Pareto-Coevolutionary Genetic Programming for Problem
Decomposition in Multi-Class Classification

Peter Lichodzijewski
piotr@cs.dal.ca

Malcolm |. Heywood
mheywood@cs.dal.ca

Faculty of Computer Science
Dalhousie University
Halifax, NS, B3H 1W5, Canada

ABSTRACT

A bid-based approach for coevolving Genetic Programming
classifiers is presented. The approach coevolves a popula-
tion of learners that decompose the instance space by way
of their aggregate bidding behaviour. To reduce computa-
tion overhead, a small, relevant, subset of training exemplars
is (competitively) coevolved alongside the learners. The ap-
proach solves multi-class problems using a single population
and is evaluated on three large datasets. It is found to be
competitive, especially compared to classifier systems, while
significantly reducing the computation overhead associated
with training.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing; 1.5.2 [Pattern Recognition|: Design Methodology—
Classifier design and evaluation

General Terms

Algorithms, Experimentation, Performance

Keywords

Genetic Programming, supervised learning, classification,
coevolution, subset selection, training efficiency, problem de-
composition

1. INTRODUCTION

Problem decomposition within the context of Genetic Pro-
gramming (GP) [10] has focused mostly on module acqui-
sition. That is to say, the principal interest has been to
identify and propagate reusable code fragments throughout
the population so that solutions need not repeatedly redis-
cover essential ‘building blocks’ [11]. In this work, in con-
trast, we are interested in problem decomposition by means
of multiple individuals that learn to participate under dif-
ferent exemplar conditions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

464

Within the context of GP applied to the classification do-
main, recent examples of this second form of problem decom-
position include teams [4], multi-objective optimization [13],
distributed boosting [9], and Pareto-based competitive co-
evolution [12]. The teams metaphor [4] explicitly initializes
a set of classifiers to coexist and evaluates their performance
using a predefined voting scheme. The multi-objective ap-
proach [13] encourages classifiers to act as novelty detectors
as opposed to the more typical discriminator approach to
classification. Its main drawback is that it requires a clus-
tering algorithm to be applied within the inner loop of GP
making it computationally expensive. Distributed boosting
[9] requires a Beowulf computing platform for effective oper-
ation, evolves independent populations on partitions of the
training data, and requires classifiers labels to be resolved
post-training using a voting policy. Finally, the competi-
tive Pareto-Coevolutionary GP Classifier (PGPC) [12] pro-
vides a solution in the form of an archive of non-dominated
classifiers, however, it again requires a post-training voting
scheme to provide a single class label under testing condi-
tions.

The approach taken in this work is rather different. When
individuals are first created they are bound to a static scalar
selected over the range of possible class labels. As a result,
an instance class may be represented by more than one in-
dividual. The goal of each GP individual is then to evolve
an appropriate bidding behaviour. For each exemplar, the
individuals determine their respective bids with the maxi-
mum bid ‘winning’ the right to present its class label. Clas-
sification error is estimated with respect to the suggested
and actual class labels over all exemplars. Thus, in any one
training epoch, the overall classification error reflects con-
tributions from all individuals winning a bidding round. As
such, the model provides a natural mechanism for coevolv-
ing a solution from multiple individuals without the need for
a post-training voting scheme. The number of individuals
participating in the final solution also follows naturally and
does not need to be specified a priori.

This work also considers how to integrate the bid-based
cooperative mechanism with a Pareto-based competitive co-
evolutionary paradigm [6, 8, 14]. In particular, the compet-
itive coevolutionary paradigm models the interaction be-
tween learners (bidding individuals in this case) and test
points (training exemplars) as a competitive game. Using
the proposed approach, it is no longer necessary to iterate
over all the training exemplars in order to evaluate learner
fitness, but rather, over some subset of exemplars that max-
imize the distinctions between the learners. Such a model



has been demonstrated to be significantly better at avoid-
ing degenerate solutions on large unbalanced datasets while
requiring a fraction of the computational overhead [12].

Evaluation of the proposed approach is done over datasets
whose sizes range from few thousand to half a million ex-
emplars and which involve up to five classes. Performance
is evaluated in terms of a baseline model in which the com-
petitive coevolutionary model is replaced with uniform ran-
dom selection of training exemplars. On all the datasets,
the model requires training times in the region of one to
two and a half hours to successfully compose solutions using
multiple learners per class.

The rest of this paper is organized as follows. The fol-
lowing section reviews related work including ideas on using
coevolution for ideal evaluation. Section 3 describes in detail
the proposed approach. The system is evaluated in Section
4 and conclusions are drawn in Section 5.

