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ABSTRACT
Multiobjective optimization problems with many local Pareto
fronts is a big challenge to evolutionary algorithms. In
this paper, two operators, biased initialization and biased
crossover, are proposed to improve the global search ability
of RM-MEDA, a recently proposed multiobjective estima-
tion of distribution algorithm. Biased initialization inserts
several globally Pareto optimal solutions into the initial pop-
ulation; biased crossover combines the location information
of some best solutions found so far and globally statistical in-
formation extracted from current population. Experiments
have been conducted to study the effects of these two oper-
ators.

Categories and Subject Descriptors
I.2.8 [Artificial intelligence]: Problem Solving, Control
Methods, and Search

; G.1.6 [Numerical Analysis]: Optimization-Global op-
timization

General Terms
Algorithm

Keywords
global optimization, multiobjective optimization, estimation
of distribution algorithm, biased initialization, biased crossover
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1. INTRODUCTION
Global optimization by evolutionary algorithms (EAs) has

been widely studied for scalar objective optimization prob-
lems [15, 21, 22, 25]. Although many EAs have been de-
signed to deal with multiobjective optimization problems
(MOPs) in the last two decades [2, 4], there is not much
effort on global optimization for MOPs [9, 14]. Strategies
for global scalar objective optimization may not be steadily
extended to multiobjective optimization evolutionary algo-
rithms (MOEAs).

Estimation of distribution algorithm (EDA) is a new com-
puting paradigm in evolutionary computation [13]. There is
no crossover or mutation in EDAs. Instead, they explicitly
extract globally statistical information from the selected so-
lutions and build a posterior probability distribution model
of promising solutions, based on the extracted information.
New solutions are sampled from the model thus built and
fully or in part replace the old population. EDAs have been
applied to MOPs recently [1, 10, 14, 18, 20].

The Pareto set (PS) of a continuous MOP is a piecewise
continuous (m−1)-D manifold [16]. This property has been
used in several mathematical programming methods. How-
ever, such regularity has not yet been widely exploited by
EAs. Recently, we proposed RM-MEDA [26, 27], a regu-
larity model based EDA for continuous MOPs. Experimen-
tal results have shown that RM-MEDA can effectively deal
with variable linkages. However, if a MOP has many local
Pareto fronts (PFs), RM-MEDA could fail in locating the
global PF.

This paper introduces two new operators, biased initial-
ization and biased crossover, for improving the global search
ability of RM-MEDA. These two operators aim at guiding
the search toward the global PS. Biased initialization inserts
several globally Pareto optimal solutions into the initial pop-
ulation; biased crossover combines the location information
of some best solutions found so far and globally statistical
information extracted from the current population.
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The remainder of the paper is organized as follows. Sec-
tion 2 gives some notations and definitions. In Section 3,
RM-MEDA is briefly described. The biased initialization
and biased crossover are introduced in Section 4. In Section
5, the experimental results are presented. And the paper is
concluded in Section 6.

2. NOTATIONS AND DEFINITIONS
We consider the following continuous MOP:

min F (X) = (f1(X), · · · , fm(X))T (1)

where X ∈ Ω ⊆ Rn, Ω is a continuous search space, and
each objective fi : Ω → R is continuous of decision variable
X. Very often, the objectives in a MOP conflict with each
other, no single solution can optimize all the objectives at
the same time. Pareto optimality is used for defining the
best trade-off solutions of a MOP.

A vector u ∈ Rm dominates another vector v ∈ Rm, de-
noted as u ≺ v, iff ui ≤ vi for all i = 1, · · · , m and uj < vj

for at least one j ∈ {1, · · · , m}. The following two defini-
tions are based on this Pareto domination.

Definition 1 (Local Pareto Set) [3]: For a given ε > 0,
a local Pareto set of (1) is a set of solutions X ∈ Ω which can
not be dominated by other solution Y ∈ Ω which satisfies
||X −Y || < ε. Mathematically, it can be denoted as LPS =
{X|X ∈ Ω, ∄Y ∈ Ω, ||X − Y || < ε, F (Y ) ≺ F (X)}.

Definition 2 (Global Pareto Set) [3]: Global Pareto
set of (1) contains all optimal solutions which can not be
dominated by any solutions in the search space and it can
be denoted as GPS = {X|X ∈ Ω, ∄Y ∈ Ω, F (Y ) ≺ F (X)}.
GPS is a special case of LPS while ε → ∞.

The image of local Pareto set and global Pareto set in ob-
jective space are called local Pareto front and global Pareto
front, denoted as LPF and GPF respectively.

