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ABSTRACT
Recently, advances have been made in continuous, normal–
distribution–based Estimation–of–Distribution Algorithms
(EDAs) by scaling the variance up from the maximum–like-
lihood estimate. When done properly, such scaling has been
shown to prevent premature convergence on slope–like re-
gions of the search space. In this paper we specifically fo-
cus on one way of scaling that was previously introduced as
Adaptive Variance Scaling (AVS). It was found that when
using AVS, the average number of fitness evaluations grows
subquadratically with the dimensionality on a wide range
of unimodal test–problems, competitively with the CMA-
ES. Still, room for improvement exists because the variance
doesn’t always have to be scaled. A previously introduced
trigger based on correlation that determines when to ap-
ply scaling was shown to fail on higher dimensional prob-
lems. Here we provide a new solution called the Standard–
Deviation Ratio (SDR) trigger that is integrated with the It-
erated Density–Estimation Evolutionary Algorithm (IDEA).
Intuitively put, scaling is triggered with SDR only if im-
provements are found to be far away from the mean. SDR
works even in high dimensions as a result of factorizing the
decision rule behind the trigger according to the estimated
Bayesian factorization. We evaluate SDR–AVS–IDEA on
the same set of benchmark problems and compare it with
AVS–IDEA and CMA–ES. We find that the addition of SDR
gives AVS–IDEA an important extra edge for it to be used in
future research and in applications both in single–objective
optimization as well as in multi–objective and dynamic op-
timization. In addition, we provide practical rules of thumb
for parameter settings for using SDR–AVS–IDEA that re-
sult in an asymptotic scale–up behavior that is sublinear for
the population size (O(l0.85)) and subquadratic (O(l1.85))
for the number of evaluations.
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1. INTRODUCTION
Estimation–of–distribution algorithms (EDAs, [6, 15, 17,

19]) are a class of evolutionary algorithms (EAs) in which the
main operator of variation is the estimation of a probability
distribution from the selected solutions and the subsequent
sampling from the estimated distribution. In this way, EDAs
aim to induce and exploit structure from the optimization
problem at hand. The probability distribution constitutes
an explicit, probabilistic, search bias.

In general, for any optimization algorithm to be success-
ful, the structure of the problem needs to match the bias of
the algorithm. Recent studies have shown that the EDA ap-
proach in continuous spaces, specifically when based on the
use of a maximum–likelihood normal distribution, is not al-
ways successful [4, 9, 10]. Also, it has been pointed out
more clearly under which conditions an EDA is expected to
be successful [9]. Summarizing, the probability–distribution
class must be adequate and the estimation procedure must
be competent. This means that the structure of the problem
can be modeled by the probability distribution and the esti-
mation procedure can do this modeling well. For the normal
distribution however, this not always the case, especially if
maximum–likelihood estimates are used.

As the normal distribution itself is a single peak, it can
match the contour–lines of a single peak in the fitness land-
scape. Things are different for slope–like regions of the
search space, i.e. when the optimum is outside the range
of selected solutions. The true structure may then be mis-
represented by a maximum–likelihood estimate because the
normal kernel focuses search around its mean. Relying the
search on maximum–likelihood estimates therefore poten-
tially misleads the EDA and can cause premature conver-
gence on slope–like regions of the search space.
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Recently, a technique was introduced to remedy the prob-
lem of the prematurely vanishing variance in continuous,
maximum–likelihood, EDAs, with promising results [9]. This
technique, called adaptive variance scaling (AVS), is based
on whether improvements were found in the previous gen-
eration. In case an improvement was found, the variance
is increased beyond its maximum–likelihood estimate. The
addition of variance scaling to the EDA brings about a dif-
ferent view on the way model–based search is performed
with continuous EDAs. Originally, the covariance matrix
was estimated using maximum likelihood directly from data
(i.e. the selected solutions). With variance scaling, the co-
variance matrix is adapted according to additional sources
of information. EDAs are not the only approach to model–
guided search. Specifically, when regarding the use of the
normal distribution, there are clear similarities with evolu-
tion strategies (ES) [2], or more recently, the CMA–ES [12,
13]. But also approaches like particle–swarm optimization
(PSO) share a similar notion of maintaining, updating and
adapting a model during search. All approaches have a dif-
ferent, but solid, rationale and background. As such, it
is important and interesting to investigate and advance all
these techniques. An advantage of the EDA approach that
also holds for the AVS extension is that it is conceptually
easy to understand and that its choices are well motivated
and principled.