2. RELATED WORK

2.1 Learning Classifier Systems

The proposed system shares similarities with Learning
Classifiers Systems [3]. However, the various forms of classi-
fier systems typically evolve condition-action-strength rules
while the proposed approach replaces condition and strength
with a single bid procedure. This results in deterministic
individual behaviour because, in contrast to strength, bid
values are not adapted during an individual’s lifetime. Al-
though the proposed approach does borrow from classifier
systems in using accuracy as a component of individual fit-
ness [16], the way in which this accuracy affects the indi-
vidual’s survival, and in general the proposed training al-
gorithm, is very different. Finally, the proposed approach,
at least for now, is restricted to supervised learning tasks,
whereas classifier systems can be applied to reinforcement
learning problems.

2.2 Ideal Evaluation and Pareto-Coevolution

The concepts of Pareto-dominance and distinctions [8, 14]
are used in the Delphi system [6] to approximate an ideal
evaluation function using a computationally feasible number
of tests. This coevolutionary framework evolves a popula-
tion of learners against a population of tests. The approach
centers around an interaction function G(l;,t,) which re-
turns values from an ordered set and indicates the outcome
of applying learner [; to test ¢, (revealing information about
the underlying problem objectives).

If ¥1 and ¥ are two objective vectors then the Pareto-
dominance relation dom (1, ¥2) which indicates that ¥ dom-
inates 7> is defined as:

dom(v1, V) < Vq : th[q] = B2[q] A 3q : Ua[g] > Ulg]. (1)
Delphi defines an objective or outcome vector for the ith
learner [; over all the tests as
o1, [k] = G(l, tx) 2
where tp is the kth test. The Pareto-dominance relation
applied to these outcome vectors, referred to as the coevolu-
tionary evaluation function, is then used to determine which
learners are discarded from the population.
If the number of learners is n, the approach also constructs

465

.
an n’?-dimensional distinction vector dy, for each test ty as

Bl i+31={ ) G (@
where 1 < 4,7, < n index the learners. Hence, a distinc-
tion is made if the outcome on t; for learner I; is strictly
greater than the outcome for learner /;. On the test side,
these distinction vectors are used to determine which tests
are discarded from the test population again using Pareto-
dominance.

An ideal evaluation function, which determines whether
learner [; is superior to learner [, is defined using the Pareto-
dominance relation on the underlying objectives. With the
above setup and a test population of size n?> — n, the coevo-
lutionary evaluation function is capable of representing this
ideal evaluation function ezactly because n? — n is an up-
per bound on the number of distinctions that can be made.
Such a Complete Evaluation Set may not be necessary for
successful coevolution and the size of the test population rel-
ative to the size of the learner population may be reduced
further. This serves as motivation for this work where the
goal is to reduce the GP training overhead.

3. METHODOLOGY

As in the Delphi system, a test population and a learner
population are coevolved. The test population is a subset of
the entire training dataset®. The learner population consists
of a set of bidders whose behaviour is evolved using GP.
Specifically, each learner defines a bid and an action. The
bid is represented as a program while the discrete action is
selected a priori from the set of possible instance labels.

To classify a test exemplar post-training each learner ex-
ecutes its bid program on the input feature vector and sub-
mits an associated bid. The highest bidder is selected as
the winner and the action of this winner is then output as
the label for the test exemplar. Together, the goal of the
learners is to correctly classify the tests. The goal of the
tests is to accurately distinguish between the learners.

3.1 Coevolutionary Training Algorithm

Unbalanced class distributions may adversely affect train-
ing by favouring learners based only on their action. For this
reason, the learner population is partitioned so that selec-
tion and search operators are applied to learners of the same
class. In addition, since distinctions between learners of dif-
ferent classes are not meaningful in this setup, a separate
test subpopulation is maintained for each learner partition.
This limits interactions to the learners within each partition
and to learners in each partition and the tests in the cor-
responding test subpopulation. To simplify implementation
the learner populations can therefore be trained in series?
and this is the approach taken here, Figure 1.

The algorithm outputs a solution set of learners S which is
initialized to be empty in Step 1. Training then proceeds on
a class by class basis, Step 2. The learner population Ly, is
initialized with random bid programs and action matching
the current class a under consideration, Step 2a, and the

1As opposed to the test data employed for assessing the
generalization performance of the trained classifier.
2Compared to a parallel implementation, training overhead
increases minimally as Step 2(c)ii in Figure 1 is executed |L|
times more often where L is the set of class labels.



1. =10
2. for each a € L

(a) initialize(Lpop, a)
(b)
(c)

initialize(Tpop)
for each epoch
i. Lpop = generate(Lpop)
ii. Tpop = generate(Tpop)
for each tx € Tpop
A. bid(Lpop, tr)
normalize(Lpop)
V. Lpop = select(Lpop)
Tpop = select(Tpop)

Lpop = reduce(Lpop)

iii.
iv.

