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ABSTRACT

This paper deals with the adaptive variance scaling issue in
continuous Estimation of Distribution Algorithms. A phe-
nomenon is discovered that current adaptive variance scaling
method in EDA suffers from imprecise structure learning. A
new type of adaptation method is proposed to overcome this
defect. The method tries to measure the difference between
the obtained population and the prediction of the proba-
bilistic model, then calculate the scaling factor by minimiz-
ing the cross entropy between these two distributions. This
approach calculates the scaling factor immediately rather
than adapts it incrementally. Experiments show that this
approach extended the class of problems that can be solved,
and improve the search efficiency in some cases. Moreover,
the proposed approach features in that each decomposed
subspace can be assigned an individual scaling factor, which
helps to solve problems with special dimension property.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization

General Terms
Theory, Algorithms

Keywords
Evolutionary Computation, Estimation of Distribution Al-
gorithms, Adaptive Variance Scaling, Cross Entropy

1. INTRODUCTION

In recent years there has been growing interest to extend
Estimation of Distribution Algorithms [16, 13, 22, 15] into
continuous optimization domain [24, 27, 12, 21, 4, 18, 28,
1]. Continuous optimization problems are essentially dif-
ferent to combinatory ones in the sense that neither the
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state space nor the dependency between variables is consid-
ered enumerable. It has been discovered that the scaling
of model parameters, i.e., parameter fitting, is more com-
plicated in continuous EDAs than it was in discrete cases.
Most continuous EDA adopts Gaussian probablistic density
function (pdf) as probabilistic models. It had been proved
by both theoretical studies and experiments that [8, 10, 29,
19] fitting the center and variances/covariance of the model
merely according to the distribution of current population
might cause premature convergence. Adaptive variance scal-
ing (AVS) has been introduced to continuous EDAs to cope
with this situation, and many successful results have been
reported [19, 3, 29, 9].

Current approaches of adaptive variance scaling in EDA fol-
lows the so-called 1/5-success-rule [23], which is a key con-
cept borrowed from evolutionary strategies (ES). However,
Unlike in ES where variance adaptation determines the para-
meters alone, in continuous EDA, standard model-building
procedure provides a basic scaling of parameters, and vari-
ance adaption serves merely as a secondary procedure to im-
prove the scaling. Mixing the two procedures causes some
problems. The 1/5-success-rule punishes unsuccessful evolu-
tion by shrinking the variance, however, in EDA poor evolu-
tion progress might be caused by improper shaping of mod-
els rather than bad scaling, shrinking the scaling of variance
is sometimes misleading and degrades the evolution perfor-
mance, even causes premature convergence, which will be
illustrated in our experiments.

In this paper we propose the cross-entropy adaptive vari-
ance scaling (CE-AVS) as a new type of variance scaling
method specifically for EDA, which is essentially different
from previous methods, so that the above questions can be
tackled. The idea is that since currently researchers have in-
terpreted variance adaptation as compensation (e.g. [9]) to
the inadequacy of the probabilistic model in EDA, we goes
on to measure the bias of the model used in previous gener-
ation, and apply compensation to the next generation. By
comparing the model distribution and the real distribution
of the new population after competition, the inadequacy of
the model is measured. A scaling factor can be derived by
minimizing the cross entropy of these two distributions, and
the factor is used for scaling the variance in the next gener-
ation, so that variance adaptation is achieved. Experiments



show that this approach extended the class of problems that
can be solved, and achieve better efficiency in searching. The
experiments also show the feature of CE-AVS that each de-
composed subspace can be assigned an individual scaling
factor, which helps to solve problems with special dimension
property, e.g., the SharpRidge function and the ParaRidge
function [9].

The remainder of the paper is organized as follows. Section 2
briefly reviews the adaptive variance scaling methods and
their application in EDA, the problems encountered when
mixing adaptive variance scaling with EDA are illustrated.
In section 3 the cross-entropy adaptive variance scaling is
proposed. Experimental results are given in section 4 before
concluding in section 5.

2. ADAPTIVE VARIANCE SCALING

In this section we first give a review on the history of adap-
tive variance scaling and its application in EDA. We then
present some examples showing the defects of current AVS
strategy, so that the purpose of this paper is made clear.

