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ABSTRACT
The success of evolutionary algorithms (EAs) depends cru-
cially on finding suitable parameter settings. Doing this by
hand is a very time consuming job without the guarantee
to finally find satisfactory parameters. Of course, there ex-
ist various kinds of parameter control techniques, but not
for parameter tuning. The Design of Experiment (DoE)
paradigm offers a way of retrieving optimal parameter set-
tings. It is still a tedious task, but it is known to be a
robust and well tested suite, which can be beneficial for giv-
ing reason to parameter choices besides human experience.
In this paper we analyse evolution strategies (ES) and par-
ticle swarm optimisation (PSO) with and without optimal
parameters gathered with DoE. Reasonable improvements
have been observed for the two ES variants.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation

Keywords
Evolution Strategies, Particle Swarm Optimization, Design
of Experiments

1. INTRODUCTION
The algorithms which were developed on the basis of evo-

lution are called Evolutionary Algorithms. They are ran-
domised search heuristics, which are heavily used in the field
of optimisation in addition to the classic optimisation ap-
proaches, which cannot be applied when a couple of search
space features can not be guaranteed. Another type of algo-
rithms besides EAs, which we will discuss, too, is the PSO
algorithm. It also borrows principles from nature in order
to perform its task.
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We will use a technique introduced from the field of en-
gineering in order to tune the algorithms’ parameters. The
concept of experimental analysis and the Design of Experi-
ments (DoE) is not new, not even in the field of computer
science, but the statistical tools are not common to many
EA users1. We will use these tools for our experimental
analysis.

This article is structured as follows. The DoE is intro-
duced and motivated in the following section 2. It lays the
foundation to understand the procedure of executing a de-
sign which is then shown. Afterwards, in section 3, the
implemented algorithms are presented and the optimal pa-
rameters are acquired, see section 4. The paper closes with
the evaluation of the experimental results in section 5.

2. DESIGN OF EXPERIMENTS

2.1 Performance Measures
Before we can compare two algorithms, we have to specify

a measure for their comparison. There are many different
measures for the quality of an algorithm, i.e. the quality
of the best solution, the percentage of runs terminated suc-
cessfully, the number of iterations or time steps required to
obtain the results, or the robustness of the algorithm. In the
following we will list some typical measures to demonstrate
that there is no standard rule for EAs:

• The mean best fitness can be defined as the average
value of the best fitness values found at termination
for one specific run configuration. We compare our
experiments mainly based on this measure and do that
by using fitness graphs.

• The hitting time of an ε environment is applicable to
real-world optimisation problems, where the exact op-
timum can only be approximated with finite accuracy.
Schwefel proposes the definition of an explicit border
to determine successful runs or failures [5].

• Robustness of an algorithm can be defined in many
ways, i.e. as a good performance over a wide range of
instances of one test problem or even over a wide range
of different test problems. We test the robustness of
the examined algorithms in the experimental runs with
standard parameter settings.

• To measure the algorithm speed, the average number
of evaluations to find a solution can be used. The

1EA users are also called practioners in [2].
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maximum number of evaluations can be used for runs
finding no solutions.

2.2 Design of Experiments (DoE)
DoE is a part of a method known as process modelling and

improvement. We will concentrate on the methods useful for
EAs and explored by Bartz-Beielstein in [1]. We follow the
guidelines described in [2].

In an experiment, we deliberately change one or more pro-
cess variables (or factors) in order to observe the effect the
changes have on one or more response variables. The design
of experiments is an efficient procedure for planning exper-
iments in a way that the data obtained can be analysed to
yield valid and objective conclusions. The main assump-
tions in order to apply DoE to evolutionary algorithms are
the following. The factors of a DoE are the parameters for
an EA. The response can be defined as the quality of the
results of the EA (e.g. average fitness value at a given gen-
eration, or its convergence ratio). DoE begins with the de-
termination of the objectives of an experiment and selecting
the factors for the study. An experimental design is the lay-
ing out of a detailed experimental plan in advance of doing
the experiment. Well chosen experimental designs maximise
the amount of information that can be obtained for a given
amount of experimental effort.