(d)
() S=SU Lpop

Figure 1: Generic coevolutionary training algo-
rithm. S is the final solution output by the system,
Lypop and Tj,, are the learner and test populations,
and L is the set of exemplar labels.

test population T}, is set to contain non-duplicated indices
into the training dataset selected with uniform probability,
Step 2b. The learner and test populations are then evolved
in a series of epochs, Step 2c. Here, in contrast to the non-
candidate learners which already exist at the beginning of
each epoch, candidate learners refers to the new members
generated in Step 2(c)i (analogous terminology is used for
tests). Once training of the current learner population is
complete, some individuals in the populations may be re-
moved by means of a reduction procedure, Step 2d. The
learners in the reduced population are added to S in the
final step, Step 2e.

At the start of each epoch Ljop and Tpop are augmented
with candidate learners and tests, Steps 2(c)i and 2(c)ii re-
spectively, and then the learners are applied to each test in
a series of dummy bidding rounds, Step 2(c)iiiA. During a
dummy bidding round for a test tx each learner has its out-
come on ¢t calculated and recorded in an associated outcome
vector. Once the bidding rounds are completed, the outcome
vectors are normalized in Step 2(c)iv. Using these normal-
ized outcome vectors, the algorithm determines if a candi-
date learner should remain in the population, Step 2(c)v. A
candidate learner can remain in the population only by dis-
placing an existing non-candidate learner to which it is found
to be superior. Similarly these outcome vectors are also used
to calculate the distinctions which determine whether any
of the candidate tests should remain in the population, Step
2(c)vi.

The normalization of outcome vectors was done to prevent
over-generalization in the form of persistent over-bidders.
As explained below, a learner could achieve maximum ob-
jective values on tests matching its action by always bid-
ding as high as possible; the normalization factor is meant
to penalize such individuals. At the same time, it does not
penalize individuals for under-bidding emphasizing low bids
on out-of-class instances.

Specific algorithm steps are detailed below.

Learner generation, Step 2(c)i. FEach learner l; €

466

Lypop is considered in turn. With probability p a new learner
is created from [; through a series of search operators (Sec-
tion 3.2), otherwise, a random learner is created. The new
candidate learners are added to the population doubling its
size.

Test generation, Step 2(c)ii. Test points index the
training data and are generated without assuming any par-
ticular bias. Candidate tests are therefore generated by uni-
form sampling of the training dataset and eliminating du-
plicates until the size of T},p is doubled.

Bid, Step 2(c)iiiA. The input test t; is presented to
each learner I; which executes its bid program on t; and
outputs a bid b € (0,1). The outcome of applying l; to ¢ is
then calculated as

G(li, t) :{

b if action of I; matches label of ¢
1 —b otherwise
(4)

and appended to an initially empty outcome vector o;,. Fol-
lowing the bidding round, each learner [; has an associated
outcome vector, Eq. 2.

Outcome normalization, Step 2(c)iv. For each out-
come vector 0y, a scaling factor p; is calculated as

1+ Shendi K

e 1+ M| (5)

where M is the set of tests in T),, whose class does not
match the action of [;. Since each outcome falls in (0, 1)
the scaling factor u; is also limited to the unit interval. The
normalized outcome vector is then calculated as 0, «— p;-0y;.

Learner selection, Step 2(c)v. The learner popula-
tion Lpop is partitioned into the set of candidate learners
C and the set of non-candidate learners P. Each learner
l; € C is then compared to each remaining learner l; € P.
If 01, is found to dominate 0;; according to Eq. 1 then [;
is removed from P, l; is marked for selection, and the next
learner in C is considered. The order in which the learners
in C are considered is randomized, and for each learner in
C that is considered, the order in which the learners in P
are considered is randomized. Once all the learners in C' are
processed, Lyop in the next epoch is formed by combining
the remaining learners in P with the learners in C' marked
for selection.

A candidate learner is considered for selection only if no
candidate having the same outcome vector has already been
seen in C in the current epoch. Also, a candidate vector
is eliminated from consideration if a learner with the same
outcome vector is observed in P. This process reduces the
size of Lpop to what it was after initialization, Step 2a.

Test selection, Step 2(c)vi. Test selection is based
on distinction vectors and follows exactly the same process
(i.e., the way in which candidates are compared to non-
candidates) as learner selection but with the following dif-
ferences. First, checks for duplicates are not made. Second,
the process makes sure that each instance class will be rep-
resented by at least one pattern in 7},p in the next epoch.

Reduction, Step 2d. Reduction is done after training
for the current class is complete and the final set of learners
and tests is selected. The outcome vectors for the learn-
ers are therefore updated to reflect the remaining tests in
Tpop- Based on these updated outcome vectors any dom-
inated or duplicate learners are then discarded from Lyp.



Given that Tpop is coevolved to accurately distinguish be-
tween the learners, this step is meant to identify and remove
redundant individuals.

Whenever outcomes were compared the equality operator
was deliberately made imprecise. Two outcomes would be
considered equal if their absolute difference was less than §
for relatively high values of ¢ such as 0.1. This was done to
reduce the number of ways in which outcome vectors could
vary and prevent situations where two learners were both
selected despite their behaviour being virtually the same.