MOEAs for global optimization aim to find an approxi-
mation of the GPS and GPF of (1).

3. THE FRAMEWORK OF RM-MEDA
Under some mild conditions, the PS of (1) defines a (m−

1)-dimensional manifold where m is the number of objec-
tives.

Figure 1: Illustration of individual solutions scat-
tered around the PS in the decision space.

As shown in Figure 1, the population in the decision space
in an ideal MOEA for (1) will hopefully approximate the PS
and be uniformly scattered around the PS as the search goes
on. Therefore, we can envisage the points in the population
as independent observations of a random vector ξ ∈ Rn

whose centroid is the PS of (1) and can be naturally de-
scribed by:

ξ = ζ + ε (2)

where ζ is uniformly distributed over a piecewise continuous
(m − 1)-dimensional manifold. ε is an n-dimensional zero-
mean noise vector and n is the number of decision variables.

In RM-MEDA, piecewise (m−1)-dimensional linear mod-
els are used to approximate model ζ in (2). Local principal
component analysis [11] is applied to partition a population.
In each cluster, the parameters of linear model and noise, ε
in (2), are estimated by principal component analysis. New
trial solutions are then sampled from model (2).

Let Pt denote a population at generation t, P O
t denote

the offspring generated at generation t and P N
t denote all

the nondominated solutions in Pt. The size of both Pt and
P O

t is fixed to be N . The algorithm works as follows:

RM-MEDA

Step 0: Set t := 0. Generate an initial population P0 and
evaluate P0.

Step 1: If stopping condition is met, stop and return P N
t

which constitutes an approximation to the PF (PS).

Step 2: Build the probability model (2) for modelling the
distribution of the solutions in Pt.

Step 3: Sample a new solution set P O
t from the model (2)

and evaluate P O
t .

Step 4: Select N individuals from P O
t

⋃

Pt to create Pt+1.

Step 5: Set t := t + 1 and go to Step 1.

In the framework of RM-MEDA, the population is initial-
ized randomly in the search space in Step 0 and a modified
version of selection based on the nondominated sorting and
crowding distance of NSGA-II [5] is used in Step 4. The
algorithm will stop according to a predefined maximal func-
tion evaluations. More details of RM-MEDA can be found
in [26].

4. BIASED OPERATORS

4.1 Biased Initialization
It is not a new idea to add some ’good’ points in initial

population to improve the performance of MOEAs. This
strategy makes MOEAs like two stage search methods: in
stage I, efforts are spent on finding solutions near/on PF
while in stage II, the whole PF is generated. In [12, 17], by
optimizing a few of aggregation functions with deterministic
gradient based optimization methods, a few points, called
supporting solutions, are put into an initial population to
improve the performance of MOEAs. In [19], a two-phase
local search is designed for bi-objective traveling salesman
problems. In stage I, an initial solution is generated by
optimizing only one single objective, and then in stage II,
the whole PF is generated by optimizing a sequence of scalar
objective problems based on aggregations of the objectives.
In [8], the algorithm focuses on finding one solution near PF
by a method similar to (1 + 1)-ES in stage I and in stage
II, a steady state EA is used to spread the individuals along
the PF.
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For global multiobjective optimization, ’good’ points which
are near/on PF might (a) prevent population from trap-
ping onto local PF because these ’good’ points will domi-
nate some points on local PF, and (b) guide population to
global population if they are used in generating offspring.

In this paper, only m (m is the number of objective) points
are generated by an EA for global optimization.

There are many ways to convert a MOP into a single
objective optimization problem [23]. In this paper, the first
m initial solutions are generated as follows:

Xi = argminX∈Ω

m
∑

j=1

αi
jfj(X)

where i = 1, · · · , m, αi
j are randomly chosen weights which

satisfy 0 < αi
j < 1 and

∑m

j=1
αi

j = 1.
All the other initial solutions are randomly sampled from

the decision space:

Xi = rand(Ω)

where i = m + 1, · · · , N and N is the population size.
rand(Ω) returns a uniformly random point in Ω.

In this initialization, m initial solutions will hopefully be
near/on the global PF (PS).

4.2 Biased Crossover

Figure 2: Illustration of biased crossover.

One of the major shortcomings of an EDA is that mod-
elling may ignore isolated high-quality individuals. To over-
come this shortcoming, guided mutation has been proposed
by combining location information of individuals and global
statical information [24]. Biased crossover uses the same
idea and tries to keep the influence of the best solutions
particularly when they are few.

Let P E
t be a set of solutions generated from Pt by the

EDA operator. The biased crossover generates a set of new
solutions, P O

t , in the following way:

Biased Crossover

Step 1: Select the non-dominated set P N
t from Pt, and

set P O
t empty.

