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ABSTRACT

This paper proposes a population-sizing model for entropy-
based model building in discrete estimation of distribution
algorithms. Specifically, the population size required for
building an accurate model is investigated. The effect of
selection pressure on population sizing is also preliminarily
incorporated. The proposed model indicates that the popu-
lation size required for building an accurate model scales as
O(mlogm), where m is the number of substructures of the
given problem and is proportional to the problem size. Ex-
periments are conducted to verify the derivations, and the
results agree with the proposed model.

Categories & Subject Descriptors

G.1.6 [Mathematics of Computing]: Global Optimization—
Analyze.

General Terms
Algorithms, Theory.

Keywords

Estimation of Distribution Algorithms, Genetic Algorithms,
Population Sizing, Model Building, Entropy, Mutual Infor-
mation.

1. INTRODUCTION

Genetic evolutionary computation (GEC) researchers
have long realized the importance of population sizing on
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the success and efficiency of GEC. While using a smaller
population usually yields low-quality solutions, using a pop-
ulation of size larger than required leads to wasting com-
putational resources. Therefore, facetwise models, such as
initial-supply [12] and decision-making models [11, 14], have
been developed to model different bounds on population siz-
ing for genetic algorithm (GA) success.

The issue of population sizing is equally critical, if not
more, in estimation of distribution algorithms (EDAs) [17,
24], which build interaction models for the given problems
and utilize the knowledge gained from the interaction models
to efficiently recombine new solution candidates. For EDAs;
the population should be sized properly not only to satisfy
the initial supply and the need for making good decisions,
but also to ensure the accuracy of the interaction model.

Pelikan, Sastry, and Goldberg [25] derived the population
size required to build an accurate Bayesian model in the
Bayesian optimization algorithm (BOA) to be

@(ml.05) S n S @(le)- (1)
These bounds also apply to many other EDAs, and empir-
ical findings show that n roughly scales as ©(m'*) [28].
However, a more refined model is required to explain the
empirical findings and better understand population sizing.
In addition, empirical findings also indicate that selection
pressure affects population sizing and that an optimal selec-
tion pressure exists for model building.

Many different metrics have been used to detect interac-
tions for model building. One of the most commonly used
metrics is Shannon’s entropy [29]. Typical examples for such
entropy-based model building include ecGA [13], EBNA [6],
BOA [22], the work of Wright [30], and DSMGA [32, 31].

The purpose of this paper is to develop a facetwise
population-sizing model for entropy-based model building
in EDAs. The model is anticipated to better explain the
scalability of EDAs and capture the effect of selection pres-
sure on population-sizing requirements.

This paper first derives the change of the entropy caused
by selection, assuming an infinite population size. Then
for a finite population size, the distributions of the sampled



entropy are investigated. This paper then shows how se-
lection pressure affects the distributions and subsequently
population sizing. Finally, a population-sizing model based
on decision making for entropy-based model building is de-
rived, and experiments are conducted to verify the accuracy
for the proposed model.

2. POPULATION SIZING

Facetwise and dimensional models have been very effec-
tive not only in the design of GAs, but also in understand-
ing GA dynamics and mechanisms. Since our methodology
depends on the facetwise models of population sizing, we
briefly outline the models dictated by building-block (BB)
supply, decision making, and accurate linkage learning in the
remainder of this section. In addition, we also relate entropy
to population sizing for the model building in EDAs.

2.1 BB Supply Model

The first step towards understanding population sizing is
to tackle the issue of BB supply, where the minimum pop-
ulation size required to ensure the presence of at least one
copy of all raw schemata is modeled. Holland [15] estimated
the number of BBs that receive at least a specified num-
ber of trials using Poisson distribution. A later study [9]
calculated the same quantity more exactly using binomial
distribution and studied their effects on population sizing
in serial and parallel computations. Reeves [26] proposed a
population-sizing model for the supply of alphabets with a
fixed cardinality. Recently, Goldberg et al. [12] developed
facetwise models for ensuring BB supply in the initial popu-
lation for GAs. They considered a population of fixed-length
strings consisting of alphabets of cardinality x and predicted
that the population size required to ensure the presence of
all competing BBs with a tolerance of € = i is given by

(2)

where k is the order of a BB, and m is the total number of
BBs.