2.1 Adaptive Variance Scaling in
Evolutionary Strategy

Adaptive variance scaling is the local search of a better
value for the variance or covariance matrix of a pdf to im-
prove the performance of mutation in evolution algorithms.
The concept comes along with the proposal of evolutionary
strategy (ES). The first class of AVS strategy is the so-called
1/5-success-rule proposed by Rechenberg [23]. The strategy
tunes the variance of a distribution incrementally by observ-
ing the performance of current parameters. A given variance
is chosen and several mutations are performed with the vari-
ance, then the success rate of the mutations is accounted.
If the success rate reaches a expected threshold, the vari-
ance is increased to encourage more exploration, otherwise
the variance is decreased. In this way the variance is kept
oscillating near the optimal value given that the threshold
is properly chosen:

Zf Nsucc/Nmuta > Pthres then o

else

The second class of AVS strategy is proposed by Schwefel
as Mutative Strategy Parameter Control (MSC) [26]. MSC
tunes the mutate variance through competition. An individ-
ual variance is assigned to each solution. In each generation,
the variance of the offspring is generated by randomly mod-
ifying the variance of their parents, and then each offspring
solution is generated by mutating the parent solution with
the corresponding offspring variance. The best offspring is
chosen and its variance is kept to the next generation:

Sk &x = rand{—1/3,1/3}
zp ~ N(0,I)

1
ot = oY%
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x,  =x o, Zk,

(2)

MSC is beneficial in making use of a larger population. More
over, the method can be extended to adapt arbitrary normal
distributions rather than isotropic ones [26].

The De-randomized Strategy Parameter Control(DSC) by
Ostermeier et.al. [20] extends MSC by adopting accounting
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technique instead of random mutating. DSC separates the
variance into two parts: the ”global step” represented by a
scaling factor, and the ”individual step” represented by a
covariance matrix. In each generation, the scaling factor is
modified according to the mean distance between the suc-
cessful mutated offspring and current center:

o el = BN, I
o = e RN
it = 2? otz ®3)

where ||p|| is the so-called ”cumulative path length” rela-
tive to the mean distance of selected offsprings around the
center. The method is implemented in CMA-ES [11] and
achieved great success, but calculating ||p|| is a complicated
and essential step in CMA-ES, thus the approach is not easy
to be adopted in other algorithms.

2.2 Adaptive Variance Scaling for EDA

Traditional estimation of distribution algorithms do not in-
volve AVS process, since it is assumed that the distribution
of current population provides a proper scaling of the proba-
bilistic model. However, experiment results have shown that
fitting the Gaussian model based on the diversity of current
population will sometimes cause the variance to shrink too
fast [19, 29, 10], so that premature convergence will oc-
cur. Theoretical analysis shows that this phenomenon oc-
curs when 1) the initial center of the Gaussian model is too
far away from the optimum [8, 10]; 2) the function land-
scape is statistically deceptive in global scale [29]. It has
been discovered that artificially expanding the variance is
beneficial in coping with this problem [29]. Based on these
results, adaptive variance scaling for EDA is proposed.

Currently, most AVS methods used in EDA are based on
the 1/5-success-rule. In EDA it is not efficient to create
multiple competing populations, thus MSC is not preferred.
Porting DSC to EDA is rather a complicated task, which has
not been investigated to the best of our knowledge. amBOA
[19] and AVS-IDEA [3] are two typical continuous EDA with
variance scaling. amBOA uses the adaptive rule described
in Eq. 1, while AVS-IDEA modified the adaptive rule that
the variance expands when the best solution is improved in
the last generation and shrinks otherwise.

2.3 Defects of Current AVS Methods in EDA
The usage of AVS is rather different in EDA compared to
those in ES. In ES the self-adaptation strategy determines
the variance of covariance matrix directly. While in EDA,
the standard model-building procedure provides a basic scal-
ing of parameters, i.e., the basic covariance matrix I', and
AVS provide a scaling factor ¢V [9] to adjust the matrix.
The combined matrix, ¢*V°T, is used for sampling instead
of I'. The 1/5-success-rule observes the performance effected
by the overall variance, while puts rewards solely on ¢*V*,
regardless of any possible change to I'. This scaling style
causes some negative effects. Grahl et.al. [9] pointed out
that AVS slows down the search process when the problems
can actually be solved without scaling, since high success
rate in mutation do not always indicate that the overall vari-
ance should be increased. Correlation-Triggered Adaptive
Variance Scaling (CT-AVS) is proposed to avoid the abuse
of AVS.



