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ABSTRACT
It has been shown that model building in the hierarchical
Bayesian optimization algorithm (hBOA) can be efficiently
parallelized by randomly generating an ancestral ordering
of the nodes of the network prior to learning the network
structure and allowing only dependencies consistent with
the generated ordering. However, it has not been thoroughly
shown that this approach to restricting probabilistic models
does not affect scalability of hBOA on important classes
of problems. This paper demonstrates that although the
use of a random ancestral ordering restricts the structure of
considered models to allow efficient parallelization of model
building, its effects on hBOA performance and scalability
are negligible.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and
Search; G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms, Performance

Keywords
Hierarchical Bayesian optimization algorithm, evolutionary
algorithms, parallelization, efficiency enhancement, decom-
posable problems, probabilistic models, Bayesian networks.

1. INTRODUCTION
The hierarchical Bayesian optimization algorithm

(hBOA) [26, 25, 28] can solve nearly decomposable and
hierarchical problems in a quadratic or subquadratic
number of function evaluations. Nonetheless, low-order
polynomial scalability may still be insufficient to solve
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problems with a large number of decision variables or large
order of interactions. That is why a number of efficiency
enhancement techniques have been proposed that address
the most important computational bottlenecks of hBOA:
fitness evaluation and model building [21, 38, 16, 17, 33,
35, 39].

One of the most promising approaches to enhancing the
efficiency of model building in hBOA is to parallelize the
learning of model structure [21, 19, 17, 18], which is the most
expensive part of model building. However, efficient paral-
lelization of model building represents a challenging problem
because straightforward approaches to parallelizing model
building necessitate heavy communication between the com-
putational nodes [21, 19, 20]. Nonetheless, if one restricts
the class of models by generating an ancestral ordering of the
variables and then considering only models consistent with
the generated ordering, model building can be parallelized
with nearly no communication between the computational
nodes and nearly linear speedups of model building can be
obtained even for large numbers of processors [21, 19].

While it has been shown that the above approach enables
efficient utilization of computational resources [21, 19, 22], it
has not been investigated thoroughly how it affects scalabil-
ity of hBOA on important classes of problems. The purpose
of this paper is to test hBOA scalability with and without
the modification that restricts models according to a random
topological ordering of variables generated prior to model
construction. As test problems, we consider standard nearly
decomposable and hierarchical problems, including concate-
nated traps, hierarchical traps, and Ising spin glasses.

The paper is organized as follows. Section 2 outlines
hBOA and its basic components. Section 3 describes the
considered method for parallelizing model construction in
hBOA. Section 4 provides and discusses experimental re-
sults. Finally, section 5 summarizes and concludes the pa-
per.

2. HIERARCHICAL BAYESIAN
OPTIMIZATION ALGORITHM (HBOA)

This section outlines the hierarchical Bayesian optimiza-
tion algorithm and its components. Additionally, the section
briefly discusses efficiency enhancement of hBOA and other
estimation of distribution algorithms (EDAs) [16, 30, 34].
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2.1 Basic hBOA Algorithm
The hierarchical Bayesian optimization algorithm

(hBOA) [26, 25] evolves a population of candidate solutions
represented by fixed-length strings over a finite alphabet.
Here we assume that candidate solutions are represented by
n-bit binary strings. The population is initially generated
at random according to a uniform distribution over all n-bit
strings. Each iteration starts by selecting a population of
promising solutions using any common selection method of
genetic and evolutionary algorithms, such as tournament
and truncation selection. We use binary tournament selec-
tion without replacement. New solutions are generated by
building a Bayesian network with decision trees [3, 8] for the
selected solutions and sampling the built Bayesian network.
To ensure useful diversity maintenance, the new candidate
solutions are incorporated into the original population
using restricted tournament replacement (RTR) [11]. The
run is terminated when termination criteria are met.

2.2 Bayesian Networks with Decision Trees
To model promising solutions and sample new candi-

date solutions, hBOA uses Bayesian networks with decision
trees [3, 8]. A Bayesian network [15, 23] consists of two com-
ponents: structure and parameters. The structure consists
of a directed acyclic graph where the nodes correspond to
variables (string positions) and the edges represent direct
conditional dependencies. A Bayesian network represents
the joint probability distribution

p(X) =
n−1Y
i=0

p(Xi|Πi), (1)

where X = (X0, . . . , Xn−1) is a vector of all the variables in
the problem; Πi is the set of parents of Xi in the network
(the set of nodes from which there exists an edge to Xi);
and p(Xi|Πi) is the conditional probability of Xi given its
parents Πi.

