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ABSTRACT 
A novel approach, model-based clustering, is described for 
identifying complex interactions between genes or gene-
categories based on static gene expression data. The approach 
deals with categorical data, which consists of a set of gene 
expression profiles belonging to one category, and a set belonging 
to another category. An evolutionary algorithm (Meta-Optimizing 
Semantic Evolutionary Search, or MOSES) is used to learn an 
ensemble of classification models distinguishing the two 
categories, based on inputs that are features corresponding to gene 
expression values. Each feature is associated with a model-based 
vector, which encodes quantitative information regarding the 
utilization of the feature across the ensembles of models. Two 
different ways of constructing these vectors are explored. These 
model-based vectors are then clustered using a variant of 
hierarchical clustering called Omniclust. The result is a set of 
model-based clusters, in which features are gathered together if 
they are often considered together by classification models – 
which may be because they’re co-expressed, or may be for subtler 
reasons involving multi-gene interactions. The method is 
illustrated by applying it to two datasets regarding human gene 
expression, one drawn from brain cells and pertinent to the 
neurogenetics of aging, and the other drawn from blood cells and 
relating to differentiating between types of lymphoma. We find 
that, compared to traditional expression-based clustering, the new 
method often yields clusters that have higher mathematical 
quality (in the sense of homogeneity and separation) and also 
yield novel and meaningful insights into the underlying biological 
processes.  

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – 
Program synthesis 

General Terms 
Algorithms, Design, Experimentation 
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1. INTRODUCTION 
A variety of methodologies for analyzing gene expression data 
have emerged in recent years, including but not limited to: 
identifying which genes are maximally differentiated between two 
categories, clustering genes based on coexpression across multiple 
samples or multiple experiments [3, 8, 10, 21, 23, 24, 25, 30], the 
application of supervised categorization algorithms to learn rules 
distinguishing two or more categories of gene expression profiles 
from each other [6, 7, 9, 12, 13], and the inference of genetic 
interaction networks from gene expression time series data [17, 
18, 20, 27, 32]. These methodologies serve different purposes, 
such as induction of diagnostic models, qualitative understanding 
of the biological phenomena underlying a dataset, and the search 
for specific actors (e.g. genes, proteins) that may be involved in a 
biological phenomenon. This paper discusses a methodology that 
aims to identify relevant interactions between genes, proteins, and 
biological processes, allowing for a qualitative understanding of 
these interactions in the context of a microarray dataset. 

Clustering is the most common tool for interaction 
identification. By determining which genes or gene-categories 
have expression-value profiles that cluster together across 
multiple samples or multiple experiments, one gets a picture of 
which genes are “associated” with each other. These associations 
do not have a clear biological interpretation, as co-expression can 
occur for a variety of reasons. Furthermore, many types of 
interactions will not be identified by this approach. For instance, 
one won’t recognize ternary interactions wherein, say, C is only 
highly expressed when A and B are highly expressed together.  

We present here a novel technique, model-based clustering, 
for identifying interactions from microarray gene expression data, 
which captures interactions that ordinary expression-based 
clustering misses. The end result of the analysis is familiar to 
bioinformaticians: a clustering of features (representing genes or 
gene-categories) that seem to have a significant interrelationship. 
What is novel is that these clusters are not determined based on 
co-expression but via more involved analysis.  

In this paper we describe two variants of the model-based 
clustering method: Model-Based Utilization Clustering (MUTIC) 
and Model Based Role Analysis (MOBRA). We also discuss its 
application to two datasets: one consisting of gene expression 
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levels in human brain cells, collected in a study of the 
neurogenetics of aging; and one containing gene expression of 
human blood cells affected by different kinds of lymphoma. We 
discuss the relevant biological interactions that the new method 
finds for these datasets. We also consider the homogeneity and 
separation properties of clusters found via model-based clustering, 
concluding that they are of high quality in the examples studied. 

2. METHODOLOGY 
2.1 Outline 
Model-based clustering has the following steps and requirements: 
• Data input: the original data submitted to model-based 

clustering has to be categorical, since classification models 
are the entities actually used to produce the intermediate, 
model-based vectors used in clustering. 