Table 1: Relation of Structure Learning and AVS in
Sphere Function

Prop No AVS AVS
« I¢] «@ I}
1/1 | 3115 | 1.18 | 2292 | 1.17
1/8 | 4332 | 1.41 | 2716 | 1.39
1/16 | 4410 | 1.47 | 2966 | 1.49
0 4999 | 1.56 | 3103 | 1.71

In this paper we disclose another defect of the above scaling
style. Current AVS methods not only expand the scaling
factor improperly in some cases, but also shrink it improp-
erly in some other cases. When the covariance matrix I is
in bad shape, the success rate of the mutation will also be
very low. In this case, shrinking the scaling factor will not
help to resolve the improper shape, on the contrary, it will
exaggerate the effect and even cause premature convergence
if no precaution is taken.

The evidence can be found by repeating the experiments in
[9]. It is reported in [9] that for functions that can be solved
without scaling, AVS is slower, even in the sense of minimal-
evaluations (or minimal convergence population size) cases.
We discover that the phenomenon will not be so obvious if
the algorithm could learn the problem structure perfectly,
Taking the case of the Sphere Function:

l
fl@)=> "=t i €[-10,5] (4)
i=1

The minimal number of evaluations required by IDEA is
smaller that those of IDEA-AVS. However, in our exper-
iments we found that for UMDA, adopting AVS actually
speed up the optimization on the same function in minimal-
evaluations case. To test the relationship between structure
learning and variance scaling, we designed a mixed, EGNA-
based [12] algorithm to enable different preciseness of model
structure. The mixed strategy comprises two structure-
learning styles. One adopts the univariate model, which
precisely describes the space decomposition of the function.
The other adopts a very simple learning strategy which
merely detects pair-wise correlation between variables and
adds an arc for significant correlations in the Gaussian net-
work. We modified the proportion of the two styles in evo-
lution and test how it affects the efficiency of no-AVS and
AVS algorithms. A scalability test is performed concerning
the mean number of evaluations versus the problem dimen-
sion. The detailed experiment configuring follows the one
later explained in section 7?7 except that tournament re-
placement is adopted instead of truncate replacement. The
minimal-evaluations test result is depicted in Table. 1, where
the average number of evaluation N and dimensionality [
follows:

N = a(l/10)" (5)

and the column ”Prop” shows the proportion of applying
the univariate model in evolution. For example, 1/8 means
that univariate model is adopted once in 8 generations and
pair-wise model is adopted in other cases.

From the result we see that with precise structure learning
the algorithm with AVS has better scaling property. When
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Figure 1: The shape of Gaussian model in the shifted
SumCan function, the long axis is almost orthogonal
to the direction of the global optimum(the circle)

the quality of structure learning decreases, the algorithm
with AVS degrade more sharply and it is approached or
even outperformed by the one without AVS.

It should be noted that if no structure learning is adopted,
i.e., using the EMNA [14] algorithm, the AVS version will
also outperform the non-AVS version. Because a badly-built
but fixed structure affects both algorithms, while the fluc-
tuation in model structure affects more on the AVS process.

This phenomenon not only degrades the evolution speed,
in some situation it will even cause premature convergence.
Taking the case of the shifted SumCan Funtion:
1 i
= —————ul =) (zx—s)
1054+ >, 1

zy € [~0.16,0.16)

f()
(6)

If we choose a significant large s, so that the optimum is
far from the initial region, EDAs will have to climb up the
slope with the aid of adaptive variance scaling. The contour
of the function is parallelogram, so that during the process
samples are more likely to scatter along the sides of the ob-
tuse edge, orthogonal to the direction of the gradient, rather
than to distribute along the climbing-path, as is depicted in
Figure 1. The shape of the Gaussian model become more
and more compressed along the gradient direction and the
rate of successful mutation decreases. The adaptation rule
is then triggered and the overall variance is shrunken, how-
ever, this does not help to increase the success rate, on the
contrary, new samples are generated in a more and more re-
stricted region and the algorithm is stuck in local optimum.
Artificially placing a lower bound for the scaling factor helps
to alleviate the trap, however, the bound is not universal and
it may degrade the performance in solving other problems.