2.2 Decision-Making Model

Goldberg et al. [11] proposed a population-sizing model
based on decision making. The basic idea is that the pop-
ulation size should be large enough to alleviate sampling
noises so a correct decision can be made between the cor-
rect BB and its most competing schema. If such correct
decisions can be made for all BBs, then over generations,
the global optima can be found by mixing all correct BBs.
The model can be expressed as

n=x" (klogx +logm),

2
OBB
dz .’

min

n=c12mlogm (3)
where c¢; is a problem dependent constant, dy,i, is the min-
imal fitness difference between competing BBs, and 0% 5 is
the fitness variance of a BB.

2.3 Gambler’s Ruin Model

The decision-making model incorporates noises arising
from other BBs. However, it assumes that if an incorrect
decision is made in the first generation, GAs are unable to
recover from the error. Harik et al. [14] refined the decision-
making model by incorporating cumulative effects of deci-
sion making over time rather than in first generation only.
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They modeled the decision making between the correct BB
and its most competing schema in a partition as a gambler’s
ruin problem. An approximated form of their population-
sizing model is given by [14]:

VT oBB

k
2 do 2%v/mlog m.

(4)

L

The above equation assumes a failure probability o =

2.4 Model-Building+Decision-Making
Population Sizing

Facetwise modes for incorporating the effects of model
building and BB-wise decision making on the population
size have been analyzed for EDAs in general, and BOA and
ecGA in particular [23, 25, 27, 28]. The population-sizing
model that incorporates the effect of model building and
its accuracy on population sizing of EDAs, and predicts the
population size required to solve a problem with m BBs of
order k with a failure rate of a = i, is given by

OBB
d

where ¢z is another problem dependent constant.

n:62~2k<

>2mlog m, (5)

2.5 Entropy and Population Sizing in EDAs

As mentioned in the introduction, one of the most com-
monly used metrics for model building in EDAs is en-
tropy [19, 21]. Note that the derivations in this paper pro-
vide a necessary condition for accurate model building. For
example, this paper focuses on a simple case with only two
variables. Though BOA is able to handle dependencies be-
tween multiple variables, it starts to build the Bayesian net-
work by considering only pair-wise dependencies at the very
beginning. ecGA and DSMGA do not use only entropy; in-
stead they adopt the minimum description length principle
for model building. Nevertheless, the signals between de-
pendent variables have to be significant enough for EDAs to
detect regardless of the model complexity. In any case, this
paper studies the minimal population size requirement that
is large enough to alleviate sampling noises so that signals
between two dependent variables are detectable for the EDA
to build an accurate model.

3. THE ENTROPY CHANGE
CAUSED BY SELECTION FOR
INFINITE SAMPLING

We start to derive the population-sizing model by investi-
gating the entropy metric, which is commonly used in many
EDAs. Specifically, in this section, we investigate the dif-
ference of entropy of two genes before and after selection
assuming an infinite population size. To make derivations
feasible, we investigate only one generation. In other words,
we investigate the population size needed for build an ac-
curate model in the first generation. Although it is not
necessary for a EDA to build such an accurate model in the
first generation to solve the given problem, this assumption
provides bounds for population sizing. In addition, later
experiments show that the population size under this as-
sumption is of the same order as the population size needed
for solving the given problem for EDAs.

The loss in entropy by jointing two random variables to-
gether defines the mutual information: I(X;Y) = H(X) +



H(Y) — H(X;Y) [5]. H is Shannon’s entropy [29] and de-
fined as H(X) = H(p) = —%ip; log p; for a discrete random
variable X, where p is the occurrence probability vector of
the events of X. For an entropy-based EDA to detect the
existence of the interaction between genes X and Y, the
sampled mutual information of X and Y needs to be signif-
icant enough.

The scenario in this paper is that after unbiased initial-
ization of the population, the EDA performs binary tourna-
ment selection and then builds the interaction model. The
population size required for building an accurate model is
then investigated.