A drawback of the AVS scheme is that the variance is
increased even in cases where it is not required. We will
describe such cases in more detail later-on. A need for a
trigger thus exists that identifies exactly when an (addi-
tional) increase in variance is called for. Such a trigger,
based on correlation, was proposed with the introduction
of the AVS scheme. This trigger was however found to be
inadequate in higher dimensions. In this paper we will in-
vestigate this issue more deeply and propose a new trigger,
called Standard–Deviation Ratio (SDR), that does not break
up as the dimensionality is increased. We integrate this
trigger in the iterated density–estimation evolutionary algo-
rithm (IDEA) framework, a framework that has previously
often been used to design continuous EDAs. To validate
the applicability of SDR and to gain further insight into the
running–time complexity of the resulting EDA, we investi-
gate the scale-up behavior of SDR–AVS–IDEA. The results
are compared to those of the AVS–IDEA and the CMA–ES
on a test bed of (mostly) unimodal test–problems. The ex-
perimental results indicate that for all regarded algorithms
the required number of fitness evaluations that is required
to reliably solve the problems grows subquadratically with
respect to the dimensionality of the problems. SDR–AVS–
IDEA however has the additional benefit of further reducing
the number of unnecessary variance scalings as the popula-
tion size increases. The integration of the new SDR trigger
with AVS thus results in a novel and competitive EDA for
continuous function optimization.

The remainder of this paper is organized as follows. In
Section 2 we first briefly recall the scheme of AVS. Then,
in Section 3 we introduce the addition of SDR. In Section 4
we provide experimental results. We propose guidelines for
the use of SDR–AVS–IDEA by a practitioner in Section 5
and also discuss future avenues of research. Finally, we con-
clude this paper in Section 6 with a summary and some final
remarks.

2. ADAPTIVE VARIANCE SCALING
It has been shown that an EDA that uses maximum likeli-

hood estimates for the mean and the variance can only reach
the optimum if the set of search points is already close to
the optimum [8, 11]. The reason for this is that the mean of
the estimated normal distribution can only move a limited
distance before convergence takes place because the variance
shrinks exponentially fast. This means that on slope–parts
of the search space, the EDA will perform extremely poorly
whereas on peak–parts the EDA will perform nicely.

To remedy the problem of the prematurely vanishing vari-
ance, the variance can be scaled. This was first noted only
recently [18]. One successful scheme for doing variance scal-
ing in an adaptive fashion (i.e. during optimization) was re-
cently introduced under the name adaptive variance scaling
(AVS) [9]. This scheme significantly improves performance
in the single–objective case and allows the EDA to solve
problems that it couldn’t solve without scaling the variance.
We now briefly summarize AVS.

The smaller the variance, the smaller the area of explo-
ration for the EDA. The variance in the normal distribution
is stored in the covariance matrix Σ. A variance multiplier
cAVS is maintained. Upon sampling new solutions, the dis-
tribution is scaled by cAVS, i.e. the covariance matrix used
for sampling is cAVSΣ instead of just Σ. If the best fitness
value improves in one generation, then the current size of
the variance allows for progress. Hence, a further enlarge-
ment of the variance may allow for further improvement
in the next generation. The size of cAVS is then scaled by
ηINC > 1. If on the other hand the best fitness does not
improve, the range of exploration may be too large to be
effective and the variance multiplier should be decreased by
a factor ηDEC ∈ [0, 1]. For symmetry, ηINC = 1/ηDEC.

In this paper we propose a slight deviation from the origi-
nal implementation of AVS. In the original implementation,
the magnitude of cAVS was bounded from above by a prede-
fined value cAVS–MAX > 1 and from below by cAVS–MIN < 1.
The upper bound is however not needed as the variance will
automatically grow into the maximum variance for which
improvements can still be obtained. The lower bound was
introduced to allow the variance to shrink to less than its
original size. This allows the algorithm to choose a niche in
the case of a multimodal landscape. As we are in this pa-
per only interested in unimodal landscapes, we simplify the
scheme and never let the variance multiplier become smaller
than 1. An overview of the integration of AVS in EDAs is
given in Figure 1.