3. CROSS ENTROPY ADAPTIVE
VARIANCE SCALING

In this section we propose the cross-entropy adaptive vari-
ance scaling as a new type of AVS method to overcome the



defect of existing approaches. The method takes into ac-
count not only the success mutation rate, but also the space
distribution of current population, so that the effect of struc-
ture learning is taken into account.

3.1 Basic Idea

It has been stated [9] that the role of AVS in EDA is to
compensate the lack of adequacy or competence in proba-
bilistic modeling. If the model is not competent in describing
the function landscape, more random search should be pre-
ferred and a larger scaling factor should be assigned. Tradi-
tional AV'S do not strictly follow this rule, instead, it strives
to achieve optimal progress by balancing the mutation step
length and the mutation success rate. DSC [20] tracks the
motion of the model center and assign a large scaling factor
if the cumulated effect of previous motions are significant,
but does not involve the model structure in scaling. CE-AVS
tries to go further in taking into account both the shifting
of the center and the shape of the model distribution.

In EDA, the only way to measure the inadequacy of the
model by observation is to compare it with the real distri-
bution of elite solutions. For EDAs with the replacement
step [18, 4], this can be partly achieved by comparing the
spatial distribution of the survivors after competition and
the expectation of the model. For EDAs without replace-
ment, the task is rather complicated and we leave it unsolved
in this paper.

Originally EDA expects that the model should cover the
contour of the function landscape with some preciseness and
evolution merely means the refining of the model. In this
sense, the contour of the offspring population after compe-
tition should be a contracted version of the model contour
nesting inside it. However, in continuous EDA this is rarely
the case. The difference between the model and the offspring
is caused by the following factors:

e Transition. In continuous EDA the model is at most
a local approximation to the function contour. With
the evolution progresses the location of the population
will change (perhaps approaching the optimal region),
and the function contour changes with it.

e Model Defects. Before an optimal region is discovered,
the model will not bias to it, but with random sampling
some elite solution might appear within it and after
selection or replacement these solution are emphasized.
EDAs without AVS do react to this situation but the
modification to the model is sometimes insufficient.

e Randomness. Statistical errors always exist in parame-
ter fitting during model building. This effect is distinct
from the above one in the sense that it will not lead
to better fitness in average.

The former two items can attribute to the inadequacy of the
model, while the latter one cannot. However, it is hard to
distinguish these three factors merely by observation, so in
this paper we just tries to reduce effect of the third factor
by choosing a less randomized parameter fitting strategy.
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After knowing the difference of the two distributions, we at-
tempt to scale the variance of the model so that it can cover
all important areas indicated by the offspring population, if
they had not been previously covered. We do this with the
aid of cross entropy.

Cross entropy, also known as relative entropy or the Kullback-
Leibler divergence (KLD) [6], serves as a universal measure
to compare two distributions:

p(z)

() @

D(p(a)llq(z)) = / p(x) log

The metric has been introduced to EDA to solve both struc-
ture learning [17] and parameter fitting [2, 7, 5] problems.
And we suggest applying it to variance scaling.

3.2 Formulation of CE-AVS

Currently, most continuous EDAs adopt Gaussian models
or Gaussian kernel models. Representing the multivariate
Gaussian distribution with the following notation:

1

1 Tpr—1
(27r)n/2|1—‘|1/2672(w7u) 8 (wiu)’ T € R"

(8)

Where « is the optimization variables, p is the model center
and I is the covariance matrix.

N(p, T, z) =

In some generation of a certain EDA algorithm, we get a
parent population of solutions P. The algorithm then ap-
ply some short of selections to P, and create a Gaussian
model Na(par,Tar, ) from it. Then, the algorithm per-
form random sampling according to Nys and obtain an off-
spring population O. In the replacement step, O competes
with P and they are merged to a new population P’, which
comes into the next evolutionary step. No we can estimate
P’ by a normal distribution Np/(pps,Tpr,x). The cross
entropy between Njs and Np is calculated by:

D(N(”P’vrP’vw)||N(HM7FMvw))

1, Tam| 1 —1 —1
=-l —tr(Cp/ (T —TI'pr
2 n|FPI| + 2 T'( P ( M P ))

+ %tr(FMil(NM — pp)(par — ppr)") ©)

The above equation can be found in [25]. The idea of cross-
entropy AVS is that if we expand or shrink the scaling of the
model Ny, the divergence between them will be reduced.
We can find a scaling factor that minimizes the above diver-
gence, which means that the adjusted model will make full
use of the reinforcement information from the new popula-
tion. The scaling factor can then be adopted for sampling
in the next generation.