We believe that nearly decomposable problems represent
a broad class of problems [10], and the success of EDAs in
real-world application well supports the argument [17, 24].
The following derivation adopts a decomposable problem
composed of the Royal road function [18]. The Royal road
function serves as a worst case scenario for model building
because given the minimal fitness difference dy,in, the fitness
differences between the best schema and all other (2% — 1)
schemata are all dyin. In other words, the other (2’“ -1)
schemata in the Royal road function are equally competitive.
Therefore, for a fixed dmin, the growth of the correct schema
of the Royal road function is the slowest under a fixed selec-
tion pressure. Despite of the use of the Royal road function,
our model is expected to be accurate for other nearly de-
composable problems only with a different constant. For
example, the experiments later in this paper show that the
proposed model works on the trap function [8], which de-
ceives hill-climbing algorithms.

To simplify the derivation, a bipolar Royal road function
of order k is defined as follows to equalize the growth rates
of 0 and 1 for every gene.

1 ifZ=111---1
——
k
Re(@) ={1 if #=000---0 (6)

k
1 —d otherwise.

The derivation is based on decision making. Similar
derivations can be found elsewhere [11, 25]. The fitness of
an additively decomposable problem with m BBs is defined
as

F(@) = 275 Ri(@ik 1 inga -+ Tinr)- (7
Since the total number of BBs is proportional to the problem
size, for simplicity, the terms “problem size” and “number
of BBs” are interchangeable in the context of scalability for
the rest of this paper.

Without loss of generality, the first two genes are chosen
to calculate the mutual information between two dependent
genes. Let X and Y be two random variables representing
the first and second genes respectively. Also, for a quantity
Q before selection, let Q' denote the same quantity after
selection. Note that the bipolar Royal road function defined
in Equation 6 is not biased to 0 or 1. For an infinite popu-
lation size, at any given locus (the position of a gene), half
of the population contains 0 while the other half contains 1
both before and after selection. Therefore, the entropy for
an individual gene can be calculated as

H(X)=1, H(X')=1,
H(Y)=1, H(Y')=1.

and

(8)
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The following derivation calculates the joint entropy of X
and Y by investigating the competition between schemata
concerning the first two genes. Define the following notation
for schemata:

9)

Hyy = zys s % - %,
N——
-2

where z and y are 0 or 1, and [ is the problem size. Define
two sets Hy = {Hoo, Hi1} and H_ = {Ho1, H10}, and let
F4 and F_ be their corresponding fitness values:

Fy = f(Hy) = f(Hoo) + f(Hi1).
F_=f(H-) = f(Ho1) + f(Ho).

According to the central limit theorem [7], the distributions
of F'; and F_ can be approximated as Gaussian distributions
when the population size is large. The variances of Fy and
F_, defined as 0% , and 0% respectively, are different but
very close. By treating other (m —1) BBs as external noises,
these variances can be bounded and approximated as:

(m—1)okp < 0%, <mokp

(m—1)opp <op_ <mopg

1
= b, = ah = moby- (1-O(L).

(12)
where 0% is the fitness variance of a BB. The difference
between those two variances is small and can be neglected
when m is large.

Define Z = Fy — F_. Z is a normally distributed random
variable with the following mean and variance.

Bl2) = 5y (13)
VarlZ) = 0%, + 0% =2mobp - (1— 0(%)). (14)

The probability that H4 wins over H_ in a binary tour-
E(Z]

\/Var[Z]
standard Gaussian probability density function. Define a
decision variable z as:

ElZ] d
Var[Z]

nament is given by ®( ), where ® is the cumulative

+0(m™'%).  (15)

B 2k=2/2m - oBB

For a large m, z is small, and ®(z) can be approximated by

% + \/227 — (9(23) [1], which yields

1 d
- 2 2k—1w/7rm-aBB

Define p4 and p_ as the proportions of Hy and H_ in

the population, respectively. Before selection, p; =p_ = 1.

2
The proportions after selection can be calculated as:

+0O(m™"%).  (16)

/ 1 AV
Py =p +2p4 -p- - 0(2) =5+t a7
1 A
po =p> +2ps p_ - B(—2) =5- (19
where A, = d (19)

a 2’“\/7rm . UBB'

Equations 17 and 18 describe the changes of the proportions
of Hy and H_ caused by binary tournament selection.