To represent conditional probabilities efficiently, hBOA
uses decision trees. For each variable Xi, there is a spe-
cial decision tree Ti that encodes conditional probabilities
p(Xi|Πi); for n variables, there are n decision trees. Each
internal node of the decision tree Ti is labeled by a variable
Xj where j �= i. Children of a node labeled by Xj corre-
spond to disjoint subsets of the potential values of Xj ; for
each value of Xj , there is one child corresponding to this
value. Each traversal of a decision tree Ti for Xi thus corre-
sponds to a constraint on the values of some other variables.
Each leaf node of Ti then stores the probabilities of Xi given
the constraint defined by the traversal of Ti that ends in this
leaf.

For the binary alphabet, there are two children of any
internal node (one child corresponds to a 0, whereas the
other one corresponds to a 1) and only one probability must
be stored in each leaf because p(Xi = 0|Πi = πi) + p(Xi =
1|Πi = πi) = 1 for any instance πi of Πi.

2.3 Learning and Sampling Bayesian
Networks

Learning a Bayesian network with decision trees consists
of two steps [13]: (1) learn the structure, and (2) learn the
parameters (conditional probabilities).

To estimate the parameters of a Bayesian network with
decision trees, hBOA uses the maximum likelihood estimate

of the probabilities in the leaves of all decision trees [13].
Consider a decision tree Ti for Xi and a leaf in this decision
tree that specifies a condition C (based on the traversal).
Then, the maximum likelihood estimate of p(Xi = xi|C)
where xi is a potential value of Xi, is given by

p(Xi = xi|C) =
m(Xi = xi, C)

m(C)
, (2)

where m(Xi = xi, C) denotes the number of instances with
Xi = xi that satisfy C, and m(C) denotes the number of
instances that satisfy C.

To learn the structure of a Bayesian network with deci-
sion trees, a simple greedy algorithm is used [13, 3]. The
greedy algorithm starts with an empty network, which is
represented by single-node decision trees. Each iteration
splits one leaf of any decision tree. The split is selected in
order to maximize the improvement of network quality. The
algorithm terminates when no more improvement is possi-
ble. There are several approaches to measuring quality of
network structures, for example, one can use the Bayesian-
Dirichlet metric with likelihood equivalence (BDe) [4, 13,
3]. In this work, we use the BDe metric with a model-
complexity penalty as described in [25, 28, 8].

Splitting a leaf may increase the number of parents of the
corresponding variable, depending on whether a split on this
variable has already been made in this tree. The correspond-
ing Bayesian network structure is implicitly defined by the
set of decision trees. For more details on learning BNs with
decision trees, see [3, 8, 25].

The sampling of a Bayesian network with decision trees
can be done using probabilistic logic sampling [14], where
the ancestral ordering of the variables is first determined,
in which each variable is preceded by its parents. Then,
the values of all variables are generated according to the
ancestral ordering.

The asymptotic time complexity of building the network
structure dominates the overall complexity of the variation
operator that consists of building and sampling a BN [25].
A similar behavior can be observed in other EDAs that use
complex probabilistic models, for example, in the extended
compact genetic algorithm (ECGA) [10, 37]. If model build-
ing is the computational bottleneck, building the network
structure is thus the most important component to tackle
with efficiency enhancement techniques.

2.4 Efficiency Enhancement Techniques for
hBOA and Other EDAs

To solve large and complex problems, it is necessary to use
scalable optimization techniques. Nonetheless, even when
the time complexity of an algorithm grows only quadrati-
cally with the number of decision variables, the computation
may become impractical for extremely large problems with
thousands of decision variables and problems for which the
evaluation of solution quality is computationally expensive.
That is why it is important to develop efficiency enhance-
ment techniques, which provide additional mechanisms for
speeding up hBOA and other evolutionary algorithms [9, 36,
17, 25, 35, 39]. From the practitioner’s point of view, while
scalability of optimizers addresses the transition from in-
tractability to tractability, efficiency enhancement techniques
address the transition from tractability to practicality [9].