3.2 Linear Genetic Programming

Linear GP [5] was used to evolve the learners’ bid pro-
cedures. Each program consisted of a sequence of binary
instructions representing one- and two-operand operations
applied to inputs and a set of null-initialized registers. Fol-
lowing program execution, the real-value GP output y was
extracted from a predefined register. To obtain bid values in
the unit interval, the Sigmoid function f(y) = (1 —e™¥)™*
was applied.

Four stochastic search operators were applied to the bid
program of an existing learner to generate a candidate (train-
ing Step 2(c)i): (1) delete removed an arbitrary instruction,
(2) add inserted a random instruction at an arbitrary lo-
cation, (3) mutate flipped an arbitrarily selected bit in the
program, and (4) swap exchanged the location of two arbi-
trary instructions. These operators were applied indepen-
dently with a predefined probability. In all cases, a uniform
distribution was used to select bits/instructions and to set
bit values during the generation of random individuals.

Whenever a random learner was generated (training Steps
2a and 2(c)i), its bid program size was selected from a pre-
defined range with uniform probability. The delete and add
operators were included to allow varying program complex-
ity within this fixed-length representation. The swap op-
erator was added to remedy situations where the correct
instructions were present but in the wrong order, and the
mutate operator was included to alter a single field of an
existing instruction.

4. EVALUATION AND RESULTS

4.1 Datasets and Parameterization

The approach was evaluated on three large datasets. The
Thyroid Disease (THY) dataset was obtained from the UCI
Machine Learning Repository [1] while the Census Income
(CEN) and KDD Cup 1999 (KDD) were found in the UCI
KDD Archive [2]. Training on THY and CEN used the orig-
inal training partitions leaving the remaining patterns for
testing, while on KDD training was done using the ‘10% sub-
set’ dataset and testing was done on the ‘corrected’ dataset.
The only preprocessing performed was to enumerate nomi-
nal attributes so they form valid GP inputs. The motivation
for selecting these datasets was their large size (all), their
multiple (versus two) classes (THY, KDD), and because of
their unbalanced class distributions (all). These properties
are summarized in Table 1.

The parameters used in evaluating the proposed approach
are shown in Table 2. Here, the population sizes refer to the
counts before generation, Steps 2(c)i and 2(c)ii of the train-
ing algorithm®. Since GP training is a stochastic process,

30n THY, CEN, and KDD this corresponds to training us-

Table 1: Summary of the datasets used in the eval-
uation.

class exemplar counts
features

class train test
1 93 73
THY 21 2 191 177

3 3488 3178
all 3772 3428

1| 187141 | 93576
CEN 41 2 12382 6186
all | 199523 | 99762

1| 97277 | 60593
2 1126 | 16347
3 | 391458 | 229853
4 4107 4166
) 52 70
all | 494020 | 312029

KDD 41

Table 2: Parameter values used in the experiments.

parameter value
minimum program size 1
maximum program size 48
delete/add/mutate/swap prob. 0.5
number of registers 8
function set {cos, sin, exp, log,
+,%x,—,+}
Lyop size 10
Tpop size 50
p 0.9
number of epochs 50 000
0 0.1
number of initializations 30

thirty trials of each experiment were performed using differ-
ent initializations.

To provide a baseline level of performance and to deter-
mine if using distinctions to select tests is effective, runs
were also performed with a modified version of the algo-
rithm. Here, Steps 2b and 2(c)vi of the original algorithm
were discarded and test generation, Step 2(c)ii, was modi-
fied to fill the entire test population completely at random
(i-e., Tpop would consist of one-hundred unique tests selected
with uniform probability). Because the test population was
no longer coevolved to accurately evaluate the learners, the
reduction step was also omitted.

Results were compiled on a class-by-class basis with re-
spect to accuracy (ACC), detection rate (DET), and false
positive rate (FPR). These were defined as

TN +TP
A =
ce TN+TP+FN+ FP (6)
TP
DET = 7FN+TP (7)
FP
FPR= 4N Fp ()

ing learner populations sizes of 60, 40, and 100 respectively
using traditional, single-population, GP.