3. STANDARD–DEVIATION RATIO (SDR)
TRIGGER

In the AVS scheme, improved fitness values automatically
increase cAVS. Improved fitness values however do not al-
ways mean that the variance needs to be enlarged. This is
especially the case if the normal kernel is near the optimum.
In this case, the induced bias of the normal pdf already leads
the EDA to the optimum. Increasing the variance will then
only slow down convergence, as the EDA is forced to explore
a larger area of the search space unnecessarily. In a previous
paper [9], a trigger was formulated in an attempt to sepa-
rate two cases: traversing a slope, and searching around an
optimum. The relationship between the normal density and
the shape of the function was exploited by computing the
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ranked correlation between the density of the selected solu-
tions and their fitness values. If correlation is strong, then
the search is focused around the optimum and no variance
scaling is required.

Because the correlation coefficient is computed for all vari-
ables jointly, this approach doesn’t always work, especially
in higher dimensions. Suppose that all dimensions except a
few do not require the scaling of variances. The contribu-
tion from the few non–correlated dimensions to the corre-
lation measure becomes insignificant as the dimensionality
increases. As a result, variance scaling is no longer triggered.
Without variance scaling however, the maximum–likelihood
EDA fails in the dimensions where scaling is required and
hence, optimization fails altogether.

This motivates looking at the search directions of the
EDA separately. We now focus specifically on the use of
Bayesian factorizations as is done in the Iterated Density–
Estimation Evolutionary Algorithm (IDEA) [3]. To briefly
recall Bayesian factorizations, we introduce a random vari-
able Xi for each problem variable xi, i ∈ {0, 1, . . . , l − 1}
where l is called the problem dimensionality. We call the
vector of random variables indicated by Xπi on which Xi

is conditioned in the Bayesian factorization, the vector of
parents of Xi. A Bayesian factorization of the joint prob-
ability distribution of all involved random variables X =
(X0, X1, . . . , Xl−1) can now be written as follows:

P (X ) =

l−1Y
i=0

P (Xi|Xπi) (1)

A greedy learning algorithm is (typically) used to com-
pute the Bayesian factorization. For more details, we refer
the interested reader to the relevant EDA literature [15, 16,
20]. The factorization imposes dependencies between the
variables that are subject to search and hence allows rota-
tion of the multivariate normal density, resulting in search
directions that differ from the axis–parallel directions. This
factorization can be used to design a trigger that tests in
each search dimension separately whether AVS is required.

If improvements mostly take place far away from the mean,
then obviously, the mean needs to shift. As we know that
mean–shift is problematic for maximum–likelihood normal
EDAs, this is a situation in which AVS is called for. If how-
ever most of the improvements are obtained near the mean,
then the EDA with maximum–likelihood parameters already
has a good focus and no further variance enlargement is re-
quired. It is known (see, e.g. [1]) that for any value of the
standard deviation σ, a fixed percentage of the density of the
normal distribution is contained within [μ−cσ, μ+cσ] where
μ is the mean of the normal distribution and c ≥ 0. Now,
let xIMP(t) denote the average of all new samples drawn in
generation t that were an improvement over the set of se-
lected solutions in that same generation. We propose to use
a threshold θSDR ∈ [0,∞] and trigger the further enlarge-
ment of the variance multiplier in generation t+1 whenever
xIMP(t) has a distance d to the estimated mean μ̂(t) such
that d/σ̂(t) > θSDR. Note that this trigger is independent of
the sample range and has a fixed, predefined notion of being
“close” to the mean.

Second, we note that this approach can easily be factor-
ized according to the search distribution of the EDA by fol-
lowing the Bayesian factorization that was estimated from
the selected solutions. To sample a new solution from the
Bayesian factorized normal distribution, an ordering is con-

structed such that when sampling a new value for Xi from
the corresponding factor P (Xi|Xπi) (a conditional normal),
the parents Xπi in that factor have already been sampled.
Given the values xπi for these parent variables, the distribu-
tion to sample Xi from is again a normal distribution with
mean μ̆i and standard deviation σ̆i [3]:

P̂N (Xi|Xπi)(xi, xπi) =
1

(σ̆i

√
2π)

e
−(xi−μ̆i)

2

2σ̆2
i (2)

where

8>><
>>:

σ̆i = 1q
Ŵ

(i,πi)
00

μ̆i =
μ̂iŴ

(i,πi)
00 −P|πi|−1

j=0 (x(πi)j
−μ̂(πi)j

)Ŵ
(i,πi)
(j+1)0

Ŵ
(i,πi)
00

where W j is the inverse of the symmetric covariance matrix
for variables Xj , that is, W j = (cAVSΣj )−1

We can use this result to compute for each factor sepa-
rately the standard–deviation ratio of xIMP(t):

SDRi =
|xIMP

i (t) − μ̆i(t)|
σ̆i

(3)

where μ̆i and σ̆i are computed from xIMP
i (t).

To complete the trigger, we must make a decision based
upon all SDRi. To this end, we decide to trigger the further
enlargement of the variance multiplier if the ratio in any
direction is larger than the threshold. In other words, if
there is any search direction that requires scaling (i.e. slope
traversing), AVS is triggered. This is identical to computing
a single SDR as the maximum of the SDRi and comparing
this value to θSDR:

SDR = maxl−1
i=0 {SDRi} (4)

An overview of the integration of SDR in the AVS–IDEA
is given in Figure 1.

1 S ← Selection(P)

2 (π, Σ̂, μ̂) ← EstimateDistribution(S)

3 Σ̂ ← cAVSΣ̂

4 O ← SampleNewSolutions(π, Σ̂, μ̂)
5 nIMP ← 0

6 xIMP ← (0, 0, . . . , 0)
7 for i ← 0 to |O| − 1 do

7.1 if Oi is an improvement then
7.1.1 nIMP ← nIMP + 1

7.1.2 xIMP ← xIMP + Oi

8 if nIMP > 0 then

8.1 xIMP ← xIMP/nIMP

8.2 SDR ← maxl−1
j=0

n
|xIMP

j (t) − μ̆j(t)| / σ̆j

o

8.3 if SDR > θSDR then
8.3.1 cAVS ← ηINCcAVS

else
8.4 cAVS ← ηDECcAVS

9 if cAVS < 1 then
9.1 cAVS ← 1

10 P ← (S, O)

Figure 1: Standard–Deviation Ratio (SDR) trigger-
ing and Adaptive Variance Scaling (AVS) in the gen-
erational loop of the normal IDEA. The gray lines
are SDR–only.
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4. EXPERIMENTS

4.1 Setup
We perform experiments on test functions listed in ta-

ble 1 using AVS–IDEA, SDR–AVS–IDEA and CMA–ES. All
functions are unimodal with the exception of Rosenbrock’s
function, which has a single suboptimum [21]. The optimum
for functions 1-7 is obtained by setting xi = 0 for all i. For
function 8 the optimum is obtained by setting xi = 1 for
all i. The optimum for functions 9 and 10 is obtained by
setting xi = 0 for all i > 1 and letting x0 go to ∞. The
initialization range used for all functions is [−5, 5].

Name Definition Value to
reach

1 Sphere
Pl

i=1 x2
i 10−10

2 Ellipsoid
Pl

i=1 106 i−1
l−1 x2

i 10−10

3 Cigar x2
i +

Pl
i=2 106x2

i 10−10

4 Tablet 106x2
1 +

Pl
i=2 x2

i 10−10

5 Cigar Tablet x2
1 +

Pl−1
i=2 104x2

i + 108x2
l 10−10

6 Two Axes
P�l/2�

i=1 106x2
i +

Pn
i=�l/2� x2

i 10−10

7 Different Powers
Pl

i=1 |xi|2+10 i−1
l−i 10−15

8 Rosenbrock
Pl−1

i=1(100 · (x2
i − xi+1)

2 + (xi − 1)2) 10−10

9 Parabolic Ridge −x1 + 100
Pl

i=2 x2
i −1010

10 Sharp Ridge −x1 + 100
qPl

i=2 x2
i −1010

Table 1: Test functions and values to reach.