Now calculate the joint entropy of the first two genes be-
fore and after selection:

1111
Ly — Pt P+ P- P-
H(va)_H(272a272)
A% 4
=2 £ O(Ah) (21)

Combining Equations 8, 20, and 21, the change of the
mutual information of the first two genes before and after
selection is given by

2
_ m

~ 8In2

(XY —I(X;Y) —O(AL). (22)

4. DISTRIBUTION OF ENTROPY FOR
FINITE SAMPLING

This section investigates the effect of selection on the sam-
pled entropy for a finite population. In the case of a finite
population, the distribution of the sampled mutual infor-
mation needs to be considered. Generally speaking, the se-
lection operator increases the sampled mutual information
between dependent genes and has no effect on independent
genes. Specifically, this section derives the mean and vari-
ance of the sampled mutual information.

Define My and M; as the mutual information after se-
lection between pairs of independent genes and dependent
genes, respectively. According to the unbiased initialization
assumption, My = 0, and M, is given by Equation 22.

Let My, and Ml,n denote the sampled mutual informa-
tion for My and M; respectively, where n is the number
of samples. For an infinite number of samples, E[Mo,oo] =
My =0, and E[Ml,oo] = M. For a finite number of samples,
the means and variances of the sampled mutual information
can be derived as follows using Taylor expansion [16].

. 1 1
E[Mo,n] 2n1n 2 + (ﬁ) (23)
. 1 1
Var[Mon] = 57— + O(—5). (24)
. N2, 1 1 4
ElMin] = gh + 2nmz T OGE) ~O@m). (25)
- 1 N2 N2 1
Var(Min] = 2n2In2 ' 4nln2 O(?) + O(E) (26)

In Equation 26, the first term dominates for a small n while
the second term dominates for a large n.

To verify the above derivations, several experiments are
conducted by first fixing the problem size and investigat-
ing the effect of different population sizes on the sampled
mutual information. Equations 23 to 26 indicate that the
sampled mutual information difference, E[MLH — Mo,n], is
virtually independent of n. Var[Mo,n] is inversely propor-
tional to n%. Roughly speaking, Var[]\;!l,n] is inversely pro-
portional to n? for a small n and inversely proportional to n
for a large n. The empirical results shown in Figure 1 sup-
port the derivation. The experiments are done by applying
binary tournament selection to the (m, k)-trap [8] with m
fixed at 10 and k£ = 4. The minimal fitness difference be-
tween competing BBs is 0.25. All results are averaged over
10000 independent runs.

Now the effect of different problem sizes on the sampled
mutual information is investigated by fixing the population
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Figure 1: The effect of population size on the sam-
pled mutual information. The problem size is fixed.
The sampled mutual information difference is vir-
tually independent of n. The sampled information
variance for the pair of independent genes roughly
scales ©(n"?). That for the pair dependent genes
scales closer to ©(n~?) for small n and closer to
O(n™!) for large n.

size and varying the problem size. Note that A, is inversely
proportional to v/m (Equation 19). Neglecting insignificant
terms, Equations 23 to 26 suggest that the difference be-
tween the two means, E[MLTL — Mo,n]7 is inversely propor-
tional to m. Likewise, the variance Var[]\zfo,n] is virtually
independent of m. Var[M,] is virtually independent of
m when n is small while roughly inversely proportional to
m when n is large. Again, the derivation agrees with the
empirical results shown in Figure 2.

S. EFFECT OF SELECTION PRESSURE
ON THE SAMPLED MUTUAL
INFORMATION

This section extends the above analysis to tournament se-
lection where the tournament size is s¢,. While using results
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Figure 2: The effect of different problem sizes on the
sampled mutual information. The population size is
fixed. The sampled mutual information difference
scales as ©(m™'). The sampled information variance
for the pair of independent genes is virtually inde-
pendent of m. That for the pair of dependent genes
scales as ©(m™1).

from order statistics might accurately capture the effect of
selection pressure on population sizing is acknowledged, this
section approximates tournament selection by truncation se-
lection to ease the analytical burden.

Consider the scenario where the selection operator is per-
formed multiple times. It provides a similar effect of having
an exponentially higher selection pressure. The statement
is exactly true for truncation selection. In truncation selec-
tion, selecting the best half of the population twice results
in exactly the same population as selecting the best quarter
of the population.