Step 2: If
|P N

t
|

|Pt|
> θ, set P O

t = P E
t and stop, else go to

Step 3.

Step 3: For each point XE ∈ P E
t , randomly select a point

XN ∈ P N
t , generate a new point

X = XE + β(XN − XE)

where β ∈ [0, 1] is a random number, and put it into
offspring set P O

t = P O
t ∪ {X}.

In our experiments, the threshold is fixed to be 0.2. In
the above operator, when the size of P N

t is small compared

with that of Pt (i.e.,
|P N

t
|

|Pt|
≤ θ), all the new solutions are

recombined with solutions in P N
t . On the other hand, if

nondominated solutions have a large fraction in the popula-
tion, the population distribution model will represent these
individuals and thus there is no need to emphasize them
again in biased crossover.

In Step 3, a new solution is generated between a reference
nondominated point and a candidate point which is similar
to the BLX-α operator [7]. Figure 2 illustrates the basic
idea.

4.3 Enhanced RM-MEDA for Global
Optimization

The above two biased operators can be incorporated into
RM-MEDA for global optimization and the resultant method
works as follows:

Enhanced RM-MEDA for Global Optimization

Step 0: Set t := 0. Generate an initial population P0 by
biased initialization.

Step 1: If stopping condition is met, stop and return P N
t

which constitutes an approximation to the PF (PS).

Step 2: Build the probability model (2) for modelling the
distribution of the solutions in t.

Step 3: Generate a candidate solution set P E
t from the

model (2).

Step 4: Generate an offspring set P O
t from Pt and P E

t via
biased crossover and and evaluate P O

t .

Step 5: Select N individuals from P O
t

⋃

Pt to create Pt+1.

Step 6: Set t := t + 1 and go to Step 1.

The only differences between the original of RM-MEDA
and the above method in Section 3 are in Step 0 and Step
4 where biased initialization and biased crossover are used
respectively.

5. EXPERIMENTAL RESULTS
We have conducted experimental studies on several test

instances. In the following, we report our results on the
following modified ZDT4 [5] and DTLZ3 [6]:

ZDT4

{

f1(X) = x1

f2(x) = g(x)[1−
√

f1(x)/g(x)]

where X ∈ [0, 1]× [0, 10]9 and g used in the experiments are

g1(x) =
1

4000

10
∑

i=2

(x2
i − x1)

2 −
10
∏

i=2

cos(
x2

i − x1√
i − 1

) + 2

and

g2(x) = 91 +
10

∑

i=2

[(x2
i − x1)

2 − 10cos(2π(x2
i − x1))].

The instances of ZDT4 with g1 and g2 are denoted as F1

and F2, respectively.
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Table 1: Mean and Std. of D and Υ achieved on F1 and F2.
F1 F2

D Υ D Υ
A1 0.0193(0.0114) 0.0182(0.0119) 3.0120(2.7929) 2.7581(2.9146)
A2 0.0383(0.0195) 0.0372(0.0196) 132.3238(126.8185) 133.2056(127.8889)
A3 0.0261(0.0177) 0.0246(0.0174) 159.7894(177.7885) 161.5801(180.1942)
A4 0.0043(0.0001) 0.0020(0.0001) 0.1118(0.2376) 0.0431(0.1902)

DTLZ3







f1(X) = (1 + g(X))cos(x1π/2)cos(x2π/2)
f2(X) = (1 + g(X))cos(x1π/2)sin(x2π/2)
f3(X) = (1 + g(X))sin(x1π/2)

where X ∈ [0, 1]2 × [0, 10]8 and g used in the experiments
are

g3(x) =
1

4000

10
∑

i=3

(x2
i − x1)

2 −
10
∏

i=3

cos(
x2

i − x1√
i − 2

) + 1

and

g4(x) = 81 +
10

∑

i=3

[(x2
i − x1)

2 − 10cos(2π(x2
i − x1))].

The instances of DTLZ3 with g3 and g4 are denoted as F3

and F4, respectively.
D-metric [26] and Υ-metric [5] are used here to measure

the performance. Let P ∗ be a set of uniformly distributed
points in the objective space along the PF, and let P be an
approximation to the PF. D-metric and Υ-metric are defined
as:

D(P ∗, P ) =

∑

v∈P∗ d(v, P )

|P ∗|

Υ(P, P ∗) =

∑

v∈P
d(v, P ∗)

|P |
where d(a, A) is the minimum Euclidean distance between
a and the points in A. If |P ∗| is large enough to represent
the PF very well, D(P ∗, P ) could measure both the diversity
and convergence of P in a sense when P is close to P ∗, while
Υ(P, P ∗) only measures the convergence of P .