There are two potential computational bottlenecks of
hBOA and other EDAs: (1) fitness evaluation and (2) model
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building. Efficiency enhancement techniques that address
the above bottlenecks in hBOA can be classified into the
following categories [25]:

1. Parallelization.

2. Hybridization.

3. Time continuation.

4. Fitness evaluation relaxation.

5. Prior knowledge utilization.

6. Incremental and sporadic model building.

7. Learning from experience.

This paper addresses parallelization; specifically, we ana-
lyze how parallelization of model building in hBOA affects
hBOA performance and scalability.

3. PARALLELIZATION OF MODEL
BUILDING IN HBOA

There are several potential approaches to parallelization
of the greedy algorithm for learning the Bayesian network
structure [19, 17]. Probably the most efficient approach to
parallelization is to distribute the nodes of the Bayesian net-
work and let each processor identify parents of the nodes
assigned to this processor. However, since the network must
remain acyclic at all times, a straightforward approach to
implementing this method will necessitate communication
between all processors after adding a new parent to any
node of the network, which will result in a highly inefficient
use of parallel computer architectures.

To tackle the problem of heavy interprocessor communica-
tion, Ocenasek and Schwarz [21, 22, 20] proposed to generate
a random ancestral ordering of the variables in the network
before learning the network structure and to allow only net-
work structures that are consistent with the generated or-
dering so that the parents of each variable are restricted
to the variables that precede this variable in the generated
ordering (see Figure 1). A new ancestral ordering is gener-
ated in each generation of hBOA to ensure that the bias on
model structures changes over time. In this manner, the set
of parents of each variable can be determined independently
of the set of parents of any other variable and the different
processors thus do not need to exchange any information
until the model is finalized.

In addition to minimizing the communication between
processors, it is important to ensure that the computational
load on each processor is approximately equal. Since the
computational complexity of processing each variable grows
approximately linearly with the number of potential parents
of the variable [21], it is best to assign nodes to processors
so that each processor contains nodes with the same total
number of potential parents. For example, two nodes can
be assigned to each processor, where ith processor will be
given the ith node from the beginning of the ancestral or-
dering and the ith node from the end of the ordering [21].

While restricting the models to ensure their consistency
with the generated ancestral ordering ensures an efficient use
of parallel computers [21, 19, 22], it also restricts the class
of considered models analogically to the K2 learning algo-
rithm [4, 13]. The models can thus be expected to represent

X1

X2 X3

X0X4

X5

(a) Consistent network.

X1

X2

X3

X0

X4

X5

(b) Inconsistent network.

Figure 1: Examples of consistent and in-
consistent networks for the ancestral ordering
(X1, X3, X2, X4, X0, X5). The dependencies inconsis-
tent with the ancestral ordering are shown with
dashed lines.

the actual distribution of promising solutions less accurately
and the performance of hBOA may be affected, especially for
problems with complex structure. The next section verifies
the effects of the aforementioned restriction of model struc-
ture on hBOA performance on several important classes of
nearly decomposable and hierarchical problems.

4. EXPERIMENTS
We have performed experiments on several common

nearly decomposable and hierarchical problems, including
concatenated deceptive problems of order 3 and 5, hierar-
chical traps, and the problem of finding ground states of 2D
±J Ising spin glasses. The primary goal of experiments is
to analyze the effects of modifying the model building algo-
rithm according to the last section on hBOA performance;
specifically, we study scalability, that is, how computational
complexity of hBOA measured by the number of evaluations
grows with problem size.

4.1 Test Problems
A brief description of the test problems follows:

(1) Dec-3: Concatenated deceptive of order 3. In dec-3 [7],
the input string is first partitioned into independent
groups of 3 bits each. This partitioning is unknown to
the algorithm, and it does not change during the run.
A 3-bit deceptive function is applied to each group of 3
bits and the contributions of all deceptive functions are
added together to form the fitness. Each 3-bit deceptive
function is defined as follows:

dec(u) =

8>><
>>:

1 if u = 3
0 if u = 2
0.8 if u = 1
0.9 if u = 0

, (3)

where u is the number of ones in the input string of 3
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bits. An n-bit dec-3 function has one global optimum
in the string of all ones and 2n/3 − 1 other local optima.
To solve dec-3, it is necessary to consider interactions
among the positions in each partition because when each
bit is considered independently, the optimization is mis-
led away from the optimum [40, 2, 29].