Since all derivations in the previous section are
based on tournament selection, a transformation from
tournament selection to truncation selection is needed.
Blickle and Thiele [4] gave the approximation of the
selection intensity for tournament selection as [

\/2 (ln Sto — In+/4.141n sto). On the other hand, Béck [3]

approximated the selection intensity for truncation selec-
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Figure 3: The relationship between the tournament
size si, and the selection pressure of truncation se-
lection s;- that yield the same selection intensity can
be approximated as s:, >~ 1.65¢r.

tion with a selection pressure s as I = s (&1 (1 — f))7
where ¢ is the probability density function of the standard
Gaussian distribution and ® is the cumulative density func-
tion.

By setting the selection intensity to be same, st and s
can be solved numerically, and the following relation is ob-
tained. (Figure 3).

Sto X~ 1.68tr,

(27)

Therefore, applying a binary tournament selection has a
similar effect as applying truncation selection with a selec-
tion pressure % ~ 1.25. Applying truncation selection ¢
times results in a selection pressure s = 1.25'. When t is
not too large, Equations 17 and 18 can be approximately
modified as

1 thAn q PR S VAV
2T me  P-Tmo Ty

As a result, the sampled information for a pair of depen-
dent genes grows proportionally to t>. On the other hand,
the number of independent samples reduces from n to %
after the selection procedure. Since the work in this paper
focuses on the order of the relationship among population
size, problem size, and selection pressure, all constants that
are not related to any of these three factors are denoted
as ¢; for simplicity, where ¢ distinguishes between different

constants. Recall that ¢t = 252 and s, 3to - The means

1.25 — 1.6

and the variances of the sampled mutual information can be
modeled as:

o = (28)

E[M, 160 — Xy 1.00] = cl(ln%fAfn. (29)
2
Var|[M, 1.6n] >~ czsﬁ. 30
0, n2
Sto
. In 5te)?g,,. A2,
VarlVl, von] ~ g UREE) SrBm gy
’ Sto n

Note that the approximation in Equation 31 neglects the
first term in Equation 26, assuming n is large.

6. POPULATION SIZING FOR
MODULARITY IDENTIFICATION

Previous sections model the means and variances of the
sampled mutual information for a finite population. Uti-



lizing these models, this section derives a population-sizing
model by the decision-making approach.

The distribution of the sampled mutual information can
be approximated as a Gaussian distribution [16]. The
decision-making error can be calculated as follows.

Define a variable 7 as

In Ste

s E[Z] 1.6
T = >~ Cqa - Am\/ﬁ,

vV Var|Z] V/Sto
where Z = ML 1.6n — Mm 1.6n . The decision error € is given

to to
by 1 — ®(7). For a large 7 (small decision error), € can be
approximated as

(32)

In 5t2)22 5
,CG( 1.6)"%m

1 _z2 C5+/Sto
e~ —e 2

e U —— o1
T ll’l% 'A’,n\/’ﬁ

Sto

(33)

For a problem with m BBs, there are mC¥ pairs of depen-
dent genes and (C’éCm — mC% ) pairs of independent genes.
Assuming that genes within a BB are maximally depen-
dent, a BB can be treated as one decision variable, and
only C3* = ©(m?) independent decisions need to be made
correctly. Given the model accuracy to be (1 — L), the
following relation holds.

1

>1——.

2
1— o(m*~)
( 6) m

(34)

For a small € and a large m, Inequality 34 can be simplified

% > 0(m?). (35)

With arithmetic manipulations, the following relation holds.

In e cDNmr/n (In %)2A$nn

Cs Sto

In( )+ c6 > O(Inm). (36)

Sto

For a large n, the first term in Equation 36 can be ne-
glected. By substituting A\,, according to Equation 19, the
following bound is obtained.

(37)

The population-sizing model given in Equation 37 differs
from existing ones in three aspects. First of all, it incorpo-
rates the effect of selection pressure. Secondly, it scales as
©(22%) instead of ©(2F). Finally, it indicates the population
size for model building should be ©(mInm).