Using a scalability analysis, the running time complex-
ity of the algorithms was experimentally approximated. To
be more concrete, it was assessed how the total number of
fitness evaluations e and the population size n required to
reliably solve the problems to optimality grows with the size
of the problem l. The problem is said to be solved reliably if
at least 95 out of 100 independent runs resulted in reaching
the predefined value to reach. Therefore, the dimensionality
l was varied: l ∈ {2, 4, 8, 10, 20, 40, 80}. In a recent study, a
bisection method was used to obtain the minimally required
population size for which the algorithms were successful [9].
However, it is important to realize that when using adap-
tive variance scaling, the minimum population size for which
the problem can be solved is not the one that automatically
minimizes the number of function evaluations. This is in
contrast with well–known GA theory based on mixing which
corresponds to searching inside a covered range [14, 22]. If
the population size becomes very small, increasing the vari-
ance enough can still allow the EDA to solve the problem.
However, because the variance is so large, more samples may
be required than if a slightly larger population size is used.
This phenomenon is experimentally shown in Figure 2 for
the sphere function in 80 dimensions. Indeed, for the normal
EDA, if the population size becomes too small, the problem
can no longer be solved and the smallest population size
that is successful is the one that leads to the least number
of evaluations. Adding AVS or SDR–AVS allows the pop-
ulation size to become smaller, but the smallest population
size for which the problem can be reliably solved does not
correspond to the population size that leads to the minimum
number of required evaluations.
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Figure 2: Average number of evaluations required to
reach 10−10 on the sphere function in 80 dimensions
in 95 out of 100 runs.

For (SDR)–AVS–IDEA we used ηDEC = 0.9, i.e. a small
factor to allow for smooth adaptation of the variance mul-
tiplier, similar to earlier work [9]. The SDR threshold θSDR

was set to θSDR = 1.0 (see Section 4.2). Also following earlier
work [3, 9] we set the selection percentile τ = 0.3.

4.2 Setting the SDR trigger threshold
In order to obtain a reasonable value for θSDR, we ran

tests on a problem that is notoriously hard for (normal)
EDAs: Rosenbrock’s function. Rosenbrock’s function can-
not be solved without variance scaling [10]. We varied θSDR

and for each value of θSDR, we performed 100 independent
runs of SDR–AVS–IDEA in dimensionalities l ∈ {10, 20, 40}.
We determined the minimally required number of evalua-
tions to solve each problem with dimensionality l reliably.

Figure 3 shows the ratio of the required number of eval-
uations of SDR–AVS–IDEA versus AVS–IDEA on Rosen-
brock’s function. As the threshold goes up, SDR–AVS-IDEA
becomes less efficient on the Rosenbrock function because a
larger threshold means less triggering of increasing the vari-
ance multiplier.

For the sphere function, θSDR should be set as large as
possible. This can be seen in Figure 2. For population
sizes larger than the population size that leads to the small-
est number of evaluations, using less scaling leads to more
efficient optimization. However, if the threshold becomes
too large, the capacity for efficiently solving Rosenbrock’s
function diminishes. From the results we find that for val-
ues higher than 1.0 the results on Rosenbrock start to seri-
ously deteriorate. We have therefore chosen to use a value
of θSDR = 1.0.

4.3 Results and interpretation
In Figure 4 the scalability of all tested algorithms is given

on the benchmark problems. From the results we note that
AVS–IDEA and SDR–AVS–IDEA have a slightly better scal-
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Figure 3: Minimum number of evaluations of SDR–
AVS–IDEA on Rosenbrock’s function, relative to the
minimum number of evaluations of AVS–IDEA.

ability than CMA–ES in required number of evaluations (i.e.
a less steep slope) on all problems except Rosenbrock’s prob-
lem, for which the CMA–ES obtains better results. Hence,
it can be concluded that the (SDR)–AVS–IDEA is at least
competitive with the CMA-ES for this benchmark.

There appears to be little to no difference in the results
with and without the use of SDR. The reason for this is that
these results reflect the choice of the population size that
leads to the smallest number of evaluations. In Figure 2 it
can be seen that indeed the smallest number of evaluations
is virtually the same for all values of the threshold. However,
if the population size becomes larger, the difference between
the various values for threshold becomes clear. In practice,
one typically chooses a population size and then runs the
EA with it. In the next Section, we’ll provide a guideline
for choosing a population size. Here we first want to outline
the benefits of the SDR trigger using additional results.