• Classification: data defined by the previous step is then 
submitted to a supervised learning algorithm, or 
classification method. A classification method employed by 
model-based clustering has to be able to produce a large 
number of different classification models. More specifically, 
the models should either use different feature subsets for 
performing classification, or be able to provide some metric 
for measuring the utility of a feature in classification. 

• Model-based Transformation: for each feature in the dataset, 
a model-based vector is created, based on the utilization (or 
utility) of the feature across all models produced in the 
previous step (two possible ways of computing these vectors 
are described in Section 2.4). 

• Clustering: a clustering algorithm is then applied to the 
transformed data (model-based vectors) generated in the 
previous step. It is expected that clusters produced that way 
will be able to give interesting insights into the inter-
relationships among features concerning the differences 
between the dataset categories. 

In the following sections, we will describe the datasets, 
classification method, model-based transformations and clustering 
algorithm used in the examples of model-based clustering to be 
presented. 

2.2 Datasets 
Two datasets were used in order to explore and validate the 
model-based clustering methodology: 
Aging brain: this dataset is taken from [16], a microarray analysis 
of gene expression changes in post-mortem brain samples of 
frontal cortex from 30 individuals ranging in age from 26 to 106 
years. After looking for genes which expression correlates 
significantly with age, clusters of genes that are up and down-
regulated in aged and young individuals were found. A negative 
correlation when comparing the gene expression from the group 
of young individuals (less than 42 years old) versus aged ones 
(more than 72 years old) was found in a large subset of genes, 
mostly related with synaptic function, neuronal plasticity, signal 
transduction, vesicular transport, protein metabolism, Ca+ 
homeostasis, microtubule cytosqueleton, aminoacid modification, 
hormones and immune response. This subset of 19 individuals 
belonging to the categories “Young” and “Old” comprises the so-
called Aging Brain dataset used in the present study.  
Lymphoma: this dataset is taken from [27]. It contains 58 cases of 
diffuse large B-cell lymphoma, and 19 cases of follicular 

lymphoma (77 total). It is interesting to stress that this dataset 
poses a somewhat different problem than the previous one, from a 
biological standpoint. While a dataset analyzing old versus new 
subjects is expected to find marked, sharper differences, the 
distinction between two types of the same condition (lymphoma) 
is expected to be subtler. 

2.3 MOSES 
Meta-optimizing semantic evolutionary search (MOSES) [15] is a 
recently developed program evolution system distinguished by 
two key mechanisms: (1) exploiting semantics (what programs 
actually mean) to restrict and direct search; and (2) limiting the 
recombination of programs to occur within bounded subspaces 
(constructed on the basis of program semantics). This has been 
shown to lead to superior performance and scalability in 
comparison to current purely syntactic techniques (local search, 
genetic programming, etc.). Furthermore, the evolved programs 
do not suffer from any kind of “bloating”, and are generally quite 
comprehensible. This is of particular interest for applications such 
as microarray analysis, where it is useful to know not only that a 
method achieves good performance, but to understand how. 
A detailed description of MOSES is beyond the scope of this 
paper. In the context of model-based clustering, however, it 
suffices to mention that MOSES produces an extensive collection 
of different classification models. Structurally and functionally, 
these are the same as GP models (program trees), though with a 
strong tendency for parsimony (small sizes). Feature utilization is 
obviously different among the models in a single ensemble; that 
is, the feature set used by each model will tend to be different 
from the others, though with some overlap. 
The instance of MOSES used here works with logical operators 
only; the datasets were therefore discretized into Boolean values. 
This discretization was performed by taking the median value of a 
given feature in the dataset was a threshold, and assigning false to 
values below the threshold, true otherwise. On both datasets, 
MOSES was run with a total of 50 Boolean features 
corresponding to the most-differentiated genes. Ten independent 
runs with 10-fold cross-validation were used, with a total of 
100,000 evaluations per run. In the end the best models produced 
– those with highest fitness and smallest size – were used for 
model-based clustering. 