It is common to begin with a process model of the black
box type, with several discrete or continuous input factors
that can be controlled, and one or more measured output
responses. The output responses are assumed to be contin-
uous. Experimental data are used to derive an empirical
(approximation) model linking the outputs and inputs. The
most common empirical models fit to the experimental data.
They can take a linear form:

Y = β0 + β1 · X1 + β2 · X2 + β12 · X1 · X2 + ε

Here, Y is the response for given levels of the main effects
X1 and X2. The X1 · X2 term is included to account for a
possible interaction effect between X1 and X2.

There are many uses of DoE. We will apply the DoE in
order to achieve three goals:

• Selection of the main parameters with screening exper-
iments

• Maximising our response value (getting to the opti-
mum) with Response Surface Modelling (RSM).

• Finally comparing the EAs with the gained optimal
values (comparative experiments).

It follows that this process can be classified as parameter
tuning since we are tuning exogenous parameters. What
the term process points at, is the idea that not one big ex-
periment will give the answer but that iterative actions can
achieve and reveal the intricacy of the problem. The objec-
tive determines the design model.
Now that we stated the objectives we will start with the
description of the models used.

2.3 Screening Design
The primary purpose of the experiment is to select or

screen out the few important main effects from the many less
important ones. A common screening experimental design
is one with all input factors set at two levels each. These

levels are called high and low or +1 and -1, respectively.
A design with all possible high/low combinations of all the
input factors is called a full factorial design in two levels.
Since the number of parameters in the considered EAs is
relatively high, this design will not be applied from the start.
The ES exhibits eight parameters which would lead to 256
test runs, repetition runs not counted. The solution to this
problem is to use only a fraction of the runs specified by
the full factorial design. Which runs to choose and which
to leave out is the focus of the fractional factorial design.
But as a designer you can use it as a tool and rely on the
required factors to be correctly computed. We have used a
statistical tool in order to create the experimental settings.
It produces the essential plots and organises the data in a
convenient manner.

The fractional factorial design makes it possible to have
less experiments at the cost of aliasing. Depending on the
resolution of the design2 some factor interactions can be con-
founded, which means that we cannot differentiate between
them. But as screening analyses the main effects only and
possible interactions are investigated later, this is not a hin-
drance. The design resolution gives information about how
badly the design is confounded.

Our first experiments are based on resolution III designs,
which means that no main effect is confounded with any
other main effect, but main effects can be confounded with
two-factor interactions. The notation for a k = 9 parameter
resolution III design which we will use is: 29−5

III . The mean-
ing of the resolution levels is as follows: In resolution III
designs main effects are confounded with two-factor inter-
actions. In resolution IV designs no main effects are longer
aliased with two-factor interactions, but two-factor interac-
tions are aliased with each other and in resolution V designs
no main effect or two-factor interaction is aliased with any
other main effect or two-factor interaction, but two-factor
interactions are aliased with three-factor interactions.

The basic purpose of a fractional factorial design is to eco-
nomically investigate cause-and-effect relationships of sig-
nificance in a given experimental setting. This does not
differ in essence from the purpose of any experimental de-
sign. However, because we are able to choose fractions of
a full design, and hence be more economical, we also have
to be aware that different factorial designs serve different
purposes.

Broadly speaking, with designs of resolution three, and
sometimes four, we seek to screen out the few important
main effects from the many less important others. For this
reason, these designs are often termed main effects designs,
or, as already stated, screening designs. On the other hand,
designs of resolution five and higher are used for focusing on
more than just main effects in an experimental situation.

There are a number of functional purposes for which de-
signs are used. For example, an experiment might be de-
signed to determine how to make a product better or a
process more robust against the influence of external and
non-controllable influences. Experiments might be designed
to troubleshoot a process, to determine bottlenecks, or to
specify which components of a product are most in need of
improvement. Experiments might also be designed to opti-
mise yield, or to minimise defect levels, or to move a process
away from an unstable operating zone. All these aims and

2Which is noted in big roman letters.
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purposes can be achieved using fractional factorial designs
and their appropriate design enhancements.

2.4 Response Surface Design
Earlier, we stated that we will use the response surface

method (RSM) objective. Under some circumstances, a
model involving only main effects and interactions may be
appropriate to describe a response surface when an analysis
of the results revealed no evidence of pure quadratic cur-
vature in the response of interest (i.e., the response at the
center approximately equals the average of the responses at
the factorial runs).