It is not to be expected in practice that one chooses a pop-
ulation size that is optimal. Instead, the selected population
size is typically larger. The use of SDR triggering only gets
better with larger population sizes. The most important
contribution of SDR is therefore to make sure that AVS
doesn’t become very inefficient if suboptimal population-
sizing is used. Figure 5 shows convergence plots for SDR–
AVS–IDEA and AVS–IDEA on the sphere function and Ro-
senbrock’s function in l = 20 and l = 80 dimensions and a
population size of n = 1000.

From the results in Figure 5 it becomes clear that SDR–
AVS–IDEA succeeds in reducing the number of evaluations
and unnecessary variance scalings on the sphere function
compared to AVS–IDEA. The results in Figure 2 addition-
ally show that the difference between AVS–IDEA and SDR–
AVS–IDEA only become bigger if the population size is in-
creased. The results also show that even on the Rosenbrock
function, SDR–AVS–IDEA becomes more efficient than AVS–
IDEA. Especially with a larger population size, even for
this extreme function not all variance–multiplier scalings are
truly required. Moreover, SDR is able to filter a good part
of these unnecessary scalings out.
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Figure 5: Convergence plots for a population size of
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An intuitive way to see why SDR leads to more efficient
normal EDAs is the following. In any generation, given an
estimation of the mean, there is an optimal covariance ma-
trix Σ∗(t) to use for sampling. Optimality here can be taken
to be the highest probability of drawing a solution that is
better compared to what has been encountered so far. Ob-
viously, if the search is on a slope and the optimum is not
enclosed within the region of the currently available solu-
tions, Σ∗(t) corresponds to a wider distribution than the
estimated Σ(t) and hence, for the optimal variance mul-
tiplier we have cAVS,∗(t) > 1. The AVS scheme increases
the variance multiplier whenever an improvement is found.
At first, especially in the slope–case, this means that the
actual variance multiplier becomes closer to cAVS,∗(t). How-
ever, AVS will then continue to increase the variance mul-
tiplier to a value of cAVS,+(t) which corresponds to a very
small probability of finding an improvement. Thus, the AVS
scheme will result in varying cAVS roughly in the interval of
[cAVS,∗(t), cAVS,+(t)]. Note that for large values of the vari-
ance multiplier, any improvements are found relatively close
to the mean in terms of standard–deviation ratio. This is
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exactly the case when the SDR trigger indicates that no fur-
ther upscaling should be applied to the variance multiplier,
preventing the variance multiplier from become excessively
large. Thus, the SDR–AVS scheme will result in varying
cAVS in an interval that is more centered around cAVS,∗(t),
resulting in more efficient optimization.

5. DISCUSSION AND GUIDELINES
After analysis of the scalability data obtained from the

experiments, a guideline for setting the population size can
be extracted. To this end, we have estimated, using least–
squares analysis, the regression line that describes the fastest
growing population size. To this we added a constant to
account for the problems on which the population size grows
slower, but is larger for the smaller dimensionalities. The
further guidelines are in line with earlier research and earlier
statements in this paper:

• n ≥ 30 + 10l0.85

• τ = 0.3

• ηDEC = 0.9

• ηINC = 1/ηDEC

• θSDR = 1.0

In Figure 6 the resulting scale–up behavior is shown for
SDR–AVS–IDEA using the above guidelines. Again, the
difference between the Rosenbrock function and the other
functions can be seen. However, because the scalability of
the population size is mainly dictated by the scalability as
found for Rosenbrock’s function and is thereby higher than
the minimally required population size for most other prob-
lems, the number of evaluations scales asymptotically sim-
ilar for all problems. Using least–squares we find that the
number of evaluations is at most (i.e. for Rosenbrock’s func-
tion) e ≈ 345∗ l1.85, leading to the conclusion of a scalability
of O(l1.85) for the number of evaluations if the guidelines are
followed. In other words, for SDR–AVS–IDEA, the popu-
lation size scales sublinearly and the number of evaluations
subquadratically on the mostly unimodal problems in our
test set, which is an important result.

The development of variance scaling techniques and specif-
ically of SDR–AVS–IDEA has so far been tested only on uni-
modal test problems and Rosenbrock’s function. Although
this is important and establishes the asymptotic behavior to
locate an optimum with precision, other types of problems
exist and are arguably dominant in practice. To deal with
issues such as multimodality, a restart strategy or a paral-
lel strategy needs to be designed. Also the integration of
local (gradient–based) search techniques is most likely vital
for solving real–world problems. Such enhancements can be
built on top of the research and guidelines in this paper.

