
Towards Billion-Bit Optimization via a Parallel Estimation
of Distribution Algorithm

Kumara Sastry1,2, David E. Goldberg1, and Xavier Llorà1,3

1 Illinois Genetic Algorithms Laboratory (IlliGAL), Industrial and Enterprise Systems Engineering
2Materials Computation Center

3National Center for Super Computing Applications (NCSA)

University of Illinois at Urbana-Champaign, Urbana IL 61801

ksastry@uiuc.edu, deg@uiuc.edu, xllora@uiuc.edu

ABSTRACT
This paper presents a highly efficient, fully parallelized im-
plementation of the compact genetic algorithm (cGA) to
solve very large scale problems with millions to billions of
variables. The paper presents principled results demonstrat-
ing the scalable solution of a difficult test function on in-
stances over a billion variables using a parallel implementa-
tion of cGA. The problem addressed is a noisy, blind prob-
lem over a vector of binary decision variables. Noise is added
equaling up to a tenth of the deterministic objective func-
tion variance of the problem, thereby making it difficult for
simple hillclimbers to find the optimal solution. The com-
pact GA, on the other hand, is able to find the optimum in
the presence of noise quickly, reliably, and accurately, and
the solution scalability follows known convergence theories.
These results on noisy problem together with other results
on problems involving varying modularity, hierarchy, and
overlap foreshadow routine solution of billion-variable prob-
lems across the landscape of search problems.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; G.4
[Mathematics of Computing]: Mathematical Soft-
ware; D.1.3 [Programming Techniques]: Concurrent
Programming

General Terms
Algorithms, Performance

Keywords
compact genetic algorithm, efficiency enhancement, par-
allelization, vectorization, population sizing, convergence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

time, scalability analysis, large-scale optimization, billion-
variable optimization

1. INTRODUCTION
Since the mid-1980s, genetic algorithms (GAs) [13, 6]—

search procedures based on mechanics of natural selection
and genetics—have been used to solve problems across the
spectrum of human endeavor. Increasingly, GAs find an-
swers to important scientific problems, but doubts remain
about solution size, speed, and effectiveness despite efforts
that demonstrate GA scalability in a principled manner [7].
GAs have often been criticized as being slow, suitable for
optimizing problems with only a few variables, and that
they do not scale to larger and more complex problems.
Moreover, the push for scientific understanding formulates
an array of challenging optimization problems with stagger-
ing number of decision variables. Despite these an other
compelling needs, optimization today is generally limited to
problems well under a million decision variables.

In this paper we show that the criticisms are somewhat
unfounded and clearly demonstrate that GA scalability by
presenting principled solutions to a representative, difficult
problem over a billion variables. Specifically, we take the
first step of designing a highly-efficient competent GA that
can solve boundedly-difficult large scale problems with mil-
lions to billions of variables. Specifically, in this paper we
develop a fully parallelized, highly-efficient compact genetic
algorithm (cGA) [12, 1, 18]. The purpose of this paper is
also to show that by utilizing a number of memory and com-
putational efficiencies, we can design a GA that can poten-
tially solve problems with millions to a billion binary vari-
ables. Moreover, we show that the as predicted cGA scales
as Θ(� log �)—where � is the number of binary variables—
on a class of additively-separable problems with and with-
out additive noise, and local search methods fail to do so in
the presence of even a modest amount of noise.

This paper is organized as follows. We provide a brief
literature review on studies involving large-scale optimiza-
tion problems in the next section. In section 3, we provide
details of the GA implementation that incorporates efficient
memory utilization, and a number of computational efficien-
cies. A brief description of the test problems and the key
results are discussed in section 5. Finally we summarize and
present key conclusions in section 6.

577

2. LITERATURE REVIEW
Over the recent years, there has been a push to develop

optimization procedures to tackle large-scale problems [2,
3, 5, 4, 10, 14, 19, 20, 25, 24]. Many of the aforemen-
tioned large-scale optimization studies have relied on linear
programming solvers such as simplex methods and interior
point methods. While these methods are very efficient in
solving linear programming problems, they fall quite short
of solving nonlinear, noisy, and deceptive problems. To the
best of our knowledge, the largest known GA in the litera-
ture solves a problem with 4-million binary variables [5, 4,
24], but its applicability to other optimization problems re-
mains in doubt because of problem-specific operators, small
population used, and the lack of theory.

Our purpose is to develop a scalable and efficient GA that
can adaptively solve boundedly-difficult large-scale problems
with millions to billions of variables. To that effect, we take
the first step of designing a highly-efficient compact genetic
algorithm [12] to solve search problems with millions to bil-
lions of variables, where linear solvers fail. Doing so strongly
suggests that extremely large practical scientific problems
can be tackled using similar methods.

