidate solution
(see [5] for a formal definition). The mutation strength is
adapted at each step using the cumulative step length adap-
tation algorithm (CSLA) [16]:

1. Update s according to

s← (1− c)s + µc(2− c)〈z〉;

2. Update the mutation strength according to

σ ← σ · exp

„

||s||2 − n

2Dn

«

.

Vector s, initially set to 0, accumulates information on
the search process, and is referred to as the search path or
accumulated progress vector. The cumulation parameter c
determines the length of the memory of the accumulation
process, and D is a damping constant. Following recom-
mendations from the literature, the cumulation parameter
c and damping constant D were set in the experiments to
1/
√

n and
√

n, respectively.

5. EXPERIMENTAL SETUP
In order to perform an experimental assessment of the op-

erators described above, we have applied them to a function
known as the dynamic sphere model, used by several authors
([3], [4] amongst others) in order to analyze their strategies.

The dynamic sphere model

The sphere model is the set of all functions f : IRn → IR
with

f(x) = g(||x∗ − x||)
where x∗ ∈ IRn is the (moving) optimum, and g : IR → IR
is a strictly monotonic function of the Euclidean distance
d = ||x∗ − x|| of a candidate solution x from the target so-
lution x∗. In our experiments, the function g is the identity
function (i.e. the fitness of an individual is the euclidean
distance from the target).

The motion model used for the experiments is the follow-
ing [3]:

x∗(t+1) = x∗(t) + δv (5)

where vector v ∈ IRn has unit length and represents the
direction of the movement, and δ is a constant scalar and
referred to as the target speed. In Equation (5) the vector v
is independent of time, i.e. is constant throughout the run.
Then, such model is a linear (first-order) motion model. In
general, v can be changing in time.

The Evolutionary Algorithm

The algorithm we used to test the proposed mutation oper-
ators is a (1,λ) evolution strategy. Such choice is motivated
by the nature of the problem, which is continuous and real-
valued, and by the fact that since the optimum moves we
do not want to include the original individual in the future
generation as it is likely to become sub-optimal. Moreover,
it would need to be re-evaluated as the fitness landscape has

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100

A
v
e
ra

g
e
 d

is
ta

n
c
e

Generation

Kmut-N
Kmut-P

CSLA

Figure 2: Comparison of the three evolution strate-
gies: average distance from the optimum dur-
ing the run (first 100 generations, n=10, λ=10,
speed=0.025).

changed since it was evaluated. Three evolution strategies
have been compared, two adopting a (1,λ) evolution strat-
egy with the Kmut-N and Kmut-P mutation operators, and
one adopting a (1/1, λ) evolution strategy with cumulative
step length adaptation algorithm.

For simplicity, the Kalman filter used in the experiments
is one-dimensional. In fact, since all genes of the target op-
timum are modified by multiplying the same value (target
speed) by the corresponding component of the vector v, in
this case it is sufficient to estimate the target speed by con-
sidering the motion of a single gene. Then, provided that
vector v is known, all the other motion laws can be cal-
culated. In general, if v was unknown, or if each gene is
be moving independently from the others, a n-dimensional
Kalman filter should be used.

The values of the array r of Eq. (3) and (4) have been set
to 1 (ri = 1, i = 1 . . . n), and the process, measurement noise
and error variances of the Kalman filter were set respectively
to 10−5, 1 and 1 (scalar values).

6. EXPERIMENTAL RESULTS
Three series of tests have been performed, for a dimension

of the space (chromosome length) of n = 10, n = 50 and n =
100 and a constant δ ∈ {0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.2}.
The three series involved a value of λ of 10 and each run
terminated after 500 generations. For each parameters set-
ting, one hundred independent runs of the (1, λ)-Kmut-N
(1, λ)-Kmut-P and (1/1, λ)-CSLA strategies have been per-
formed. In each run, the initial individual was generated
in the neighborhood of the initial position of the target x∗,
and both the target and v vectors were generated randomly
with the genes in the domain [0, 1]. Note that this do-
main only refers to initial values. During the run the genes
could reach higher or smaller values. For instance, supposing
n = 10, vi = 1/n, i = 1 . . . n, δ = 0.1, an increment of δ · vi

for 500 steps means that the final value of each element of
x∗ would be incremented of 5. Assuming x∗(0) = 0, x∗(500)

will be
√

52 · n = 15.8 units far from its initial position.

701

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2 0.15 0.1 0.05 0.025

A
v
e

ra
g

e
 d

is
ta

n
c
e

Speed

Kmut-N
Kmut-P

CSLA

Figure 3: Comparison of the different strategies:
average distance from the optimum (n=10, λ=10).
The values on the x axis have been slightly shifted
to avoid overlapping of standard deviation bars.

The three evolution strategies have been compared using
the average distance of the best individual from the opti-
mum, an index similar to the offline performance foffline

proposed in [13] for dynamic environments. In our case the
average is computed using the total number of generations,
while foffline is computed using the total number of eval-
uations. Since at each generation a constant number of in-
dividuals is generated and evaluated, the two indexes are
qualitatively equivalent.