Table 3: Experimental results on the test data using
the proposed approach. For each initialization, the
ACC, DET, and FPR were calculated. Shown are
the first quartile (Q1), median (MED), and third
quartile (Q3) values over all initializations.

| | [class | Q1 | MED | Q3 |

1 0.978 | 0.982 | 0.986

ACC 2 0.945 | 0.949 | 0.963

3 0.942 | 0.952 | 0.961

1 0.592 | 0.692 | 0.890

THY | DET 2 0.086 | 0.393 | 0.585
3 0.973 | 0.980 | 0.987

1 0.007 | 0.010 | 0.016

FPR 2 0.006 | 0.015 | 0.019

3 0.262 | 0.390 | 0.571

1 0.902 | 0.918 | 0.928

ACC 2 0.902 | 0.918 | 0.928

1 0.936 | 0.956 | 0.975

CEN | DET 2 0.184 | 0.303 | 0.427
1 0.573 | 0.697 | 0.816

FPR 2 0.025 | 0.044 | 0.064

1 0.918 | 0.920 | 0.924

2 0.947 | 0.947 | 0.948

ACC 3 0.967 | 0.972 | 0.974

4 0.991 | 0.992 | 0.993

5 1.000 | 1.000 | 1.000

1 0.976 | 0.990 | 0.995

2 0.000 | 0.010 | 0.035

KDD | DET 3 0.960 | 0.967 | 0.970
4 0.531 | 0.628 | 0.715

5 0.000 | 0.064 | 0.207

1 0.090 | 0.095 | 0.099

2 0.000 | 0.000 | 0.003

FPR 3 0.003 | 0.006 | 0.015

4 0.001 | 0.001 | 0.004

5 0.000 | 0.000 | 0.000

where TN, TP, FN, and FP refer to true-negatives, true-
positives, false-negatives, and false-positives respectively.

4.2 Results

4.2.1 Distinction-Based Test Point Population

Quartile accuracies using the proposed approach on the
test data are shown in Table 3. On THY, class 3 accounts
for nearly 92.5% of the training instances so it is not sur-
prising to see the high DET values as well as the high FPR
values. However, the approach manages to detect some of
the minority classes and does surprisingly well on class 1
which accounts for just 2.5% of the training exemplars. On
CEN the results also reflect the class imbalance with high
DET and FPR values for class 1. On KDD despite 79.2% of
training patterns falling in class 3, on this class the approach
achieves very low FPR values.

Figures 2 and 3 show the bidding behaviour evolved using
the proposed approach on THY and CEN respectively. The
x-axis corresponds to cases (e.g., learners of some action a
bidding on tests of some class ¢) and the y-axis corresponds
to the mean maximum bid for each case. Whenever an in-
stance of class ¢ is observed, the bids of all the learners of
action a are considered and the maximum bid selected. The

468

17 _|_ -
Zo0s8+
a2
g
06T
X
(]
£04
c
]
Q
£ 0.2
1 .
0 : : : : : e : i

— o~ [52} — o (32} — o [52)

c c c f= f= c c f= =

(=] (=} o (=} o o o o

— — — o~ o o~ ™ ™M o®

case
Figure 2: Bidding behaviour on THY test data.

Compiled over all initializations, the vertical line
endpoints denote the first and third quartiles and
the vertical segment denotes the median.

-
T 0.8+ *
a
£
E 0.6 +
X
(]
€04+ “;
c
[
(V]
g021
+
0 + + + l
~— o — o
C c c C
o [} [} [}
— — o~ o~
case

Figure 3: Bidding behaviour (analogous to Figure
2) on CEN test data.

mean maximum bid for a single initialization is then calcu-
lated as the arithmetic mean of this maximum value over
all observations. In short, ideal bidding behaviour would
correspond to maximizing cases in which ¢ equals a and
minimizing all other combinations.

The bidding behaviour shown is consistent with the ac-
curacy results from Table 3. Specifically, if the approach
results in high DET values on a class ¢, then the bid values
for the case ‘conc’ tend to be consistently high. For exam-
ple, on THY, learners of action 3 almost always bid close to
1 on instances of class 3. On classes 1 and 2, these learn-
ers bid consistently low suggesting that classification error
results from poor bidding behaviour by learners matching
the minority classes. This is evident in Figure 2 where bids
for case ‘lon2’ overlap closely with bids for case ‘2on2’. The
same behaviour is seen on the CEN and (not shown) KDD
datasets.

Table 4 shows that on THY all classes tend to be rep-
resented in Tpop so that learners have the opportunity to
recognize out-of-class exemplars. However, most of the in-
stances in T},, always correspond to the majority class in
the underlying dataset, class 3. In addition, the counts rise
for an instance class whenever it matches the action of the
learners being evolved. For example, class 1 counts are high-
est when learners of action 1 are evolved. Thus, it appears



Table 4: Number of tests of each class in T}, at the
end of training on THY corresponding to the runs in
Table 3. The counts are grouped based on the action
of the evolved learners. Shown are the first quartile
(Q1), median (MED), and third quartile (Q3) values
over all initializations.

action | class Q1 | MED Q3
1| 6.25| 12.00 | 20.75

1 21 3.00 6.00 | 10.00

3 1 20.50 | 27.50 | 40.75

1 1.00 3.00 | 5.75

2 2 | 11.00 | 16.50 | 20.00

3 | 25.00 | 28.50 | 37.00

1 1.00 1.50 | 3.00

3 2| 6.25| 10.00 | 15.00

31 29.50 | 36.00 | 42.75

Table 5: Number of learners in the final solution
corresponding to the runs in Table 3. Shown are
the first quartile (Q1), median (MED), and third
quartile (Q3) values over all initializations.