3. EFFICIENT COMPACT GENETIC
ALGORITHM IMPLEMENTATION

In order to solve search problems with millions to billions
of variables, we need a GA that is not only computation-
ally efficient, but also efficient in terms of memory usage.
Therefore, we use of the compact genetic algorithm [12, 1,
18] which is efficient in terms of its memory usage. Addition-
ally, we make use of a number of memory and computational
efficiencies in our implementation of the cGA. In this sec-
tion we provide details of these efficiency enhancements and
begin with a description of the algorithmic implementation
of cGA [12, 1, 18].

3.1 Compact Genetic Algorithms
In the compact genetic algorithm [12], a population of

candidate solutions is represented by a vector of probabili-
ties. Specifically, each element in the vector represents the
proportion of ones in each gene position. The probability
vectors are used to guide further search by generating new
candidate solutions variable by variable according to the fre-
quency values. The compact GA modifies the probability
vector so that there is direct correspondence between the
population that is represented by the probability vector and
the probability vector itself. That is, each component of
the vector is updated by shifting its value by the contribu-
tion of a single individual to the total frequency assuming a
particular population size. Therefore, cGA is operationally
equivalent to the order-one behavior of simple genetic algo-
rithm with steady state tournament selection and uniform
crossover [12].

The compact GA consists of the following steps:

1. Initialization: As in simple GAs, where the population
is usually initialized with random individuals, in cGA
we start with a probability vector where the probabil-
ities are set to 0.5. However, other initialization pro-
cedures can also be used in a straightforward manner.

2. Model sampling: Generate two candidate solutions by
sampling the probability vector.

3. Evaluation: The fitness or the quality-measure of the
individuals are computed.

4. Selection: Like traditional genetic algorithms, cGA
is a selectionist scheme, because only the better
individual is permitted to influence the subsequent
generation of candidate solutions. The key idea is
that a “survival-of-the-fittest” mechanism is used to
bias the generation of new individuals. We usually
use tournament selection [9] in cGA.

5. Probability model update: After selection, the propor-
tion of winning alleles is increased by 1/n. Note that
only the probabilities of those genes that are different
between the two competitors are updated. That is,

pt+1
i =

⎧⎨
⎩

pt
i + 1/n If xw,i �= xc,i and xw,i = 1,

pt
i + 1/n If xw,i �= xc,i and xw,i = 0,

pt
i Otherwise.

(1)
Where, xw,i is the ith gene of the winning chromosome,
xc,i is the ith gene of the competing chromosome,
and pt

i is the ith element of the probability vector—
representing the proportion of ith gene being one—at
generation t. This updating procedure of cGA is
equivalent to the behavior of a GA with a population
size of n and steady-state binary tournament selection.

6. Repeat steps 2–5 until one or more termination
criteria are met.

The population size, n, for cGA is given by the following
approximate form of the gambler’s ruin model [11, 8]:

n =

√
π

2

√
� log �

√√√√(1 +
σ2

N

σ2
f

)
, (2)

where � is the problem size, σ2
N is the variance of of ex-

ogenous noise, and σ2
f is the fitness variance. The above

equation assumes a failure probability, α = 1/�.
The convergence time of the cGA is given by the following

approximate form of a selection-intensity based convergence-
time model [16, 7, 21]:

tc =
1

2
π
√

π
√

�

√
1 +

σ2
N

σ2
f

. (3)

The population-sizing and convergence-time models indi-
cate that the exogenous noise increases the population size
and elongates the convergence time. Using equations 2 and
3, we can now predict the scalability, or the number of func-
tion evaluations required for successful convergence, of cGA
as follows:

nfe,cGA =
π2

4
� log �

(
1 +

σ2
N

σ2
f

)
(4)

3.2 Efficient Memory Utilization
via Compact Genetic Algorithm

With the use cGA, we eliminate the need to store the
population, and thus significantly reduces the memory re-
quirements when compared to traditional implementations
of GAs. While the simple GA needs to store n ·� bits to rep-
resent a population of n chromosomes with � binary vari-
ables, cGA only needs to keep the proportion of ones, a

578

10
2

10
4

10
6

10
8

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Problem size, l

M
em

or
y

re
qu

ire
m

en
t (

by
te

s)

Compact GA
Generation−wise GA

Figure 1: Comparison of memory-requirement es-
timation for compact genetic algorithm and sim-
ple generation-wise genetic algorithm. Memory re-
quirement of cGA scales as Θ(�) as opposed to a
simple GA which scales as Θ(�1.5).

finite set of n numbers that can be stored in log2 n for each
of the � genes. That is, using cGA we reduce the memory
requirements from (Θ(n · �)) to (Θ(� log2 n)) to represent a
population.