2.4 Model-Based Transformation 
Two strategies of mapping vectors from classification models to 
features were devised here. 
The first one is called Model-Based Utility Clustering, or MUTIC 
for short. A version of MUTIC, using ensemble of GP models, is 
described in [11]. In the specific setting of MOSES, a MUTIC 
vector for a given feature f in the dataset is generated as follows. 
Let M={m1, m2, m3,...,mn} be the models generated by the 
application of MOSES to the data. A MUTIC vector is defined by 

VMUTIC(f) = [u(f,m1), u(f,m2), u(f,m3), ..., u(f,mn)], 
where u(f,m) returns 1 if feature f is used by model m, 0 
otherwise. 
The other model-based vector mapping approach used is called 
Model-Based Role Analysis, or MOBRA. In order to describe 
how MOBRA operates, we consider again the set of features 
F={f1, f2, f3, ..., fd} in the dataset. A MOBRA model-based vector 
for a given feature fi is then defined as 
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VMOBRA(fi) = {c(fi,f1), c(fi,f2), c(fi,f3), ..., c(fi,fd)}, 
where c(fi, fj) returns 1 if fi and fj co-occur in at least one model in 
M, and 0 otherwise. 
These different mappings can be thought of as “answering” two 
different questions about feature usage in classification models. 
MOBRA tries to answer the question of which features tend to 
play similar roles to each other, in the dataset in question. In the 
context of the datasets used here, of course, this refers to a 
biological role. MUTIC tries to answer the question of which 
features may be inter-related in some non-trivial way to produce 
the categorical outcomes observed in the dataset. This is 
particularly interesting for gene expression analysis, considering 
that genes form self-regulatory networks with complex, non-
obvious gene-gene interactions. And of course, MOBRA and 
MUTIC are just two possible model-based mappings; other 
questions may lead to new model-based mappings. 

2.5 Clustering 
Once the model-based vectors have been constructed for all the 
relevant features, the final step in the model-based clustering 
methodology is to cluster the utilization vectors. One may use 
essentially any clustering algorithm here; after experimenting 
with a number of alternatives, we settled on a technique of our 
own construction called Omniclust [11], which is a simple 
variation on the standard hierarchical clustering algorithm.  
While choices between clustering algorithms are largely 
qualitative, our choice of Omniclust perhaps merits brief 
discussion. Generally we feel that hierarchical rather than 
partitioning based clustering is more appropriate in a utilization-
based-clustering context, because one is principally looking for 
small sets of features that have strong interactions. Standard 
hierarchical clustering as used in bioinformatics [8] does produce 
small clusters, but at its lowest levels it can be prone to artifacts 
due to the arbitrary nature of the binary groupings it performs. For 
instance, if there is a natural grouping of three genes, standard 
binary hierarchical clustering won’t necessarily find it, but may 
instead either divide it among two or even three groupings of two; 
at best it will merge it into a grouping of four, together with 
another gene that isn’t as closely related to the other three. 
Omniclust follows the basic logic of hierarchical clustering but 
isn’t based on an arbitrary binarization. Other recent hierarchical 
clustering algorithms seem to deviate from binary hierarchical 
modeling as well [2], [22]. The less arbitrary hierarchy 
qualitatively seems to display fewer odd artifacts for very small 
clusters, which are the ones of most interest from a utilization-
based clustering perspective.  
We now describe the first level of the Omniclust algorithm, in a 
general mathematical setting from which the application to 
clustering utilization vectors will be apparent. Let G=(V, E) be a 
non-directed, weighted graph where nodes in V are elements to be 
clustered and the edges in E are weighted by the similarity 
measurement between the nodes connected by them. That is, for 
any a, b in V and e={a, b} in E, weight(e)=similarity(a, b). Then, 
the basic Omniclust step is: 
Omniclust(G)  
1) S←{} (Initialize as empty the set of edges to be preserved.) 
2) For each v in V do 

a) Let edges(v) be the set of all edges connecting v to 
other vertices. 
b) Let s be the heaviest edge in edges(v) 