A central composite design (CCD) contains an imbedded
factorial or fractional factorial design with center points that
is augmented with a group of star points that allow estima-
tion of curvature. If the distance from the center of the
design space to a factorial point is ±1 unit for each factor,
the distance from the center of the design space to a star
point is ±α with |α| > 1.

There are many factors which have to be determined be-
fore an experiment can start. There should be tests in or-
der to avoid floor and ceiling effects. E.g. a ceiling effect
happens when the optimum is reached within the machine
dependant precision before the algorithm ends its search, or
the algorithms is stuck in a local optimum for the larger
amount of the algorithm’s progress and consequently dis-
torting the response value. The effects can be avoided, e.g.
by a comparison of the distributions of successful runs: How
many runs were completed successfully after tmax iterations?
Or by varying the starting points: How many runs were com-
pleted successfully after tmax iterations from different start-
ing points? Or even changing the problem dimension: How
many runs were completed successfully after tmax iterations
for different problem dimensions?

3. TESTED ALGORITHMS
This section describes the implemented algorithms.

3.1 Evolution Strategy with self-adaptation
The first considered EA is a (μ +, λ)-ES. Following features

of the ES were chosen:

• Random parent selection with uniform distribution.

• Global intermediate and discrete recombination for both
the objective variables and the strategy variables are
possible.

• Mutation with self-adaptation of the parameters.

• Plus or comma selection of the best individuals.

This leads to the following algorithm specific factors [2]:

1. Number of parent individuals μ.

2. The selection pressure υ: For given μ and υ values, λ is the
product of both and rounded to the nearest whole number.

3. Initial mean step sizes (standard deviations of the muta-
tions of the decision variables).

4. Number of standard deviations nσ , with 1 ≤ nσ ≤ N where
N denotes the problem dimension.

5. Global mutation parameter τ . Mutation is based on the
extended log-normal rule, that enables learning mutation
ellipsoids [3]:

σ(t+1) = exp(τ0 · N0(0, 1))(σ
(t)
1 · exp(τ · N1(0, 1)), . . . ,

σ
(t)
N · exp(τ · NN (0, 1))

where σ(t) denotes the step length vector at iteration t, and
N (0, 1) is the realisation of a normally distributed random
number with variance 1 and expectation 0.

6. Number of parents ρ participating in crossover to create
one offspring.

7. Recombination operator rx for object variables: either in-
termediate or discrete values are possible.

8. Recombination operator rs for the mutation strength.

9. Selection mechanism, maximum life span κ. Plus-strategies
(μ + λ), and comma-strategies (μ, λ) can be generalised
by introducing the parameter κ that defines the maximum
age (in generations) of an individual. If κ is set to 1, we
obtain the comma-strategy, if κ equals ∞, we model the
plus-strategy.

Tabel 1 summarises the parameters of the ES we want to
optimise with DoE.

3.2 Evolution Strategy with correlated muta-
tion (ESC)

In addition to the self-adaptive mutation strength the ES
with correlated mutation has got a number of angles which
allow to rotate the ellipsoid. It helps in the convergence to
an optimum and is supposed to be better on constrained
multi-modal functions. Since the ascent of the fitness func-
tion is often not along the principal axes, it is the role of the
correlation parameter to adapt to that. So, the representa-
tion of an individual changes to

< x1, x2, ..., xN , σ1, σ2, ..., σN , α1, α2, ..., αk >

where k = N · (N − 1)/2. Each αi is an angle which rep-
resents a rotation in one of each of the planes between two
dimensions. As in the basic form of the ES the strategy
parameters are mutated and afterwards the objective pa-
rameters. The mutation of the strategy parameters stays
the same. The rotation angles are mutated with a Gaussian
standard distribution:

α(t+1) = α + β · N (0, 1)

Schwefel recommends the value of β to be set to 0.0873 which
corresponds to 5◦. The value could leave the range of [−π, π]
so it is modified to stay in that range. The mutation of the
individual is then:

x(t+1) = x(t) + N (0, σ(t+1), α(t+1))

where σ(t+1) is the vector of strategy parameters and α(t+1)

the vector of k rotation angles. To construct the vector
N one have to multiply a vector created from the mutated

parameters Δuncorr =
(
σ

(t+1)
1 , . . . , σ

(t+1)
n

)T

with k rota-

tion matrices Rp,q(αp,q) where αp,q is the angle of the plane
spanned by the dimensions p and q.