With cGA, when the population size is less than four bil-
lion, the probability of each variable can be represented by
an unsigned integer (four bytes). Neglecting the memory
required to generate random numbers, fitness values of two
sampled individuals, etc., the two largest memory require-
ments for cGA are: (1) Probability vector: 4 ∗ � bytes, and
(2) sampling two individuals: 2∗�/8 = �/4 bytes. Therefore,
the total memory required to store the probability vector
and to sample two candidate solutions is given by

μcGA = 4 ∗ � + �/4 =
17

4
· �. (5)

In contrast, simple generation-wise GA implementations
would require: (1) Parent population: n · �/8 bytes, (2)
Parent fitness: 4n bytes, (3) Mating pool: 4n bytes, (4) Off-
spring population: n · �/8 bytes, and (4) Offspring fitness:
4n bytes. The above estimation assumes that parent and
offspring population and their fitness values are stored. The
selection procedure requires only the index of the selected
parents to be stored. Therefore, the simple GA implemen-
tation would require a total memory of

μGA =
n · �
4

+ 16n (6)

From the population-sizing model (Equation 2), assuming
no exogenous noise, the total memory requirement for the
simple GA would be

μGA =

√
π

8
�1.5 log � + 8

√
π · � log �. (7)

The memory-requirement estimates for cGA and simple
GA are compared in Figure 1, which shows that cGA is
highly memory-efficient than a simple GA, especially for
large problems. For example, the memory requirements for
solving a 225 (32-million) bit OneMax problem with a popu-
lation size of 217 (131,072) cGA is a little over 128 megabytes
in contrast to about 700 gigabytes for simple GA.

3.3 Computational Efficiency
via Parallelization

We parallelized cGA using a master-slave process with
message passing interface (MPI). As illustrated in figure 2,
the probability vector is distributed across a number of pro-
cessors and each processor—including the master—is re-
sponsible for sampling and updating a part of the probability
vector. That is, with np processors, each processor contains
�/np probability vectors, with the master containing proba-
bilities of variables 1 through �/np, the first slave processor
containing probabilities of variables �/np +1 through 2�/np,
and the (np −1)th slave containing probabilities of variables
(np −1) · �/np +1 through �. Along with computational effi-
ciencies, distributing the probability vector across multiple
processors reduces the memory requirements per processor
further to μcGA = 17

4
· �

np
.

Each processor samples a part of the candidate solution
by sampling the probabilities of variables and send the sam-
pled solutions to the master processor. Therefore, at each
cGA iteration there is one synchronization step where the
partial candidate solutions are collected from all slave pro-
cessors and combined in the master. The sampled solutions
are then evaluated and the results of the evaluations are
broadcasted to all the processors to be used for updating
the probabilities. The probability updates are performed in
parallel across different processors, with each processor up-
dating probabilities of those variables that it contains. Dis-
tributing sampling and updating of probability vectors as
described above, we minimize the communication between
processors.

With the parallelization, we obtain linear speedup with
the number of processors. Moreover, since the sampling
and updating steps of cGA scales linearly with the prob-
lem size, and the total number of cGA iterations also scales
linearly with the problem size, the computational time of
cGA scales quadratically with the problem size. That is,
when the problem size is doubled, we need to four-fold in-
crease in the number of processors to solve the problem in
the same time.

While the parallelization significantly enhances the effi-
ciency of cGA, the computational efficiency can be further
enhanced with the use of a number of efficiency enhance-
ments including vectorization. Specifically, we concentrate
on the following computationally costly steps of cGA: (1)
the pseudo random number generation, (2) sampling two
individuals from the probabilities, and (3) updating of the
probabilities. Among these, as verified with profiling tools,
most of the time is spent on the random number genera-
tion. For example, for solving 220 (million) binary variable
problem with a population size of 215, requires about 247

calls to the pseudo random number generator. Therefore,
we first optimized the pseudo-random number generator and
developed a vectorized version of mersenne twister [15] us-
ing vector (single input multiple data, or SIMD) instruction
sets, specifically Altivec for IBM PowerPC, G4, and G5 pro-
cessors, and Intel’s SSE2 for Intel and AMD processors.1

Using vectorization, instead of one random number stream
per processor, we generate four independent streams of ran-

1More information can be found at http://
developer.apple.com/hardware/ve/tutorial.html,
and http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/24592.pdf

579

Figure 2: Schematic illustration of the parallelized SIMD-based compact genetic algorithm.

dom numbers per processor. Similarly, we also vectorize the
sampling and updating of the probabilities and thus sam-
ple four bits at a time and update four probabilities at a
time. Vectorizing the random number generation, probabil-
ity sampling and updating provides a speedup of 4 over the
non-vectorized implementation as shown in Figure 3.