Although the benefits of SDR have been identified for
single–objective numerical optimization in this paper, one
can expect additional benefits of SDR when using SDR–
AVS–IDEA for other optimization problems such as multi–
objective and dynamic problems. In both problems, the
use of multiple normal distributions in parallel is advanta-
geous. For multi–objective problems, one typically wants
to distribute the search along the front [5]. In dynamic op-
timization, one typically wants to keep track of multiple
optima simultaneously [7]. To this end, the SDR–AVS tech-
nique needs to be extended to multiple normal distributions.
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Figure 6: Scale–up of the number of required eval-
uations by SDR–AVS–IDEA using the guidelines.

In multi–objective problems, many improvements are made
every generation as the Pareto–front is advanced. Many
of these improvements are likely to be close to the means
of the generating distributions along the front. Without
SDR, the variance multipliers will grow very large, making
further advancement much slower. In dynamic optimiza-
tion the optimum keeps shifting away, making improvements
more likely each generation. Depending on the speed of the
movement however, the variance doesn’t always need to be
scaled. Without SDR, this would not be detected and fur-
ther exploitation would again be slower. Summarizing, this
paper lays important foundations and has given AVS–IDEA
an important edge for subsequent steps to be made in con-
tinuous EDAs research as well as applications.

Finally, we note that most test functions used in this paper
have either no dependencies (i.e. they are axis–parallel) or a
low order of dependency between the problem variables (i.e.
Rosenbrock’s function). Although the SDR–AVS–IDEA ap-
proach works very well for these problems, future work will
also focus on how well the approach holds up under rotations
of the search space. Rotations leave the problem shape in
tact, but introduce dependencies between the problem vari-
ables. Whereas the performance of the CMA–ES is known
to be rotation–invariant, this is not yet known for the EDA
approaches. Given the fact that the EDA approaches often
do not by default use the entire covariance matrix, it is to
be expected that the performance of EDA approaches is not
rotation–invariant.

6. CONCLUSIONS
This paper presented ongoing research in the develop-

ment of efficient and reliable EDAs for continuous single–
objective optimization. Specifically it discussed an upgrade
of the adaptive variance scaling (AVS) scheme that was re-
cently proposed to improve the results of EDAs that use
maximum–likelihood estimates of the normal distribution.
To do so, the centroid of all improvements in a single gen-
eration is computed. This centroid is then compared to
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the contour lines of one standard deviation of the normal
distribution. If the centroid of improvement lies outside
the contour–lines, the covariance matrix is scaled further.
Otherwise, the current covariance matrix covers the region
where improvements can be found well enough and no fur-
ther enlargement of the values in the covariance matrix is
required. This enhancement of the adaptive variance scaling
scheme is called standard–deviation ratio (SDR) triggering.

SDR–AVS–IDEA was shown to be effective on a test bed
of unimodal test functions. The population size grows sub-
linearly whereas the required number of evaluations grows
subquadratically. Although the asymptotic behavior is sim-
ilar to that of AVS–IDEA, a reduction in evaluations is ob-
tained, especially if the population size grows beyond the
minimally–required size by using SDR. SDR ensures that
the much required scaling of the variance by adding AVS
to continuous EDAs is not exaggerated and prevents very
inefficient optimization behavior if suboptimal population-
sizing is used. In addition, we have argued that the addition
of SDR will have additional, much required, benefits when
applied to multi–objective optimization and dynamic opti-
mization, both of which are often present in practice. More-
over, this trigger improves upon the earlier proposed trigger
based upon correlation. The SDR trigger works in any di-
mensionality because it follows the estimated factorization
whereas the previous trigger didn’t work for all dimension-
alities. With the introduction of SDR, we have improved
the existing AVS–IDEA. We believe the SDR–AVS–IDEA
approach to be ready for its application in practice and
its transfer to other optimization problems such as multi–
objective optimization and dynamic optimization. More-
over, we believe the SDR–AVS–IDEA approach to be an
easy–to–understand and principled approach.

Future work will extend this research to multi–objective,
dynamic and multi–modal optimization problems and inves-
tigate the influence of landscape rotations. Also, we are cur-
rently establishing theoretically the efficiency of variance–
scaling approaches and relating the SDR–AVS policy to this
notion of efficiency.
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