class | Q1 | MED Q3
1(6.00| 7.00| 9.00

THY 2525 | 8.00 | 10.00
3| 6.25 7.00 8.00

1(6.00 | 8.00 | 10.00

CEN 21700 | 8.00][ 9.00
115.00 7.00 8.00

2125 550 | 6.75

KDD 3 | 1.00 5.00 5.75
4(1.00 | 3.00 | 5.00

5] 1.00| 1.00]| 1.00

the coevolution seeks out in-class exemplars as well.

Table 5 shows that within each exemplar class the ap-
proach decomposes the instance space. For example, the
median number of learners responsible for identifying THY
exemplars of class 1 is seven. What is not clear given the
current data is the form of this decomposition: do all seven
learners correctly identify roughly the same fraction of class
1 exemplars (and raise the same number of false positives),
or is there a learner that identifies the majority of class 1 ex-
emplars leaving the others with minimal contributions? Re-
gardless, the approach automatically determines how many
individuals need to participate in the final solution while at
the same time evolving the behaviour that defines how these
individuals are to be combined to form that solution.

Finally, training times on the three datasets are shown
in Table 6. They were collected using the C getrusage()
procedure and account for both system and user time. Al-
though there is room for improvement (runs on KDD using
PGPC took minutes) these run times are significantly faster
that GP without coevolution [12] (e.g., on the KDD dataset
a single run on one class using canonical GP takes eleven
hours to complete).

4.2.2  Random Test Point Population

Results using the baseline approach are shown in Table 7.
On CEN, the baseline approach does worse producing much
higher FPR values on class 1 and much lower DET values

469

Table 6: Training times in minutes corresponding
to the runs in Table 3. Shown are the first quartile
(Q1), median (MED), and third quartile (Q3) values
over all initializations.

| [ THY | CEN [ KDD |

Q1 50 65 151
MED 52 67 154
Q3 52 68 156

on class 2. On KDD, the results on class 1 and class 3 are
similar to the values produced by the proposed approach.
However, on class 4, the distinction-based test point gen-
eration scheme results in a significant improvement in the
detection rate without compromising the false positive rate.
On THY, the baseline approach appears to outperform the
proposed approach yielding higher DET values on class 1
and lower FPR values on class 3.

4.2.3  Other Classifier Results

In general, meaningful comparison with other approaches
is difficult because the aggregate accuracy values that are
typically reported hide class-wise rates that are significant
whenever datasets are unbalanced. This was not the case
on KDD where the winning entry in the KDD Cup achieved
DET rates of 99.5%, 8.4%, 97.1%, 83.3%, and 13.2% on
classes 1, 2, 3, 4, and 5 respectively [7]. The proposed ap-
proach provides competitive rates of 99.5%, 3.5%, 97.0%,
71.5%, and 20.7% on the respective classes. On THY, clas-
sifiers based on accuracy [3] were able to achieve classifica-
tion rates of 86.9% on the test data while the mean accuracy
of the proposed approach over all initializations was 94.1%.
The mean test accuracy on CEN using the proposed ap-
proach was 90.3% which is less than the reported accuracy
of 95.3% using C5.0 [1]. This comparison, however, does
not include DET rates, which are important given the un-
balanced nature of this dataset (labeling all exemplars as
the major class would provide accuracy of about 95%).

4.3 Additional Experiments Results

An unexpected outcome from the first set of experiments
was that the baseline approach appeared to outperform the
proposed approach on THY. Initial speculation was that the
proposed approach overfit the training data but analysis of
the training data accuracies relative to the test data accura-
cies (not shown) did not suggest this. To determine if per-
haps the size of Ly, was insufficient, a set of experiments
was performed where the size of the learner population was
doubled. Although the performance of the original approach
improved significantly, the performance of the baseline ap-
proach improved more dramatically, Table 8.

A possible explanation for this unexpected outcome is as
follows. A learner that identifies just a single instance of
a matching class (e.g., wins the bidding round for this in-
stance but otherwise bids low) may persist in Lpop if no
other learner does well on that instance. Since a limited set
of learners is allowed to persist across epochs and because
the criterion for entry into this set is Pareto-dominance of
a non-candidate, a candidate learner may do well on many
other instances and so be more desirable yet still be dis-
carded. Thus, Ly., may be evolved to contain learners that
identify just a handful of instances. Similarly, in Tpop, the



Table 7: Experimental results (analogous to Table
3) on the test data using the baseline approach.