In our experiments, we select 500 evenly distributed points
on PF and let these points be P ∗ for each test instance with
2 objectives, and 1, 000 points for each test instance with 3
objectives.

In the following, RM-MEDA, RM-MEDA with biased ini-
tialization, RM-MEDA with biased crossover, and RM-MEDA
with both biased operators are denoted as A1, A2, A3, and
A4, respectively.

The parameters are as follows: for bi-objective problems
F1 and F2, the population size is 100; maximal function
evaluation is 40, 000 for (among which 20, 000 is used by
EDA/L [25] in biased initialization if necessary); the weights
used in biased initialization are fixed to α = (0.9, 0.1) and
α = (0.1, 0.9). For tri-objective problems F3 and F4, the
population size is 200; maximal function evaluation is 70, 000
for (among which 30, 000 is used by EDA/L in biased ini-
tialization if necessary); the weights used in biased initial-
ization are fixed to α = (0.8, 0.1, 0.1), α = (0.1, 0.8, 0.1) and
α = (0.1, 0.1, 0.8). In all executions, the cluster number in
RM-MEDA is 5. The results are based on 100 independent
runs.
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Figure 3: Pareto fronts obtained by the four algo-
rithms on F1.
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Figure 4: Pareto fronts obtained by the four algo-
rithms on F2.
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Table 2: Mean and Std. of D and Υ achieved on F3 and F4.
F3 F4

D Υ D Υ
A1 0.0617(0.0044) 0.0514(0.0118) 2.9890(4.8322) 10454.9999(17126.2022)
A2 0.0629(0.0053) 0.0531(0.0120) 0.5949(0.1566) 6505.2868(14582.7179)
A3 0.0608(0.0042) 0.0489(0.0113) 0.9853(2.0288) 2813.9000(9869.7266)
A4 0.0612(0.0046) 0.0508(0.0132) 0.4990(0.0400) 0.0410(0.0955)

5.1 Results for modified ZDT4 problems
The mean and standard deviation of the two metrics are

shown in Table 1. The PFs obtained by the four algorithms
in the final generation are shown in Figures 3 and 4.

The results in Table 1 show that if only the biased ini-
tialization or biased crossover is used, the performance of
RM-MEDA will become poorer on both test instances. The
reason is that for A2, although some good solutions are put
into the initial population, they don’t play any role in the
EDA operator; and for A3, the biased crossover might mis-
lead the population into local PFs and it is why A3 failed in
F2, as shown in Figure 4. By using both biased initializa-
tion and biased crossover, the performance of RM-MEDA
has been significantly improved. It can also be seen from
Figures 3 and 4, that the final PFs of A4 are closer to the
global PFs than those of A1.

5.2 Results for modified DTLZ3 problems
The mean and standard deviation of the two metrics are

shown in Table 2. The PFs obtained by the four algorithms
on F3 and F4 in the final generation are shown in Figures 5
and 6 respectively.
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Figure 5: Pareto fronts obtained by the four algo-
rithms on F3.

The results show that for F3, the four algorithms perform
very similar but A3 is slightly better than the others. Al-
though in F1 and F3, the control functions g1 and g3 are
similar, the statistical results are slightly different. The rea-
son might be that in A4, the computational efforts used
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Figure 6: Pareto fronts obtained by the four algo-
rithms on F4.

in biased initialization and in evolving process are not well
balanced.

For F4, it is clear that only A4 can converge to the global
PF in most of runs. The Υ-metric values indicate that
Pareto fronts achieved by the other three algorithms are
still far away from global Pareto front.

6. CONCLUSIONS
In this paper, a biased initialization and a biased crossover

have been introduced to improve the global search ability of
RM-MEDA. In biased initialization, by solving several scalar
objective optimization problems converted from a multiob-
jective optimization problem, some ’good’ points are gener-
ated near/on global Pareto front. These ’good’ points will
then prevent the population from trapping into local Pareto
fronts and guide the population into global Pareto front by
biased crossover.

The proposed strategy is tested on bi-objective and tri-
objective test problems and the results show that the global
search ability of RM-MEDA with the two biased operators
is improved remarkably.

To achieve an optimal approximation of global Pareto
front, the computational efforts used in initialization and
in the main evolving process should be balanced. In this
paper, the efforts used in two stages are fixed. A more
practical way should allocate the efforts in these two phases
adaptively. And this will be our future work.
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