c) S←S∪{s} 
3) E←S (Deletes all edges that were not selected for preservation 
by any node inspection above. After this step, G will typical be 
portioned in many subgraphs – called “clustlets” - in tree and line 
topologies.) 
4) Let C be the set of connected subgraphs of G. (Defines the 
output set of all clustlets.) 
5) Return C 
The clustlets themselves can then be used as nodes in a new graph 
that is then presented to Omniclust (along with an inter-cluster 
similarity metric), and the process can be repeated until 
Omniclust produces just one cluster, which will be the root of a 
hierarchical clustering based on graph-partitioning in each level.  
However, the analysis of results presented here is restricted to 
clustlets. This choice comes not only from the easy analysis of 
small-sized clusters, but also as a natural outcome from the 
relatively small number of features clustered in our experiments.  
Finally, in the context of utilization-based clustering, we have 
chosen to run Omniclust using the cosine similarity measure. This 
choice was a consequence of the sparse nature of the feature 
vectors in Utility Profiles produced by ensembles composed by 
MOSES-generated classification models. Any given model uses 
only a handful of features and therefore even a whole ensemble 
uses only a small subset of all available features in a dataset. In 
such a feature utilization scenario, the utility of a given gene or 
gene family for a given ensemble will be zero for most models, 
and therefore the corresponding MUTIC and MOBRA vectors  
 

Table 1. Examples of MOSES models. 

 

Dataset Example Models 
Aging 
Brain 

or(32052_at NM_006108) 
or(32052_at NM_006272) 
or(32052_at not(NM_130463)) 
or(32052_at not(NM_002576)) 
or(32052_at not(NM_001217)) 
or(NM_000518 NM_006108) 
or(NM_000518 41720_r_at) 
or(NM_000518 not(1217_g_at)) 
or(NM_000518 not(NM_001217)) 
or(NM_000518 not(1558_g_at))  

Lymphom
a 

or(M14328_s_at NM_005566 not(NM_005292)) 
or(NM_001428 NM_021130 not(NM_005292)) 
or(NM_001428 NM_005566 not(NM_005292)) 
or(NM_001428 HG1980-HT2023_at 
not(NM_005292)) 
or(NM_002306 HG1980-HT2023_at 
not(NM_005292)) 
or(NM_194327 HG1980-HT2023_at 
not(NM_005292)) 
or(NM_145902 not(NM_005292) not(NM_002989)) 
or(NM_145901 not(NM_005292) not(NM_002989)) 
or(NM_005566 NM_002306 not(NM_005292)) 
or(NM_005566 not(NM_005292) NM_002629) 
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will tend to be sparse. Cosine similarity is often used in other 
machine learning domains involving sparse vectors (such as text 
classification using word frequency vectors [31]) due to its 
capacity to deal well with sparseness and produce meaningful 
similarity relations. 

3. RESULTS 
MOSES generated 40 “best” models for the Lymphoma dataset, 
and 88 for aging. For illustration, a few of them are displayed in 
Table 1, where feature codes correspond to DNA sequences. As 
one can see, MOSES was able to produce very small Boolean 
automata for the datasets analyzed. Yet despite their simplicity, 
MOSES models achieved high out-of-sample accuracies – 94.6% 
for Lymphoma and 95.3% for Aging Brain.  
Model-based vectors were generated from the models using both 
MUTIC and MOBRA approaches, and those were clustered. 
Clustering results are evaluated from both quantitative and 
qualitative standpoints in the following sections. 

3.1 Quantitative Analysis 
Clustering is a qualitative data analysis method; there are no 
robust, commonly accepted, objective metrics for comparing 
different clustering algorithms to each other. [8] gives a 
comprehensive overview of contemporary clustering methods and 
a review of methods for comparing them to each other.  
Choosing a variant of a standard technique, we have measured the 
quality of a clustering as the product homogeneity x separation. 
Homogeneity is calculated as 1/(1+A) where A is the average of 
the distances of all members of the cluster to their nearest cluster-
mates. Separation is simply the minimum distance from any given 
member of the cluster to elements outside the cluster. These 
particular definitions of separation and homogeneity were used in 
order to minimize the influence of the size of the cluster on its 
quality. (As we have observed empirically, using more traditional 
definitions of separation and homogeneity, e.g. defining 
homogeneity as the average of all similarities between all 
members of a cluster, causes small clusters to habitually display 
higher quality than larger ones, which is an undesirable bias.) 
By comparing MUTIC and MOBRA to traditional expression-
based clustering, according to this cluster quality metric, we 
found that model-based clustering often produces clearer clusters, 
with roughly 10 to 100 times greater quality, as shown in the first 
three rows of Table 2.  
This comparison, however, is somewhat unfair to the standard 
method, because model-based vectors are binary and tending to 
sparseness, and therefore numerically very different from the non-
sparse, real-valued gene expression vectors. In order to detect a 
potential unfair advantage based on those characteristics, we 
applied two different binarization policies to the gene expression 
vectors: 

• Average Policy: all values in a given feature vector below 
the average of those values were set to zero. 