class | Q1 MED | Q3

1 0.971 | 0.980 | 0.989

ACC 2 0.950 | 0.955 | 0.962
3 0.953 | 0.961 | 0.973

1 0.777 | 0.904 | 0.932

THY | DET 2 0.071 [ 0.319 | 0.712
3 0.980 | 0.985 | 0.989

1 0.008 | 0.016 | 0.027

FPR 2 0.001 | 0.006 | 0.016
3 0.143 | 0.284 | 0.453

1 0.934 | 0.938 | 0.940

ACC 2 0.934 | 0.938 | 0.940
1 0.986 | 0.990 | 0.994

CEN | DET ' —5—5 951 70.152 [ 0.168
1 0.832 | 0.848 | 0.876

FPR 2 0.006 | 0.010 | 0.014
1 0.920 | 0.923 | 0.925

2 0.945 [ 0.947 | 0.948

ACC 3 0.947 | 0.966 | 0.971
4 0.986 | 0.987 | 0.991

5 0.999 | 0.999 | 1.000

1 0.971 | 0.983 | 0.988

2 0.023 | 0.033 | 0.036

KDD | DET 3 0.937 | 0.967 | 0.969
4 0.157 | 0.264 | 0.547

5 0.086 | 0.143 | 0.275

1 0.087 | 0.091 | 0.095

2 0.001 | 0.002 | 0.005

FPR 3 0.018 | 0.031 | 0.038
4 0.001 | 0.003 | 0.005

5 0.000 | 0.000 | 0.001

Table 8: Experimental results (analogous to Table
3) on the test data using the baseline and original
approaches using twice as many learners in L;.p.

class Q1 MED Q3

1 0.973 | 0.979 | 0.987

ACC 2 0.945 | 0.952 | 0.960

3 0.934 | 0.952 | 0.960

1 0.565 | 0.719 | 0.836

THY (original) | DET 2 0.346 | 0.647 | 0.798
3 0.946 | 0.968 | 0.983

1 0.004 | 0.010 | 0.024

FPR 2 0.010 | 0.025 | 0.046

3 0.121 | 0.230 | 0.422

1 0.972 | 0.986 | 0.989

ACC 2 0.954 | 0.977 | 0.983

3 0.965 | 0.974 | 0.978

1 0.818 | 0.890 | 0.945

THY (baseline) | DET 2 0.179 | 0.771 | 0.903
3 0.981 | 0.983 | 0.988

1 0.008 | 0.012 | 0.027

FPR 2 0.003 | 0.010 | 0.013

3 0.048 | 0.110 | 0.248

470

40000 -
k-]
g 30000 +
]
[
2
T 20000 4
w
4
]
c
©
9 10000 -

0
0 10000 20000 30000 40000 50000
epoch
\ + orig o base —trend (orig) — trend (base)\

Figure 4: Turnover rates on THY for learners of
action 1. The cumulative number of displaced non-
candidate learners is plotted every 5000 epochs for
each initialization using the original (orig) and base-
line (base) approaches.

tests which these specialized learners identify will tend to
persist in a symbiotic relationship with the learners because
they make the distinctions between the specialist and the
non-specialists. The problem is compounded by the fact
that new candidates are generated from L., after selection
limiting the exploration of the solution space. With the
baseline approach, these specialists are less likely to persist
as it is unlikely that their counterpart tests will continue to
be generated every epoch.

This conjecture is supported by the learner turnover rates,
Figure 4, or the number of times a non-candidate is replaced
by a candidate at different stages of training for each ini-
tialization of the additional runs. The turnover rates for the
original approach (on average, one candidate learner was ac-
cepted every seventeen epochs) are much lower than for the
baseline approach indicating that learners persist for much
longer. However, neither trend line plateaus and the con-
stant linear increase suggests that learning and forgetting is
taking place; this would also account for the improved re-
sults achieved by doubling the size of Lpop (i.e., increasing
the memory size). Results for the other actions were similar.

Despite the fact that neither of the trendlines in Figure
4 plateaus, the system manages to reach a stable level of
performance, Figures 5 and 6. Figure 5 shows the sum over
all dimensions of the (unnormalized) outcome vectors of the
20 learners remaining in L, with respect to the 50 tests re-
maining in Tpop after selection (maximum value 1000). Fig-
ure 6 is similar except that the sum is taken over all 100
tests in the population (since there is no selection) and then
halved to make comparison easier. Interestingly, despite se-
lecting an entirely new T}, every epoch the degree of vari-
ance in the baseline approach is lower. In addition, per-
formance reaches a plateau around epoch 10000 suggesting
that training for 50000 epochs may be far too long. Results
for the other two actions were also similar.

The failure of learners to generalize as suggested above
has been identified in coevolutionary systems as focusing
while the learning and forgetting results from relativism [15].
Given the complexity of the problem domain in this work
further analysis is required to identify the exact cause of the
observed behaviour and how it relates to these ideas.