3.3 Particle swarm optimisation
Each particle has a desire to exploit its own knowledge

and a desire to explore the knowledge of other particles. We
assume the particle has the following properties reflecting
these desires:

• x: the particle’s position

• vid : current velocity

• pid : best own position so far
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Symbol Parameter Default Value Range Type
μ Number of parents 15 � cont.

υ = λ/μ Selection pressure (ratio offspring to parent) 7 �+ cont.

σ(0) Initial standard deviation 3 �+ cont.
nσ Number of standard deviations N {1, N} nomin.
τ Learning parameter 1 �+ cont.
ρ Number of parents for each offspring μ {1, μ} nomin.
rx Recombination operator for objective variables discrete {d, i} nomin.
rs Recombination operator for strategy variables intermediate {d, i} nomin.
κ Maximum age 0 {1,∞} nomin.

Table 1: Parameters of the ES which we want to optimise with DoE.

• pgd : best position of other particles so far

• i : the individuality of the particle

• s : the social factor of the particle

These attributes lead to the following equation:

x′ = x + vid (1)

and

Δvid = i · φ1 · (pid − x) + s · φ2 · (pgd − x) (2)

which determines the particles behaviour. It determines the
change to the particles velocity in each dimension. The first
product of the summation determines its desire to tend to its
own best position found until now. The second product de-
termines its desire to follow the global best value. The value
of pgd is determined through neighbourhoods. The variables
φ1 and φ2 produce random numbers. The PSO algorithm
implemented is configured with following standard parame-
ters:

1. The number of particles in the swarm P . This has the
biggest impact on the algorithm’s performance.

2. The individuality of each particle and the associated bound-
aries. They determine the exploitation of the fitness land-
scape by each particle.

3. The sociality of each particle which counteracts the indi-
viduality and describes the tendency to follow the group.

4. The communication topology. Here, the star (s), the global
(g), and the circle (c) topology are implemented.

Again, we summarise the exogenous parameters for which
we want to find optimal settings, see table 2.

4. DETERMINING THE OPTIMAL PARAM-
ETERS

In this section we want to apply the theory of DoE. The
setup is as follows. We will try to optimise the parame-
ter settings for the evolution strategy algorithm (ES) for all
functions described in appendix A. We hope to discover a
mutual good setting. In order to compare the three imple-
mented algorithms we will use the DoE for the PSO, too,
but as it is a time-consuming task, we will confine ourselves
to only the Sphere and the Schwefel function. As a side-
effect we can verify the results from [1]. In order to be able
to compare the algorithms on the other two functions, we
will use standard parameter settings for the test runs there.

Some preliminary test were made to determine the num-
ber of generations that create meaningful results. We want
to prevent ceiling effects to influence the response, hence we
set the number of generations for the Sphere function to 50
and for the other functions to 100.

4.1 The standard ES on the Sphere function
As was shown in [1] the standard parameter settings are

not optimal. We have verified that with slightly different re-
sults. We set up the 29−5

III fractional factorial design that is
used for all test functions. The setup for the 16 experiments
is shown in Table 3. The actual values for each experiment
can be seen in Table 4. After the 29−5

III fractional factorial

Problem Sphere
Algorithm ES(10; 20, 50; 200)
Number of runs 5
Initial standard deviation 1;5
Number of standard deviations 1;12
Learning parameter τ 1;2
Number of parents for each offspring 2;10;20 (binary or multi)
Recombination type of objective variables discrete/intermediate
Recombination type of mutation strengths discrete/intermediate

Table 3: Example for our experimental setups: The
29−5

III fractional factorial design on the Sphere func-
tion.