Figure 4 shows the relationship between the tournament
size and the population size needed to build an accurate
model with (m — 1) BBs correctly identified. The results
agree with the model qualitatively. Basically, for both
smaller and larger s, a larger population size is needed to
build an accurate model. Equation 37 also predicts a fixed
optimal s7, ~ 11.8. However, empirical results indicate that
the optimal tournament size varies with the problem and
the model-building procedure. This phenomenon is not yet
captured in our model. The problem might lie in using trun-
cation selection to approximate tournament selection. Even
though the approximation ensures a similar selection inten-
sity, in tournament selection, the number of copies of an
individual is proportional to its rank, which is not the case
for truncation selection.

The term 2%* in Equation 37 is empirically verified. Fig-
ure 5 shows the relationship between the population size
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Figure 4: The relationship between the tourna-

ment size and the population size. Both the results
and model indicates the existence of an optimal s,
around 10.
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Figure 5: The relationship between the population
size needed for DSMGA and the order of BBs, k.
©(2%) better describes the result than ©(2%) does.

needed for the model building in DSMGA and the order of
BBs, k, for an (m,k)-trap function, where m = 10. The
minimal fitness difference between competing BBs is 0.1.
As indicated in the figure, ©(22%) better describes the re-
sult than ©(2F).

Figure 6 shows the experimental results for ecGA and
DSMGA on an (m, k)-trap function, where k = 4. The fit-
ness difference between competing BBs is 0.25. The power-



law curve fitting is done by first-order polynomial fitting on
the log-log scale. ©(mlogm) provides a better description
of the data than the power-law model.
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Figure 6: The scalability of the population size for
different problem sizes. n = ©(mlogm) is a better
description of the results of both ecGA and DSMGA
than the power-law model.

7. SUMMARY AND CONCLUSIONS

This paper presents a population-sizing model for
entropy-based model building in EDAs. Specifically, the
population size required for building an accurate model is
investigated. The proposed model refines the required popu-
lation size for model building from ©(m' %) < n < O(m*!)
to n = ©(mlogm). Tt also corrects the term 2* in existing
population-sizing models to 22*. Those modifications are
empirically verified. The proposed model also incorporates
the effect of selection pressure on the population sizing re-
quirements. Empirical results quantitatively agree with the
proposed model for the scalability on the problem size. The
modeling on selection pressure is qualitatively verified by
experiments. To obtain a more accurate modeling on selec-
tion pressure, the derivation may need to utilize results from
order statistics on the Gaussian distribution.

Compared with the existing population-sizing model for
EDAs [25, 28], the proposed population-sizing model scales
the same with the problem size as ©(mlogm); they agree
with each other. In other words, the population size required
for building an accurate model is of the same order as that
needed for EDAs to solve the problem. Recall that in EDAs;
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the population needs to be properly sized to satisfy the needs
of BB supply, decision making, and model building. Among
these three requirements, the population required for model
building is usually large enough to satisfy the other two
requirements for large-scale problems. Therefore, we can
conclude that it is essential to build an accurate model for
EDASs to solve large-scale problems.

Also, it is worth noting that the decision-making
model [11] has a similar form. The difference is that in the
decision-making model, decisions are made between com-
peting BBs. Here, decisions are made between pairs of de-
pendent and independent genes. The proposed model indi-
cates that for a low selection pressure, the signal may not
be strong enough to detect the existences of interactions;
however, for a high selection pressure, sampling noises may
cloud the signal. An optimal selection pressure exists some-
where in the middle for the model builder. Finally, although
the proposed model is based on the entropy metric, a similar
procedure should be applied to some other metrics such as
nonlinearity [20] and simultaneity [2].

It has been shown that EDAs are capable of scalably solv-
ing many important real-world problems via problem de-
composition [17, 24]. To enhance the optimization ability
of EDAs or to even design a new EDA, it is important to
study the behavior of EDAs on decomposable or nearly de-
composable problems. The results of this paper are signif-
icant because this paper provides population-sizing bounds
for model building that are applicable to a wide class of
EDAs.

Finally, although this paper focuses on discrete EDAs, the
methodology and derivations are not limited to EDAs only.
More generally, this paper should also benefit the study
of so-called linkage-learning problem [10] via entropy-based
linkage model building.
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