To maximize the efficiency of cGA, we also optimized cGA
operations in each processor using mostly bitwise operators,
table lookup (for example, by pre-counting 16-bit unita-
tion values), avoiding divisions, avoiding function calls, and
mostly integer operations. For example, we precompute the
unitation values (sums of bits) by pre-computing 16-bit uni-
tation values. We also precompute the mapping the masks
required to retrieve a specific bit from a word (4 bytes). In
order to avoid divisions and to ensure integer-only opera-
tions, we restrict the population size to be a power of 2.
Ensuring this restriction enables us to represent the prob-
ability vector as an integer and also allows us to use inte-
ger operations for sampling the probabilities. The resultant
fully-parallelized, vectorized cGA is highly efficient—both
computationally and memory-requirement wise—and there-
fore enable routine solutions to problems with millions to
billions of variables.

4. TEST PROBLEM
Our approach in testing cGA and other search methods

is to consider problems from a design envelope perspective
and to follow a Cartesian decomposition of different facets of
problem difficulty [7]. Since cGA treats the variables to be
independent of each other, we consider a class of additively-
separable problems where the variables are independent of
each other. The particular facet of problem difficulty we con-
sider is the presence of exogenous noise in fitness evaluation.
Specifically we consider the blind, noisy OneMax problem,
where the objective is to maximize an outwardly unknown
function of a binary string of fixed length �—inwardly eval-
uated as the number of ones in a binary string—in the pres-

ence of additive Gaussian noise of specified variance, σ2
N .

f(x) =

�∑
i=1

xi + N (
0, σ2

N

)
. (8)

As the function is unknown to the solver, successive sam-
ples are required for subsequent improvement, but even so,
without noise, the OneMax is a problem that can be solved
easily by a variety of GAs and simple hillclimbers; however,
with noise set as a significant fraction of the deterministic
variance of the problem, the blind, noisy OneMax poses a
significant challenge to GAs and hillclimbers alike, because
the noise makes it difficult to decide correctly between dif-
ferent samples. More difficult problems from the standpoint
of exogenous noise will have higher variance values, and in
this study we have considered exogenous noise that varies
from 10−5 to 16 times the fitness variance.

Note that limiting ourselves to a class of problems where
the variables are independent of each other does not mean
that they are particularly easy. Indeed, in the presence of ex-
ogenous noise which equals 10% of the deterministic fitness
variance, we make mistakes on roughly 10% of the variables.
For example, an exogenous-noise variance set to 10% of the
deterministic fitness variance for a 230 (1.1 billion) variable
problem, leads to mistakes on 27 million variables at each
sampling. Moreover, elsewhere it has been demonstrated
that certain class of variable interactions (also known as
epistasis) manifest themselves as exogenous noise [7, 23].

In order to efficiently evaluate sampled solutions we par-
allelize the function evaluations across processors. That is
each processor evaluates a part of the fitness of an individual
and send the partial evaluation to the master. The master
collects the partial evaluations for all the processors and
combines them into a complete fitness values of the sam-
pled solutions. These fitness values are then broadcast to
all the processors. In each processor, we further enhance
the efficiency of the fitness computation by precomputing
16-bit unitation values and using table-lookup for adding
summation of 16 bits at a time.

580

10
2

10
4

10
6

10
1

10
2

10
3

10
4

10
5

Problem size (Number of bits)

P
op

ul
at

io
n

si
ze

, n

Theory
compact GA

(a) Population size

10
2

10
4

10
6

10
1

10
2

10
3

10
4

Problem size (Number of bits)

C
on

ve
rg

en
ce

 ti
m

e,
 t c

Theory
compact GA

(b) Convergence time

Figure 4: Population size and convergence time required by cGA as a function of the problem size. The results
demonstrate the validity of the facetwise models for population sizing and convergence time (Equations 2
and 3). In both cases, results follow theoretical predictions where population size scales as Θ(�0.5 log �) and the
convergence time scales as Θ(�0.5). The number of experimental trials of each run was reduced with increased
problem size with up to � = 218 receiving 50 trials, up to � = 223 receiving at least 10 trials.