Experiment μ υ σ0 nσ τ ρ XRec SRec κ
1 20 5 1 1 2 L1 L2 L2 L1
2 20 10 1 12 1 L1 L1 L2 L1
3 10 5 5 1 2 L2 L2 L1 L1
4 20 5 5 12 1 L1 L2 L1 L1
5 20 10 5 1 2 L1 L1 L1 L1
6 10 5 1 12 1 L2 L2 L2 L1
7 10 10 1 1 2 L2 L1 L2 L1
8 10 10 5 12 1 L2 L1 L1 L1
9 10 10 1 12 2 L1 L2 L1 L2
10 20 5 5 1 1 L2 L1 L2 L2
11 20 10 5 12 2 L2 L2 L2 L2
12 10 5 5 12 2 L1 L1 L2 L2
13 20 5 1 12 2 L2 L1 L1 L2
14 10 5 1 1 1 L1 L1 L1 L2
15 20 10 1 1 1 L2 L2 L1 L2
16 10 10 5 1 1 L1 L2 L2 L2

Table 4: The actual values for 16 experiments of the
29−5

III fractional factorial design on the Sphere func-
tion. L1 and L2 correspond to the respective high
and low values

design it was clear that the parameters rs,nσ,υ, and the in-
teraction between μ and rs have influence on the response
of the model (see Figure 1). For each test, we have executed
five runs. The normal probability plot is used to answer
whether the data is normally distributed or what the nature
of the variation from normality is. Here we can see that
especially rs diverges significantly. Another indicator for rs

is the box plot (Figure 2) and the pareto plot (Figure 4). A
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Symbol Parameter Default Value Range Type
P Number of particles 25 �+ cont.
i The initial individuality of the particle 1 �+ cont.
s The initial social factor of the particle 1 �+ cont.

Top Topology used for the communication g s, g, c nomin.
between the particles

Table 2: Parameters of the PSO which we want to optimise with DoE.

pareto plot is a bar chart that displays the classification of
problems arranged in decreasing order. The column whose
values are the cause of a problem is assigned as Y and is
called the process variable. The pareto plot produces charts
to display the relative frequency or severity of problems in
a quality-related process or operation. In Figure 3 a visual-

Figure 1: Half-normal plot for the Sphere function:
The parameter rs and the number of strategy pa-
rameters diverge from the half-normal.

isation of the response values in a cube plot are shown. The
response values were used to create the following model. As
only two parameters are significant on the 95% level, we de-
cided to run a full factorial design with center points for the
two parameters. In an experiment with quantitative factors,
the experimental condition corresponding to all factors be-
ing set to the mid-point between their high and low values
is called center point. Center points serve to test for the
presence of curvature, and give information about quadratic
effects. When repeated, center points also provide estimates
of the magnitude of the experimental error.

4.2 The standard ES on the other functions
The optimal parameters for the other functions were de-

termined in the same way as for the Sphere function: we
started with a screening design, created plots to visualise
the data and decided how to model the optimisation runs.
The new model was analysed and the optimal parameters
were determined.

The total number of runs per optimisation is: 16 for the
screening design, 10 for the full factorial design to determine
the best settings (or in the case of the Griewangk function
16, since there we decided to include one more parameter),
and one final run for a comparison. The 26 DoE experiments
had 5 repeats each whereas the final setting was run 50
times. So, altogether 180 runs per optimisation have been
performed.

Figure 2: Box plot of the parameter rs: The pa-
rameter rs with the discrete setting leads to a lower
response. Not even the outliers change the great
difference in the means.

Figure 3: The four most significant parameters are
shown and their combined response values are in-
scribed.

4.3 The PSO on all functions
For the optimisation of the PSO algorithm we decided to

make a response surface model (RSM), as the number of
parameters is low. We used the Box-Wilson3 design. This
is an experimental design consisting of three parts:

• A two-level full or fractional factorial design

• Star or axial points in which each factor is varied to
high and low levels with all other factors held constant

• center points

We performed the experiments on the Sphere function. We
also conducted this design for the Schwefel function, but
with no increase in the accuracy. In the following, the results
of these experiments are presented.

3Star composite design
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Figure 4: Pareto plot for the Sphere function: The
parameter rs (SRecomb) and the number of strategy
parameters show the most influence on the model.