Figure 2 shows an example of the evolution of the three
different strategies. Note how in the beginning of the run
the Kmut operators have poor performances, due to the fact
that the prediction mechanism has not refined sufficiently.
After approximately 50 generations the predictions start to
be accurate, and the Kmut operators have better perfor-
mances. In all the three strategies, after a transient period,
needed by the respective mechanisms to adapt, the opti-
mum value of the evolution strategy tends to stabilize to a
constant value.

Figure 3 shows the comparison of the three strategies
w.r.t. speed for the test n = 10, λ = 10 (all values are
average over 100 runs). For low speeds, the strategy adopt-
ing the CSLA operator outperforms the ones adopting the
Kmut operators, while for higher speeds the Kmut opera-
tors appear to behave better than the CSLA. However, the
CSLA-based strategy has better performance as far as stan-
dard deviation is concerned. Figure 4 shows the comparison
of the four variants w.r.t. speed for the test n = 50, λ = 10.
Again, for the lowest speeds the strategy adopting the CSLA
operator outperforms the ones adopting the Kmut opera-
tors, while Kmut-based strategies have better performances
at high speeds. Figure 5 shows similar results for the case
n = 100. Figures 4 and 5 also show that increasing space di-
mensionality appears to affect more the CSLA-based strat-
egy that the Kmut-based ones, both in terms of average
distance from the optimum and standard deviation.

Table 1 reports on the running time of the algorithms.
Note how the running time only depends of n and λ. At

 0

 0.5

 1

 1.5

 2

 2.5

 0.2 0.15 0.1 0.05 0.025

A
v
e
ra

g
e
 d

is
ta

n
c
e

Speed

Kmut-N
Kmut-P

CSLA

Figure 4: Comparison of the different strategies:
average distance from the optimum (n=50, λ=10).
The values on the x axis have been slightly shifted
to avoid overlapping of standard deviation bars.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.2 0.15 0.1 0.05 0.025

A
v
e

ra
g

e
 d

is
ta

n
c
e

Speed

Kmut-N
Kmut-P

CSLA

Figure 5: Comparison of the different strategies: av-
erage distance from the optimum (n=100, λ=10).
The values on the x axis have been slightly shifted
to avoid overlapping of standard deviation bars.

Table 1: Average running time (seconds) for a run
of 500 generations, λ = 10.

n Kmut-N Kmut-P CSLA
10 0.04 0.04 0.01
50 0.07 0.07 0.03

100 0.11 0.11 0.07

each generation a constant number of individual is gener-
ated, and the adaptation mechanisms need a computational
effort that is independent from the speed δ. Hence, the com-
putational cost is independent form speed. Table 1 shows
that the CSLA-based strategy has better performances as
far as running time is concerned, due to the fact that its

702

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

P
o
s
it
io

n

Generation

Real position
Best individual

Prediction

Figure 6: Evolution of a gene during the first 100
generations (Kmut-P strategy, speed=0.025, n=100,
λ = 10).

adaptation mechanism has a lower computational complex-
ity than the Kalman filter.

Finally, Figure 6 depicts a detail of the evolution of a gene
using the Kmut-P strategy, showing the real value, the corre-
sponding gene of the current best individual and the value
predicted by the Kalman filter. The best solution evolves
in steps (each step a good mutation) keeping up with the
real moving value, while the predicted value moves smoothly
and, after refining, (fifty generations approximately) very
close to the real value.

7. CONCLUSION
We have presented two mutation operators designed for

tracking a moving optimum in dynamical optimization prob-
lems making use of information provided by a prediction
mechanism. The prediction mechanism is based on the as-
sumption that in real world applications changes are not
random and can be learnt. Such information can be pro-
vided to the EA in order to improve its tracking capabili-
ties. The idea underlying the two variants of the proposed
mutation operator is to generate individuals that are close
to the estimated future position, in order to help the algo-
rithm to keep up with the moving optima, anticipating its
movement.

The learning and prediction mechanism we adopted is
based on Kalman filters.

The experiments conducted indicate that the predictions
actually help to improve the tracking of the moving opti-
mum, and have shown performances comparable with other
adaptation mechanisms. For high speeds the proposed op-
erators outperformed the cumulative step length adaptation
mechanism, although the latter has shown smaller execution
times, due to a lower computational cost.

The computational cost of the Kalman predictor is essen-
tially due to matrix algebra and a matrix inversion, which
has a polynomial computational cost of the order of n3.
However, the added cost of the adaptation mechanism can
be acceptable, depending on the application, assuming that
the computational costs of the optimization process are dom-
inated by the costs of evaluating the objective function.

The main disadvantage of the proposed approach is that
the kind of prediction mechanism we adopted needs an off-
line tuning prior to its application, in order to estimate

initial parameters (noise covariance). Future work will be
aimed at computing such parameters on-line on the basis of
the actual behavior of the algorithm.

The focus of this work was on tracking, focusing the search
around a region containing the estimated future position of
the optimum. However, concentrating the search around
the current optimum in a dynamic environment could let
the algorithm miss important changes in different regions of
the search space. Coupling predictions with some diversity-
control technique can be a promising strategy for taking ad-
vantage of the improved exploitation capabilities provided
by the predictor, while maintaining a suitable degree diver-
sity needed for exploration.