Now we add a scaling factor a to the model, the extended
model is denoted by Nas(par, a®T'ar,x). We tries to vary



a to minimize the cross entropy:

D(N(pps,Tpr,@)||N(par,a° T, z))
1 a*Tm| 1

= ln——— —tr(Lp (T -l 2F 7t
2 " |Tp| Jr2a2 r(Cp (T @ Tpr )
1 _
+ Tlgtr(I‘M “(ar — ) (s — pp)’) (10)

where [ is the problem dimension.

Taking the derivative of Eq. 10 produces:

0
%D(N(Mpl,rpl,iﬁ)HN/([J/M,G,QI‘M,J?)
9 1, a1 1
=—l-1 —Iin——+ —tr(L'pT - =
7a net S iE L T 2 rCe ) = 5

1 .
+ ozt (T (s — pepe) (pnr — )’
_ !
a

— e tr(Tar ™ (O + (i = popr)(pias = pr)")
(1)

Forcing the above equation to zero, we derive:

a= \/%tr(I‘M_I(I‘P' + (v — pp)(p — pp)T) (12)

Eq. 12 is the basic equation for cross-entropy adaptive vari-
ance scaling.

3.3 Two-Stage Compositive Scaling

Eq. 12 does not function well in practice. The reason is that
it takes into account mainly the effect of model defects but
not model transition, thus the compensation is not sufficient.
To overcome this problem, we suggested to apply a two-stage
composite scaling which compensate both effect separately.

The first stage of compensation is the same as the basic step
Eq. 12 described above, which deals with the biases of the
model:

1
a1 = \/ItT(I‘M”(I‘p' + (ks — ppr ) (s — ppr)T)

If the model is not biased, it will happen that I'pr >~ wTas,
where w is a scalar smaller than but close to 1, and pn ~
Kpr, a1 will be nearly but smaller than 1 so that the algo-
rithm encourages exploiting the regions around the model
center.

The second stage measures the movement of the model cen-
ter across generations, so that transition effect is discovered.

Denoting the Gaussian model built from P’ by Nj;(phs, Tas, ).

If no transition takes place between the two generations,
N show be the same as puj, in average. Following similar
process we get:

1 _
az = \/jtr(l“M Y(par — phy) (Bar — ph)T)

In the above equation we ignore the transition indicated
by the difference of I'ns and T, due to the complexity

in calculation. If the old model had indicated the optimal
region, a2 will be zero.

We set the overall scaling factor as:

a=a1+az (13)
The full procedure of cross-entropy can be now given by:

1. Initialize a population P, set a = 1;
2. Create model NA{([LM, FM);

3. Sample with Nas(par, a®T'ar) and obtain an offspring
population O;

4. Perform replacement P + O — P’;
5. Model P’ with Np/(pps, Tpr);
6. Calculate a; by Nas and Np/;
7. Create new model Ny, (s, Ths);
8. Calculate az by Nas and Njy;

9. Update a, P «+ P’, Ny« Ny, go to step 3;

3.4 Implemental Details and Features
of CE-AVS

In continuous EDA, in order to sample a Gaussian distribu-
tion, a Cholesky decomposition is usually performed to the
covariance matrix I' = LLT. If structure learning methods
(such as Gaussian Networks) is involved, the decomposition
has been carried out implicitly, perhaps with changing of or-
der for variances. tr(T'ar ~'T'ps) can be computed by solving
two triangular linear equations LY = I'p and LTX =Y,
then compute ¢r(X). For a problem dimension m and popu-
lation size m, the computational complexity for calculating
the covariance matrix is O(mn?) and for matrix multiply-
ing is O(n®), while structure learning in EDA costs at least
O(n®), usually O(n*) or more, so that the additional com-
putation burden is acceptable.

If the function landscape can be partitioned into subspaces,
thus the matrix L can be partitioned, the above calculation
can be performed in each subspace and summed up to a total
scaling factor, or different factors can be applied to each
subspace. This is sometimes (but not always) beneficial,
which will be demonstrated in one of our experiments.