4.4 Optimal parameters
The optimal4 parameters are:

Sphere ES (υ = 10, nσ = 1, κ = −1, σ0 = 1, τ = 1, XRec =
intermediate, SRec = intermediate, ρ = binary, μ =
20)

Schwefel ES (υ = 20, nσ = 30, κ = −1, σ0 = 1, τ = 2,
XRec = discrete, SRec = discrete, ρ = multi, μ = 20)

Griewangk ES (υ = 10, nσ = 1, κ = −1, σ0 = 1, τ =
1, XRec = intermediate,SRec = intermediate, ρ =
binary, μ = 20)

Rastrigin ES (υ = 10, nσ = 30, κ = −1, σ0 = 1, τ =
2, XRec = discrete, SRec = discrete, ρ = multi, μ =
20)

Sphere PSO (N = 25, i = 1.55, s = 1.55, T op = global)

Our hope to find a mutual good setting has not been ful-
filled. The values of the optimal parameter settings are not
satisfying since they indicate that the chosen region of in-
terest was not broad enough so the extreme values are set
to be the optimal values. Our version of the PSO algorithm
does not lend itself to optimise well in its current form. The
RSM model for the Schwefel function did not deliver any sig-
nificant improvements in our region of interest. We assume
that additional parameters like weighting the sociality fac-
tors depending on the current generation/step should make
it possible to improve its performance. This shows that the
DoE does not automatically mean that an improvement can
be made. The result is highly dependent on the model and
the available parameters.

5. EXPERIMENTAL RESULTS
In the following sections we will present some of the re-

sults we have obtained with the experiments. We will start
with the outcomes from standard parameter settings and
compare them on each function. Then we will present the
results from the optimal parameter settings.

4The parameters we have determined are not that optimal
as they could be because we have decided to stop examining
the algorithms as we reached a significant improvement over
the standard parameters. In that way they are only better.

Figure 5: Experimental results with standard pa-
rameters of a PSO, a standard ES and an ES with
correlated mutation on Schwefel’s function. The
PSO algorithm fails to find an optimum. Its best
performance is shown.

5.1 Results with standard parameters
We have performed three experimental test series with

standard parameters, see figure 5. Each algorithm was run
on each problem function with standard parameter settings.
The fitness graphs are always shown in logarithmic scale.
On Schwefel’s function the ES performs better on average
than the ESC. The PSO is not able to find the optimum in
any case.

On Griewank’s function again the ESC is on average worse
than the ES. It is interesting to note that its best run is a
magnitude better than the other algorithms’ best runs. The
PSO’s inability to handle the accuracy is again visible but it
is also interesting to note that until it reaches its maximum
accuracy the algorithm delivers better results than the other
two. The PSO beats both ES and ESC around generation
260, but is then stuck, as it reaches its granularity level.

The ESC performs on average worse on Rastrigin’s func-
tion than the ES with standard self-adaptive mutation. The
best performance of both, ES and ESC, in 50 runs showed
that if the ESC somehow manages to adapt the correlated
parameters, the convergence is much faster. It seems to be
difficult for the ESC to adapt with the standard parameter
settings. In the long run it has even a worse performance
than the PSO.

While the problem of the PSO is that its minimum veloc-
ities are too high and because of that it cannot slow down
on the optimum, the ESC is really stuck. The reason that
the standard ES still converges on the minimum while the
ESC does not, may be that both the rotation of the muta-
tion ellipsoid is unfavourable and the number of parents is
too low to adapt the angles sufficiently. The PSO algorithm
has no self-adaptation, so it reaches the optima only within
a threshold. Its velocities are too high and that causes the
particles to pass the optima. A parameter scheme which
is dependent on the actual generation could be applied in
order to subside the velocities and therefore reach a more
exact optimum.

To summarise these experiments, the ESC sometimes de-
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livers excellent results, but performs on average worse than
the ES. In the long run it is better than the PSO. What has
to be noted in favour of the PSO is that the actual run time
of the PSO is about ten times faster than the ES, while the
ES is again perceptibly faster than the ESC.

Figure 6: Optimisation with and without optimal
settings. The experiments on the Sphere function
worked out as planned, the average converges very
fast. The convergence on the Schwefel function is on
average better but still not optimal. Yet, the best
run is a magnitude better than the best run with
standard parameters.