(2) Trap-5: Concatenated trap of order 5. Trap-5 can be
defined analogically to dec-3, but instead of 3-bit groups,
5-bit groups are considered. The contribution of each
group of 5 bits is computed as [1, 6]

trap5(u) =

j
5 if u = 5
4 − u otherwise

, (4)

where u is the number of ones in the input string of
5 bits. An n-bit trap-5 has one global optimum in the
string of all ones and 2n/5−1 other local optima. Trap-5
also necessitates that all bits in each group are treated
together, because statistics of lower order are mislead-
ing [6].

(3) hTrap: Hierarchical trap. Hierarchical traps
(hTraps) [24] cannot be tractably solved using
single-level decomposition, but can be efficiently solved
using a competent hierarchical optimizer. hTraps are
created by combining trap functions of order 3 over
multiple levels of difficulty. For hTraps, the string
length should be an integer power of 3, that is, n = 3l

where l is the number of levels.

In the variant of hTrap used in this work, on the lowest
level, groups of 3 bits contribute to the overall fitness
using a generalized 3-bit trap

trap3(u) =

j
fhigh if u = 3

flow − u flow
2

otherwise
, (5)

where fhigh = 1 and flow = 1 + 0.1/l. Note that for
these values of fhigh and flow, the optimum of the trap
is 000.

Each group of 3 bits corresponding to one of the traps
is then mapped to a single symbol on the next level;
a 000 is mapped to a 0, a 111 is mapped to a 1, and
everything else is mapped to the null symbol ’-’. The
bits on the next level again contribute to the overall
fitness using 3-bit traps defined above (see eq. 5), and
the groups are mapped to an even higher level. This
continues until the top level is evaluated that contains
3 bits total. However, on the top level, a trap with
fhigh = 1 and flow = 0.9 is applied. As a result, the
optimum of hTrap is in the string of all ones despite
the superior performance of blocks of zeros on any level
except for the top one. Any group of bits containing the
null symbol does not contribute to the overall fitness.

To make the overall contribution at each level of the
same magnitude, the contributions of traps on ith level
from the bottom are multiplied by 3i.

hTraps have many local optima, but only one global op-
timum in the string of all ones. Nonetheless, any single-
level decomposition into subproblems of bounded order
will lead away from the global optimum. That is why
hTraps necessitate an optimizer that can build solutions
hierarchically by juxtaposing good partial solutions over
multiple levels of difficulty until the global optimum if
found.

(4) Ising spin glass. A 2D Ising spin glass is arranged on
a regular 2D grid where each node i corresponds to a
spin si ∈ {+1,−1} and each edge 〈i, j〉 corresponds to
a coupling between two spins si and sj . Each edge has
a real value associated with it that defines the relation-
ship between the two connected spins. To approximate
the behavior of the large-scale system, periodic bound-
ary conditions are often used that introduce a coupling
between the first and the last element along each di-
mension. A specific set of coupling constants define a
spin-glass instance. Each possible setting of all spins is
called a spin configuration.

Given a set of coupling constants {Ji,j}, and a configu-
ration of spins C = {si} (i = 1, . . . , n), the energy can
be computed as

E(C) =
X
〈i,j〉

siJi,jsj , (6)

where the sum runs over all couplings 〈i, j〉.
Here the task is to find ground states given a set of
coupling constants, where a ground state is defined as
a spin configuration with the minimum possible energy.
Finding ground states is a challenging problem because
of the rough energy landscape and a large order of in-
teractions [12, 27, 5, 25, 32].

For each problem size, we consider 1000 random spin
glass instances where each coupling is set randomly to
either +1 or −1 with equal probabilities. All instances
with ground states were obtained from S. Sabhapandit
and S. N. Coppersmith from the University of Wiscon-
sin who identified the ground states using flat-histogram
Markov chain Monte Carlo simulations [5].