5. RESULTS AND DISCUSSION
Before we present the results, we provide details of two

local-search methods used to compare the performance of
cGA. We then present the scalability of population size and
run duration required by cGA as a function of problem size.
We also compare the scalability of cGA with those of the
local-search methods on both deterministic and noisy One-
Max problems.

5.1 Sequential and Random Hillclimbers
To compare the scalability of cGA, we consider two local

search methods: (1) Sequential hillclimber (sHC), and (2)
random hillclimber (rHC). In sHC, we start with a randomly
generated solution and then the variables of the search prob-
lem are flipped sequentially and the mutation that yields the
best improvement in fitness is retained [22]. In the presence
of exogenous noise, after each mutation we use the average
of multiple samples of the fitness in deciding if the mutation
should be retained or not. The number of samples of fitness
required is given by [8, 22]:

ns = min{1, 2cσ2
N}, (9)

where ns is the number of independent fitness samples, and
c is the square of the ordinate of a one-sided standard Gaus-
sian deviate at a specified error probability α. As with cGA,
for sHC we use α = 1/�.

Since the initial solution is evaluated ns times and after
that for each of the � variables, an individual created after
flipping the binary variable is evaluated ns times, the total
number of function evaluations required for the sHC is given
by

nfe,sHC = ns (� + 1) ≈ c

2

(
1 +

σ2
N

σ2
f

)
� (� + 1) . (10)

Similar to sHC, in random hillclimber (rHC), we start
with a randomly generated solution. However, unlike sHC,
in rHC a variable is selected according to uniform random
distribution and mutated. If the mutated solution has a

higher fitness than the original one, the mutation is retained.
If not, the mutation is discarded and the process continues.
For the OneMax problem, the first-hitting time of the global
optimum via rHC is given by � log(�) [17]. However, the
presence of exogenous noise introduces error in the decision
making during every mutation step. The probability of cor-
rectly deciding, pdm, during a mutation step is given by the
decision-making model [8]:

pdm = φ

(
1

σN

)
. (11)

The probability of making correct decisions on majority of
the � bits, which is given by

Ps =

�∑
i=�(1−ε)

(
�
i

)
pi

dm (1 − pdm)�−i (12)

where 1− ε represents the minimum proportion of variables
for which the decision-making has to be accurate. Using
the above equation, we can obtain the first-hitting time to
obtain the global optimum with rHC as:

nfe,rHC = � log � · 1

Ps
. (13)

5.2 Empirical Results
We ran the cGA experiments on a 128- and 256- processor

partition of 1280-processor Turing cluster which consists of
1,280 Apple G5 Xserve. Since we restricted the population
size to be a power of 2, in order to determine the minimum
population size, we doubled the population size till the cGA
converged to a population with least �− 1 out of � variables
set to their optimal values. For problems with less than or
equal to 218 (over 256,000) bits, the results are averaged
over 50 independent runs. For problems with greater than
218 bits, but less than or equal 225 (over 32 million) bits, the
results are averaged over 10 independent runs. For problems
with more than a million variables, where its very expensive
to run multiple runs with different population sizes, we fixed

581

10
6

10
7

10
8

10
9

10
−2

10
−1

10
0

10
1

10
2

Problem size, l

cG
A

 it
er

at
io

n
tim

e
(s

)

Un−vectorized cGA: 7x10−8*l

Vectorized cGA: 1.5x10−8*l

Figure 3: Comparison of execution times for both
non-vectorized and vectorized parallel cGA imple-
mentations. We used 32 processors and ran cGA
for one hour of wall-clock time. The number of cGA
iterations were roughly halved as the problem size
increased. That is, with 220 variables, we used 6
million cGA iterations for the vectorized implemen-
tation, and with 221 variables we used 3 million cGA
iterations. The results show that as the problem
size is increased, we need to increase the computa-
tional time four times to perform an equal number
of cGA iterations, validating our earlier assessment
on the scalability of parallelized cGA. The results
are averaged over 10 independent runs.

the population size as specified by the model (Equation 2).
We then determine the total number of function evaluations
required by cGA with that population size to converge to
the optimal solution.

We start by demonstrating the population-sizing and
convergence-time scaling of cGA for the OneMax problem
in Figure 4. As shown in the figure, the results follow the-
oretical predictions (see Equations 2 and 3) and that the
population size indeed scales as Θ(�0.5 log �) and the con-
vergence time scales as Θ(�0.5). We then compare the to-
tal number of function evaluations required by the compact
GA, sequential hillclimber, and the random hillclimber to
successfully solve the OneMax problems in Figure 5. Again
the results follow theoretical predictions and the cGA and
rHC scale as Θ(� log �) and sHC scales as Θ(�). More impor-
tantly, the memory and computational efficiencies enables us
to use cGA to successfully solve problems with over 8 million
variables to optimality.