Unlike previous AVS methods described in section 2, CE-
AVS do not rely on the historical value of the scaling factor,
so that it is more beneficial in complex situations. For mul-
timodal algorithms, in each generation, current model for
each cluster can be attached to the closest cluster of the
last generation, and calculate the scaling factor as in the
unimodal case. In this way an individual factor can be as-
signed to each cluster to explore different function landscape
simultaneously. So, CE-AVS brings much flexibility in vari-
ance adaptation.



Table 2: Scalability of AVS and CEAVS with and without Exact Structure Information (Truncate Replace-

ment)
Function UMDA-AVS UMDA-CEAVS SEGNA-AVS SEGNA-CEAVS
« I} =80 « I} =80 « Ié] =80 @ I} =80
Sphere 902 | 1.32 | 32778 | 846 | 1.27 | 28384 | 3940 | 1.73 | 141300 | 3210 | 1.63 | 99100
Ellipse 3983 | 1.10 | 39880 | 2656 | 1.28 | 36854 | 4744 | 1.75 | 204825 | 3971 | 1.70 | 139720
Cigar 3907 | 1.17 | 45581 | 2897 | 1.28 | 40795 | 4707 | 1.71 | 162000 | 5160 | 1.75 | 235845
Tablet 2921 | 1.21 | 36645 | 2186 | 1.26 | 29801 | 6002 | 1.51 | 152470 | 5162 | 1.42 | 128490
Cigar Tablet 3759 | 1.21 | 47277 | 2829 | 1.28 | 40529 | 5393 | 1.78 | 231615 | 4552 | 1.68 | 158400
Two Axes 3165 | 1.27 | 43632 | 2617 | 1.29 | 38042 | 4952 | 1.68 | 171290 | 3165 | 1.78 | 128180
Different Powers | 3816 | 1.30 | 58462 | 3285 | 1.29 | 48297 | 9798 | 1.57 | 275115 | 5653 | 1.66 | 187730
Para Ridge 1236 | 0.77 | 6260 | 1450 | 0.70 | 6374 6406 | 1.27 | 90055 5653 | 1.43 | 107715
Sharp Ridge 812 | 0.88 | 4910 696 | 0.73 | 3280 3402 | 1.49 | 84015 1837 | 1.69 | 67425
Rosenbrock 27100 | 2.71 | 7490600 | 23557 | 2.68 | 6150900
4. EXPERIMENTS AND RESULTS _ . .
In this section we perform experiments to validate the prop- Table 2: '[‘eEslt\/Ileisul%sN?ﬁ A?K{;‘tsejgﬁrﬁg%%K{l/SCtlon
erty of CE-AVS discussed above. The validation is carried
. s 0 43020 45810 30930
out by comparing CE-AVS and traditional AVS on some
: . . 0.01 | 172830 4e — 8 59507
benchmark functions, using the same baseline EDA algo-
. . - 0.04 | 185197 2e — 7 58257
rithms. We made some rough comparison on two versions 016 | 280510 e 503732
of traditional AVS described in [19] and [9], and found : € -
that the latter performs better on the benchmark problems 064 | [le—6 3e — 6 64037
in this section, so we chose it for comparison with CE-AVS. 4 le+5 1.9e — 5 209000
64 le+5 3.8¢ —4 206673

The experiments in this section share the configuration as
follows: The population size is chosen to be a geometric se-
ries from 2 to 1600 with the ratio of v/2 (which we found to
be the minimal gap that produces statistical-significant dif-
ferences), and we seek for the population size that successes
20 consequent runs and obtains fastest convergence (which
might not always be the minimally required population size).
Then we refine them with 100 independent consecutive runs
and verify that at least 95 runs are successful, and report
their average result.

Two structure learning schemes are used in the experiments.
The first scheme encodes the problem structure in the model
(which is full dependence for the Rosenbrock function and
univariate model for other functions in the first two experi-
ments). The second scheme adopts the simple learning strat-
egy described in section 2.3, which is referred to as Simple-
EGNA (SEGNA) in this section. Truncate replacement [13]
and Continuous Boltzmann Selection [5] are adopted for all
algorithms to speed up the search efficiency.