5.2 Results with optimal parameters
We will examine the results of the experiments with op-

timal parameters in this section. Figure 6 shows the fitness
graph of the optimal runs and the standard runs of the ES
on the Sphere and Schwefel function. The optimisation pro-
cess led to a very good convergence on the Sphere function.
The algorithm converges on average to the optimum expo-
nentially fast (a log scale is used). The best performance on
the Schwefel function shows the same behaviour after the
optimisation. There are no longer periods in which the al-
gorithm resides in a local optimum as it is the case with the
best not optimised run (Best Schwefel versus Best Schwe-
fel optimal in Figure 6). Yet on average the algorithm still
does not reveal the behaviour we hoped for. We have in-
creased the success rate and lowered the ε environment of
the optimum that the algorithm reaches on average.

A similar improvement can be observed on the Griewangk
function (Figure 8). But this time the optimal parameter
settings deliver a much better best run. The interdepen-
dence of the dimensions does not pose a problem to the ES.
Figure 7 shows the improvement of the ES on the Rastrigin
function. The worst run is still better than the average of
fifty runs with standard parameters. Surprisingly the best

Figure 7: Although the best performance with stan-
dard parameters is still better than the best perfor-
mance with optimal parameters, the worst run with
optimal parameters is still better than the average
run with standard parameters.

run performance with standard parameters is still better
than the best performance with optimal parameters. This
shows that there is still space for improvement. We do not
consider the best runs as outliers because the environment
is only pseudo random. The value would be produced again,
if the experiment is repeated. We choose the random seed
to be the same during each run.

The optimisation through the DoE has an impact on the
performance of the PSO, though only of a constant factor
(see Figure 9). The fitness curve of the optimised PSO
seems to be shifted along the y-axis. Although its accuracy
is improved and a better approximation to the optimum is
found, the overall behaviour during the run has not changed.
Whether it is an inherent attribute of the algorithm or our
parameter search was not good enough stays an open ques-
tion. We state that the PSO algorithm has been improved,
but still does not arrive at the performance level of the not
optimised performance of the ES.

6. CONCLUSIONS
The ES/ESC algorithms outperform the PSO in terms

of convergence and accuracy. The reason for the poor per-
formance of the PSO might be that we did not integrate
additional control factors or further extensions. Another as-
pect that we did not inspect in this analysis is the runtime
performance of the algorithms. Here, it is again noteworthy
that the PSO excels. It finishes 50 experiments with 1000
steps within a minute. For the same amount of generations
the ES needs about half an hour. Another interesting re-
sult is the curvature of the fitness graphs. The ES/ESC
algorithms have usually a fast start and decelerate with the
progress of generations. If an optimal setting is used, the
solution will be found exponentially fast. The PSO algo-
rithm reveals a reversed behaviour: its convergence speeds
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Figure 8: The ES on the Griewank function. A log-
arithmically linear approximation of the optimum
could only be achieved for the best runs with and
without optimal settings.

up with the progress of the search. This could mean that it
is not confined to a maximal convergence ratio like the ES
appears to be. We suppose that the maximal convergence
ratio originates in the mutation operator which modifies the
objective variables with the exp function according to the
log normal rule.

APPENDIX

A. TEST FUNCTIONS
The following test functions have been used.

Sphere Function.

f(x) =
∑n

i=1 x2
i

The Sphere model is a continuous, strictly convex and uni-
modal function. The solution is at x∗ = (0, ..., 0); f(x∗) = 0.
This is a scalable problem in which we will use then dimen-
sion of n = 12 and the range of |xi| < 500.

Schwefel’s Function.

f(x) = 418.9829 · n +
∑n

1 (−xi · sin(
√|xi|))

The solution is at x∗ = (421, ..., 421); f(x∗) = 0. Here we
will use the dimension of n = 30 and the range of |xi| < 500.

Rastrigin’s Function.

f(x) = A · n +
∑n

1 (x2
i − A · cos(2 · π · xi))

This function has been used as a test function for distributed
parallel ESs [4]. The solution is at x∗ = (0, ..., 0); f(x∗) = 0
and we will use the range of |xi| < 5.12 and the dimension
of n = 30.

Figure 9: Even with the optimised parameters the
PSO algorithm does not achieve the convergence of
the average ES algorithm run.

Griewangk’s Function.

f(x) = 1
4000

· ∑n
1 (x2

i ) −
∏n

1 (cos( xi√
(i)

))

This function is taken from [6]. The solution is at x∗ =
(0, ..., 0); f(x∗) = 0. The range is chosen as |xi| < 500 with
n = 30 dimensions.
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