Now we consider the scalability of cGA, sHC, and rHC
on the noisy OneMax problem with the exogenous noise
variance of 10−5th of the deterministic variance. That is,
σ2

N = 10−5σ2
f = 0.25 × 10−5 · �. The results comparing the

scalability are shown in Figure 6. Once again, the results
follow theoretical predictions (see Equations 4, 10, and 13).
Moreover the results clearly show that even with the addi-
tion of a very small exogenous noise, the rHC is not able to
solve problems with greater than 215 (32,766) variables. On
the other hand, sHC while being more efficient than cGA for
smaller problems, for problems larger than 219 (half a mil-
lion) variables, it becomes increasingly less efficient. More-
over, the memory and computational efficiencies enables us

10
2

10
4

10
6

10
8

10
2

10
4

10
6

10
8

10
10

Problem size (Number of bits)

N
um

be
r

of
 fi

tn
es

s
ev

al
ua

tio
ns

Theory
compact GA
Sequential hillclimber
Random hillclimber

Figure 5: Scalability of compact genetic algorithm
(cGA), sequential hillclimber (sHC), and random
hillclimber (rHC) on the OneMax problem with no
exogenous noise. The results follow theoretical pre-
dictions and the cGA and rHC scale as Θ(� log �) and
the sHC scales as Θ(�). As expected, both sHC and
rHC are more efficient than cGA in solving the de-
terministic OneMax problem. The number of ex-
perimental trials of each run of the cGA and rHC
were reduced with increased problem size with up
to � = 218 receiving 50 trials, up to � = 223 receiving
at least 10 trials.

to use cGA to successfully solve the blind, noisy OneMax
problem with over 8 million variables to optimality.

Finally we demonstrate the ability of the cGA to solve
problems with several million to billions of variables. Specif-
ically we consider the blind, noisy OneMax problem with the
variance of the additive exogenous noise set to a tenth of the
deterministic variance. That is, σ2

N = 0.1σ2
f = 0.025�. Note

that this noise level is significantly high to disrupt local-
search and other non-population oriented methods. For
example, the exogenous noise variance for a 225 (over 32
million) variable problem is about 8.4 × 105. As in ear-
lier cases, the population sizes of cGA were first verified for
problems with 220 and less variables and for larger problems
set according to theoretical predictions of the gambler’s ruin
model (Equation 2). For sHC, the number of fitness samples
used to estimate solution quality is empirically determined
using bisection method and follows theoretical predictions
(Equation 9) The number of experimental trials of each run
of the cGA were reduced with increased problem size with
up to � = 218 receiving 50 trials, up to � = 223 receiving
at least 2 trials, and larger problem instances receiving one
trial.

We show the scalability of cGA on the blind, noisy One-
Max in Figure 7. The first set of runs (full convergence)
compares cGA and a sequential hillclimber (sHC) where the
number of function evaluations required to solve the noisy
OneMax problem to optimality is shown for different prob-
lem sizes. For cGA and sHC, the theoretical and empirical
results both track nicely, but with the resources available, we
were able to run the cGA to 225 (over 32-million) variables,
but only 214 (16,384) variables for sHC. With available re-
sources rHC was not able to solve even the smallest problem
instances. Again as predicted by facetwise models, the cGA
scales as Θ(� log �). To the best of our knowledge, this is

582

10
2

10
4

10
6

10
2

10
4

10
6

10
8

10
10

Problem size (Number of bits)

N
um

be
r

of
 fi

tn
es

s
ev

al
ua

tio
ns

σ2
N
/σ2

f
 = 10−5

Theory
compact GA
Sequential hillclimber
Random hillclimber

Figure 6: Scalability of cGA, sHC, and rHC on the
noisy OneMax problem with exogenous noise vari-
ance equal to 10−5th of the deterministic variance.
That is σ2

N = 10−5σ2
f = 0.25 × 10−5 · �. Even with a

very small noise, the rHC is not able to solve prob-
lems with greater than 215 (32,766) variables. On
the other hand, sHC while being more efficient than
cGA for smaller problems, for problems larger than
219 (half a million) variables, it becomes increasingly
less efficient. The number of experimental trials of
each run of the cGA and rHC were reduced with
increased problem size with up to � = 218 receiving
50 trials, up to � = 223 receiving at least 10 trials.

the first time any GA has been used to successfully solve
a class of boundedly-difficult problems with over 32-million
variables.