Acknowledgments

The work of the first author has been carried out under a
”Ramon y Cajal” research fellowship from the Ministerio de
Ciencia y Tecnoloǵıa of Spain.

The authors would also like to thank the anonymous re-
viewers for their useful comments that allowed a significant
improvement of this paper.

8. REFERENCES
[1] H. A. Abbass, K. Sastry, and D. E. Goldberg. Oiling

the wheels of change: The role of adaptive automatic
problem decomposition in non-stationary
environments. Technical Report IlliGAL Report No.
2004029, Illinois Genetic Algorithms Laboratory, 2004.

[2] P. J. Angeline. Tracking extrema in dynamic
environments. In P. J. Angeline, R. G. Reynolds, J. R.
McDonnell, and R. Eberhart, editors, International
Conference on Evolutionary Programming, pages
335–345. Springer Verlag, 1997.

[3] D. V. Arnold and H.-G. Beyer. Optimum tracking
with evolution strategies. Evolutionary Computation,
14(3):291–308, 2006.

[4] T. Bäck. On the behavior of evolutionary algorithms
in dynamic environments. In D. B. Fogel, H.-P.
Schwefel, T. Back, and X. Yao, editors, IEEE
International Conference on Evolutionary
Computation, pages 446–451. IEEE Press, 1998.

[5] H. G. Beyer. The Theory of Evolutionary Strategies.
Natural Computing Series. Springer-Verlag,
Heidelberg, 2001.

[6] P. A. N. Bosman. Learning, anticipation and
timedeception in evolutionary online dynamic
optimization. In Fourth Workshop on Evolutionary
Algorithms for Dynamic Optimization Problems
(EvoDOP-2005), pages 39–47, 2005.

[7] J. Branke. Memory enhanced evolutionary algorithms
for changing optimization problems. In P. J. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, and
A. Zalzala, editors, Congress on Evolutionary
Computation, volume 3, pages 1875–1882. IEEE Press,
6-9 1999.

[8] J. Branke. Evolutionary approaches to dynamic
optimization problems. In J. Branke and T. Bäck,
editors, Evolutionary Algorithms for Dynamic
Optimization Problems, pages 27–30, 7 2001.

[9] J. Branke, T. Kaußler, l Schmidt, and H. Schmeck. A
multi-population approach to dynamic optimization

703

problems. In Adaptive Computing in Design and
Manufacturing 2000, pages 299–308, 2000.

[10] W. Cedeno and V. R. Vemuri. On the use of niching
for dynamic landscapes. In Congress on Evolutionary
Computation, pages 361–366. IEEE Press, 1997.

[11] H. G. Cobb. An investigation into the use of
hypermutation as an adaptive operator in genetic
algorithms having continuous, time-dependent
nonstationary environments. Technical Report
AIC-90-001, Navy Center for Applied Research in
Artificial Intelligence, Washington, DC, 1990.

[12] J. Grefenstette. Genetic algorithms for changing
environments. In R.Männer and B.Manderick, editors,
Parallel Problem Solving from Nature, pages 137–144.
Elsevier Science Publisher, 1992.

[13] Y. Jin and J. Branke. Evolutionary optimization in
uncertain environments - a survey. IEEE Transactions
on evolutionary computation, 9(3):303–317, 2005.

[14] R. E. Kalman. A new approach to linear filtering and
prediction problems. Transactions of the
ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[15] N. Mori, S. Imanishi, H. Kita, and Y. Nishikawa.
Adaptation to changing environments by means of the
memory-based thermodynamical genetic algorithm. In
T. Bäck, editor, International Conference on Genetic
Algorithms, pages 299–306. IEEE Press, 1997.

[16] A. Ostermeier, A. Gawelczyk, and N. Hansen.
Step-size adaptation based on non-local use of
selection information. In Y. Davidor, H.-P. Schwefel,
and R. Männerm, editors, Parallel Problem Solving
from Nature PPSN III, pages 189–198.
Springer-Verlag, 1994.

[17] C. L. Ramsey and J. J. Grenfenstette. Case-based
initialization of genetic algorithms. In S. Forrest,
editor, International Conference on Genetic
Algorithms, pages 84–91. IEEE Press, 1993.

[18] P. D. Stroud. Kalman-extended genetic algorithm for
search in nonstationary environments with noisy
fitness evaluations. IEEE Transactions on
Evolutionary Computation, 5(1):66–77, 2001.

[19] F. Vavak, T. C. Fogarty, and K. Jukes. A genetic
algorithm with variable range of local search for
tracking changing environments. In H.-M. Voigt,
W. Ebeling, I. Rechenberg, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature, pages
376–385. Springer, 1996.

[20] K. Weicker and N. Weicker. On evolution strategy
optimization in dynamic environments. In P. J.
Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and
A. Zalzala, editors, Congress on Evolutionary
Computation, volume 3, pages 2039–2046. IEEE Press,
1999.

704