The first experiment compared the performance of both
strategies under different quality of structure learning. The
experiment uses the benchmark function in [9] and perform
a scalability analysis. The dimensionality of the test func-
tions is chosen to be | € {5, 10, 20, 40, 60, 80}. The stop con-
dition is set to 107!°. The results are depicted in Table. 2.
The display format in the table follows Eq. 5, and additional
column [ = 80 is added showing the mean number of evalua-
tions that an algorithm required to reach the target precision
for 80-dimension problems. It can be concluded from the re-
sults that CE-AVS outperforms traditional AVS in almost
all functions except that in the Parabolic Bridge funtion the
difference is insignificant. Although on some data AVS has
lower scaling coefficient 3, but the constant item « is sig-
nificantly larger so that eventually it demands more evalua-
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tions in all dimensions tested. It should be noted that when
no exact structure information is provided the advantage of
CE-AVS is more significant, which shows its robustness.

The second experiment shows that CE-AVS can solve some
problems that traditional AVS will be trapped, where the
trap is not even a local optimum. The 10-dimensional Shifted
SumCan Function in Eq. 6 is used for testing. In this exper-
iment we apply AVS and CE-AVS on EMNA algorithm, so
that there will not be concerns about the quality of structure
learning (with structure learning the number of evaluations
for successful runs is reduced by the trapped ones are not
changed). The shifting distance s is varied and its effect to
each algorithm is observed. The result is depicted in Ta-
ble. 3. In the table, the square brackets show the mean
terminal error of unsuccessful runs and other numbers show
the average required number of fitness evaluation in 20 runs
to reach 107! precision within the optimum. From the re-
sult we see that traditional AVS performs even worse that
EMNA without variance scaling, due to the improper shrink-
ing of the variance. The trap can be avoided only by forc-
ing the scaling factor to be larger than 0.7 in this problem.
While CE-AVS do not suffer from low success mutation rate.

The third experiment shows the effect of adopting multiple
scaling factor. Taking the Parabolic Function and the Sharp
Bridge Function in the first experiment, because the first di-
mension in both function is dominating and the covariance
matrix is ill-posed, the performance of all the algorithms are
influenced by it. In this experiment we explicitly separates
the first variable in the calculation of the covariance matrix,
so that the performance of both AVS and CE-AVS are im-
proved, and CE-AVS clearly outperforms AVS, as is shown
in Fig. 2. We go on to calculate one separate scaling factor
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Figure 2: The effect of using multiple scaling factor
in Parabolic Bridge and Sharp Bridge Function

for the first variable and another scaling factor for all other
variables, we see an boost on the performance and the re-
quired number of evaluations is reduced significantly, as is
shown in the ”"-CE-AVS-2” item in Fig. 2. Which persuades
that adopting multiple scaling factors for each subspace can
be beneficial.

Finally we illustrate the impact of the randomness in para-
meter fitting to the performance of CE-AVS. We repeat ex-
periment 1 but tournament replacement is adopted instead
of truncate replacement, which is more random. The result
is shown in Tab. 4. In this case, CE-AVS is advantageous
only when the model structure is inexact, while the perfor-
mance of AVS is improved. This shows the importance of
filtering out the randomness in model fitting.

5. CONCLUSION AND FUTURE WORKS

In this paper the cross entropy adaptive variance scaling is
proposed as a new type of AVS method specifically for con-
tinuous EDA. Unlike traditional AVS approaches that tune
the scaling factor incrementally, the method measures the
divergence between the probabilistic model and the resulted
offspring and calculates a scaling factor immediately. Exper-
iments shows that the proposed method extends the class of
problems that can solved, and achieve faster convergence
speed in a set of test functions when the randomness of the
model fitting is not so significant. With CE-AVS, multiple
scaling factors can be assigned simultaneously to different
subspaces, or different clusters in multi-modal EDA algo-
rithms, which can boost the optimization performance in
special problems.

CE-AVS is not a competitive approach to CT-AVS. Both
approaches strive to detect and alleviate the malfunction
of variance scaling from different scope. Integration both
methods will be beneficial in creating a sophisticated AVS
strategy.

It had been pointed out that although CE-AVS is less vul-
nerable to the defect of structure learning, current model
can not rule out the effect of random noises in model fitting
and it will slow down the convergence under some model

615

building schemes. A more sophisticated model should be
developed to eliminate this effect. On the other hand al-
though the advantage of adopting multiple scaling factors
has been illustrated, applicable methods of decomposing the
space according to different scaling property is not devel-
oped. More over, the benefit of applying the approach on
multimodal EDA algorithms is not yet tested. Solving these
problems will extend the practicality of CE-AVS, and might
bring more insight about the nature of variance adaptation
in EDA.
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