4.2 Description of Experiments
To study scalability, we consider a range of problem sizes

for each test problem. The results are then used to investi-
gate the growth of the number of function evaluations until
successful convergence to the global optimum with respect
to the problem size with and without ordering the variables
prior to model building.

For all problems and problem sizes except for spin glasses,
bisection [36] is ran to determine the minimum population
size to ensure reliable convergence to the global optimum in
30 out of 30 independent runs [30]. For spin glasses, only
5 successful runs out of 5 runs are required. Binary tour-
nament selection is used to select promising solutions. The
population of new solutions has the same size as the original
population and RTR with window size w = min{n, N/20}
is used to incorporate new solutions into the original pop-
ulation. To construct the model, we use the BDe metric
for decision trees [3] modified by subtracting a complexity
penalty term [31, 25]. A greedy network construction algo-
rithm is used to construct network structure.

For spin glasses, we also use the deterministic hill climber
(DHC) to improve all candidate solutions in the popula-
tion [25, 32]. In each iteration, DHC performs a single-bit
change on the solution that leads to the maximum improve-
ment of solution quality (maximum decrease in energy).
DHC is terminated when no single-bit flip improves solu-
tion quality and the solution is thus locally optimal.
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Figure 2: Results on dec-3.
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Figure 3: Results on trap-5.

4.3 Results
Figures 2 and 3 show the growth of the number of eval-

uations with problem size for the two separable problems
of bounded difficulty: dec-3 and trap-5. The growth of the
number of evaluations on dec-3 and trap-5 is also summa-
rized in the following two tables:

Number of bits dec-3 dec-3, ordered nodes
30 5616.00 4653.67
60 21594.00 23766.67
90 41750.00 46250.00

120 103400.00 107158.33
150 153766.67 184933.33

Number of bits trap-5 trap-5, ordered nodes
30 9062.40 8195.83
60 28562.50 29625.00
90 77866.67 75250.00

120 157516.67 132166.67
150 229866.67 253016.67

The results on dec-3 and trap-5 indicate that for separable
problems of bounded difficulty, restricting the Bayesian net-
work according to a randomly generated ancestral ordering
of variables does not affect hBOA performance significantly.

Figures 4 and 5 show the growth of the number of eval-
uations with problem size for test problems that cannot be
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Figure 4: Results on hierarchical traps.
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Figure 5: Results on 2D ±J Ising spin glasses.

decomposed into independent subproblems of bounded or-
der: hTrap and 2D Ising spin glass. The growth of the
number of evaluations on hTrap and 2D Ising spin glass is
shown also in the following two tables:

Number of bits hTrap hTrap, ordered nodes
27 3567.20 3737.30
81 28833.33 26923.13

243 182466.67 169416.67

Number of bits spin glass spin glass, ordered nodes
6 × 6 = 36 70.19 66.40
8 × 8 = 64 231.86 229.95

10 × 10 = 100 546.88 571.62
12 × 12 = 144 1032.54 1103.11
14 × 14 = 196 1806.87 2001.57

Analogically to the results on dec-3 and trap-5, restricting
the probabilistic models does not affect hBOA performance
on hTrap and 2D Ising spin glasses significantly.

Although the unpaired t-test revealed statistical signifi-
cance of the differences obtained with and without ordering
the variables prior to model building, the most important
observation is that (1) the differences are relatively small
with respect to the absolute values and (2) the order of
the polynomial approximating the growth of the number
of evaluations is affected only a little or not at all in all
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test cases. We can thus conclude that restricting the proba-
bilistic models in hBOA to models that are consistent with a
randomly generated ancestral ordering does not significantly
affect hBOA performance. Consequently, using this modifi-
cation will ensure efficient parallelization of model building
when model building becomes the computational bottleneck.

5. SUMMARY AND CONCLUSIONS
To efficiently parallelize model building in hBOA, it is use-

ful to generate an ancestral ordering of nodes in the network
prior to building the network structure, and to restrict mod-
els to those consistent with the generated ancestral order-
ing. While modifying the model building procedure allows
its efficient parallel implementation, it also restricts the con-
sidered class of network structures, potentially affecting per-
formance and scalability of hBOA. This paper provides em-
pirical evidence that the modification of the model building
algorithm does not significantly affect hBOA performance
and scalability.
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