1100
1000
NN
o 900
g g ¥ % 1 % X
£ X X ¥y
g 800 x —%
=] / ¥ x §%§XXX
3 700
5 ool
600
£
w 500
400
300 T T T T
0 10000 20000 30000 40000 50000
epoch

Figure 5: Learning curve on THY for learners of
action 1 using the original approach. The sum of
the outcome vectors of the surviving learners with
respect to the surviving tests is plotted for each ini-
tialization along with a trendline.

1100
1000 +
X
900
800 /
700

600 /

sum of outcomes

500

400

300 T T T T .
0 10000 20000 30000 40000 50000
epoch

Figure 6: Learning curve (analogous to Figure 5)
on THY for learners of action 1 using the baseline
approach.

S.  CONCLUSIONS

In this work, a bid-based approach to classification was
presented in which individuals evolve bidding behaviour for
a preassigned action (class label). The proposed algorithm
coevolves a population of GP-based learners alongside a
population of training instances. The learners attempt to
decompose the problem by way of their bidding behaviour
while the goal of the tests is to distinguish between the learn-
ers. Since the test population represents a small subset of
all training instances, the algorithm scales to large datasets
(i.e., the cost of fitness evaluation is decoupled from the size
of the original dataset). Problem decomposition appears as
a natural property of the system as individuals are only as-
sociated with exemplars on which they provide the winning
bid. Thus, individuals cooperate to decompose the problem
while competition ensues between learners and the subset of
tests. Class-wise measures of performance were reported and
the approach was found to be competitive on large, multi-
class problems using much reduced computational overhead.

Due to the strict criterion for acceptance of candidate
learners and tests, the algorithm was suspected focusing on
a small number of exemplars resulting in individuals that
generalized poorly. Additional experiments need to be per-

471

formed to analyze the populations and determine the exact
coevolutionary dynamics that occur. Since scalability is a
goal of the proposed approach, early stopping criteria such
as the stagnation of the Pareto front should also be inves-
tigated. Finally, a thorough analysis of how the learners
decompose the instance space would provide useful insight
into the behaviour of the generated models.

6. ACKNOWLEDGMENTS

This work was conducted while Peter Lichodzijewski was
supported by an NSERC PGS-D Scholarship and a Killam
Postgraduate Scholarship. Malcolm. I. Heywood would like
to thank NSERC, MITACS, and CFI for their financial sup-
port.

7. REFERENCES

[1] D. J. Newman and S. Hettich and C. L. Blake and C. J. Merz.
UCI Repository of Machine Learning Databases
[http://www.ics.uci.edu/~mlearn/mlrepository.html]. Irvine,
CA: University of California, Dept. of Information and Comp.
Science, 1998.

S. Hettich and S. D. Bay. The UCI KDD Archive
[http://kdd/ics/uci/edu]. Irvine, CA: University of California,
Dept. of Information and Comp. Science, 1999.

E. Bernado-Mansilla and J. M. Garrell-Guiu. Accuracy-based
learning classifier systems: Models, analysis and applications
to classification tasks. Evolutionary Computation,
11(3):209-238, 2003

M. Brameier and W. Banzhaf. Evolving teams of predictors
with linear genetic programming. Genetic Programmaing and
Evolvable Machines, 2(4):381-407, 2001.

M. Brameier and W. Banzhaf. Linear Genetic Programming.
Springer, Genetic and Evolutionary Computation Series, 2007.
E. D. De Jong and J. B. Pollack. Ideal evaluation from
coevolution. Evolutionary Computation, 12:159-192, 2004.

C. Elkan. Results of the KDD’99 classifier learning. SIGKDD
Ezxplorations, 1(2):63-64, 2000.

S. G. Ficici and J. B. Pollack. Pareto optimality in
coevolutionary learning. In Proceedings of the 6th European
Conference on Advances in Artificial Life, pages 316-325,
2001.

G. Folino, C. Pizzuti, and G. Spezzano. Boosting technique for
combining cellular GP classifiers. In Proceedings of the
European Conference on Genetic Programming, pages 4767,
2004.

J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, 1992.
W. B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer-Verlag, 2002.

M. Lemczyk and M. I. Heywood. Training binary GP classifiers
efficiently: A pareto-coevolutionary approach. In Proceedings
of the European Conference on Genetic Programming, pages
299-240, 2007.

A. R. McIntyre and M. I. Heywood. MOGE: GP classification
problem decomposition using multi-objective optimization. In
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 863—-870, 2006.

J. Noble and R. A. Watson. Pareto coevolution: Using
performance against coevolved opponents in a game as
dimensions for pareto selection. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 493500,
2001.

R. A. Watson and J. B. Pollack. Coevolutionary dynamics in a
minimal substrate. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 702—709, 2001.
S. Wilson. Classifier fitness based on accuracy. Evolutionary
Computation, 3(2):149-175, 1995

(2]

(3]

(4]

(5]
(6]
(7]
(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]