To move on to a billion bits, we performed a set of fixed-
proportion tests on cGA up to 230 (1.1-billion) variables.
Here the criterion of convergence was relaxed, requiring that
each variable reach a fixed-proportion correct (pi = 0.501).
We note that for the fixed-proportion runs, the population
size was sized according to the gambler’s ruin model. For
example, for the 230-bit problem, the population size used
was 220 (over 1 million). We stress that the reason for relax-
ing the convergence criteria was the limited computational
resources available, and not the algorithmic limitation. Nev-
ertheless, the fixed-proportion runs required Θ(� log �) num-
ber of function evaluations as did the full-convergence re-
sults, thereby demonstrating scalability and the first suc-
cessful billion-bit genetic algorithm ever run.

6. SUMMARY AND CONCLUSIONS
This paper presents an highly-efficient, fully parallelized

compact genetic algorithm for solving large-scale problems
with millions to billions of variables. A number of memory
and computational efficiencies, including vectorization using
SIMD instructions are used to enable rapid solutions to very
large-scale problems. The scalability of the parallel cGA is
tested on a noisy OneMax problem with exogenous noise
variance set up to a tenth of the deterministic variance. We
show that using a modest 128- and 256- processors, cGA can
solve problems with over 33 million variables to optimality
and with a relaxed convergence, cGA can successfully solve
problems with 1.1 billion variables.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
2

10
4

10
6

10
8

10
10

Problem size (Number of bits)

N
um

be
r

of
 fi

tn
es

s
ev

al
ua

tio
ns

σ2
N
/σ2

f
 = 0.1

Theory
cGA: Full convergence
cGA: Fixed proportion
sHC: Full convergence

Figure 7: The figure presents computational results
from two sets of experiments on a blind, noisy One-
Max problem. In the results labeled full conver-
gence, average total number of fitness evaluations
is plotted versus the problem size � for runs with
sHC and cGA. In both cases, results follow theoret-
ical predictions (see Equations 4 and 10) with the
sHC and cGA requiring Θ(�2) and Θ(� log �) number
of function evaluations, respectively. The rHC on
this problem failed to converge for even the small-
est problem instance. The number of experimental
trials of each run was reduced with increased prob-
lem size with up to � = 218 receiving 50 trials, up to
� = 223 receiving at least 2 trials, and larger prob-
lems receiving one trial. In a set of fixed propor-
tion runs the cGA is run until all probability values
in the vector are greater than 0.501. Like the full
convergence CGA result, the fixed proportion result
scales as Θ(� log �) as predicted theoretically, and this
level of convergence strongly predicts accurate full
convergence. As such, these results represent the
first time any genetic algorithm has ever been run
successfully at a problem size over a billion bits.

This effort is the first step towards developing a scal-
able genetic algorithm that can routinely solve boundedly-
difficult problems. Existing theory confirmed by bounding
experiment already tells us how to extend these results in
which noise is the primary difficulty to those where mod-
ularity, overlap, or hierarchy come into play [26] and ef-
forts are currently underway towards this goal. In this way,
these results are a building block to practical and effective
billion-variable optimization in the increasingly large, com-
plex problems of science. As science pushes to the frontiers
of the small, the large, the living, and the societal, the need
to tackle extraordinarily large search and optimization prob-
lems will become increasingly acute. These results foretell
a time when such problems can be tackled routinely, confi-
dently, and well.

583

Acknowledgments
The empirical runs for this paper were conducted on the
Turing cluster at Computational Science and Engineering
at the University of Illinois.

This work was sponsored by the Air Force Office of Scien-
tific Research, Air Force Materiel Command, USAF, under
grant FA9550-06-1-0096, the National Science Foundation
under ITR grant DMR-03-25939. The U.S. Government
is authorized to reproduce and distribute reprints for gov-
ernment purposes notwithstanding any copyright notation
thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of AFOSR, NSF, or the U.S. Govern-
ment.

7. REFERENCES
[1] S. Baluja. Population-based incremental learning: A method of

integrating genetic search based function optimization and
competitive learning. Technical Report CMU-CS-94-163,
Carnegie Mellon University, 1994.

[2] S. J. Benson, L. C. McInnes, and J. J. More. A case study in
the performance and scalability of optimization algorithms.
ACM Transactions on Mathematical Software, 27(3):361–376,
2001.

[3] B. Carter and K. Park. Scalability problems of genetic search.
Proceedings of the 1994 IEEE International Conference on
Systems, Man, and Cybernetics, 2:1591–1596, 2004.

[4] K. Deb and K. Pal. Efficiently solving: A large-scale integer
linear program using a customized genetic algorithm.
Proceedings of the 2004 Genetic and Evolutionary
Computation Conference, pages 1054–1065, 2004.

[5] K. Deb, A. R. Reddy, and G. Singh. Optimal scheduling of
casting sequence using genetic algorithms. Materials and
Manufacturing Processes, 18(3):409–432, 2003.

[6] D. E. Goldberg. Genetic algorithms in search optimization
and machine learning. Addison-Wesley, Reading, MA, 1989.

[7] D. E. Goldberg. Design of innovation: Lessons from and for
competent genetic algorithms. Kluwer Academic Publishers,
Boston, MA, 2002.

[8] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms,
noise, and the sizing of populations. Complex Systems,
6:333–362, 1992. (Also IlliGAL Report No. 91010).

[9] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic
algorithms: Motivation, analysis, and first results. Complex
Systems, 3(5):493–530, 1989. (Also IlliGAL Report No. 89003).

[10] J. Gondzio and A. Grothey. Direct solution of linear systems of
size 109 arising in optimization with interior point methods.
Proceedings of the Parallel Processing and Applied
Mathematics (PPAM 2005), pages 513–525, 2006.

[11] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller. The
gambler’s ruin problem, genetic algorithms, and the sizing of
populations. Evolutionary Computation, 7(3):231–253, 1999.
(Also IlliGAL Report No. 96004).

[12] G. Harik, F. Lobo, and D. E. Goldberg. The compact genetic
algorithm. Proceedings of the IEEE International Conference
on Evolutionary Computation, pages 523–528, 1998. (Also
IlliGAL Report No. 97006).

[13] J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, MI, 1975.

[14] L.-D. Lang and L. T. Biegler. Large-scale nonlinear
programming with cape-open compliant interface. Chemical
Engineering Research and Design, 83(A6):718–723, 2005.

[15] M. Matsumoto and T. Nishimura. Mersenne twister: A
623-dimensionally equidistributed uniform pseudorandom
number generator. ACM Transactions on Modeling and
Computer Simulation, 8(1):3–30, 1998.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

[16] B. L. Miller and D. E. Goldberg. Genetic algorithms,
tournament selection, and the effects of noise. Complex
Systems, 9(3):193–212, 1995. (Also IlliGAL Report No. 95006).

[17] H. Mühlenbein. How genetic algorithms really work: Mutation
and hillclimbing. Parallel Problem Solving from Nature II,
pages 15–26, 1992.

[18] H. Mühlenbein and G. Paaß. From recombination of genes to
the estimation of distributions I. Binary parameters. Parallel
Problem Solving from Nature, 4:178–187, 1996.

[19] S. S. Nielsen and S. A. Zenios. Scalable parallel benders
decomposition for stochastic linear programming. Parallel
Computing, 23:1069–1088, 1997.

[20] S. Oh and S. Y. Shin. A parallel algorithm for large-scale
linear programs with a special structure. Proceedings of IEEE
Scalable High Performance Computing Conference, pages
749–755, 1994.

[21] K. Sastry. Evaluation-relaxation schemes for genetic and
evolutionary algorithms. Master’s thesis, University of Illinois
at Urbana-Champaign, Urbana, IL, 2001. (Also IlliGAL
Report No. 2002004).

[22] K. Sastry and D. E. Goldberg. Let’s get ready to rumble:
Crossover versus mutation head to head. Proceedings of the
2004 Genetic and Evolutionary Computation Conference,
2:126–137, 2004. Also IlliGAL Report No. 2004005.

[23] K. Sastry, P. Winward, D. E. Goldberg, and C. F. Lima.
Fluctuating crosstalk as a source of deterministic noise and its
effects on ga scalability. Applications of Evolutionary
Computing EvoWorkshops2006: EvoBIO, EvoCOMNET,
EvoHOT, EvoIASP, EvoInteraction, EvoMUSART,
EvoSTOCK, pages 740–751, 2006. (Also IlliGAL Report No.
2005025).

[24] Y. Semet and M. Schoenauer. An efficient memetic,
permutation-based evolutionary algorithm for real-world train
timetabling. Proceedings of the 2005 Congress on
Evolutionary Computation, pages 661–667, 2005.

[25] D. Yang and S. A. Zenios. A scalable parallel interior point
algorithm for stochastic linear programming and robust
optimization. Computational Optimization and Applications,
7:143–158, 1997.

[26] T.-L. Yu. A matrix approach for finding extrema: Problems
with modularity, hierarchy, and overlap. PhD thesis,
University of Illinois at Urbana-Champaign, Urbana, IL, 2006.

584

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