• Median Policy: all values in a given feature vector below the 
average of those values were set to zero. This policy may be 
of special interest since MOSES itself binarizes features by 
median thresholding. 

Using any one of those sparseness policies raises the quality of 
the expression-based clustering to the same order of magnitude as 

the utility-based clustering. Still, MOBRA and MUTIC keep a 
margin of superiority, albeit not quite as dramatic. 

3.2 Qualitative Analysis 
Next we briefly investigate the qualitative biological significance 
of the clusters found by our methods. Due to space limitations the 
analysis is necessarily restricted to a handful of highly salient 
observations. 
Although focused on qualitative biological aspects, the analysis 
presented below also makes use of a quantitative tool: the 
GO::TermFinder package [5]. This package computes the p-
values of associations between genes and Gene Ontology (GO) 
categories. Since the GO is a carefully constructed hierarchy of 
genes based on biological knowledge, such estimates from 
GO::TermFinder are very helpful in evaluating what biological 
insights lie in a given cluster. However, they cannot be used to 
conclude the insignificance of a cluster, only the significance, 
because of the currently incomplete nature of the GO ontology. 
 

Table 2. Model-based versus expression-based clustering. 

Quality of the Best Cluster Approach 

Aging Brain Lymphoma 

MUTIC 0.6454 0.5905 

MOBRA 0.4375 0.4077 

Gene expression 0.0045 0.1995 

Gene expression, average 
binarization 

0.1657 0.4071 

Gene expression, median 
binarization 

0.2827 0.3859 

 
3.2.1 Lymphoma Dataset 
As will be detailed below, MUTIC and MOBRA clustered 
features with a bias to metabolic processes, especially to 
“glycolysis”. This result has biological support as these pathways 
are known to be altered in cancers. Comparing the two 
techniques, MUTIC tends to have a slightly better performance as 
it generated less clusters and obtained the best statistical result 
(cluster 6). 

3.2.1.1 MOBRA 
MOBRA clustering produced 8 clusters, listed in Table 3. Dataset 
features, originally DNA sequences, are mapped to their 
corresponding genes. Features that could not be associated to any 
gene or described are omitted. Since the mapping of sequences to 
gene is not one-to-one, a given gene may appear in more than one 
cluster or even more than once in the same cluster. Those 
observations are also valid for all remaining tables showing 
clustering results in this paper. 
The first 4 clusters did not have much biological information and 
have higher p values (near or more than 1). Cluster 5 (HSPD1, 
ALDOA, MIF and GM2A) obtained higher p-values for “cellular 
lipid metabolic process” (0.31; MIF and GM2A) and 
“carbohydrate metabolic process” (0.44; ALDOA and GM2A).  
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Table 3. MOBRA clustering of Lymphoma dataset. 

# Genes 
1 CCL21: chemokine (C-C motif) ligand 21 
 HMGA1: high mobility group AT-hook 1 
2 MT2A : metallothionein 2A 
 LGALS3: lectin, galactoside-binding, soluble, 3 

(galectin 3) 
3 GPR18: G protein-coupled receptor 18 
4 PPIA: peptidylprolyl isomerase A (cyclophilin A) 
 ENO1: enolase 1, (alpha) 
5 MIF: macrophage migration inhibitory factor 

(glycosylation-inhibiting factor) 
 ALDOA: aldolase A, fructose-bisphosphate 
 HSPD1: heat shock 60kDa protein 1 (chaperonin) 
 GM2A: GM2 ganglioside activator 
6 LGALS3: lectin, galactoside-binding, soluble, 3 

(galectin 3) 
 ENO1: enolase 1, (alpha) 
 PKM2 (NM_002654): pyruvate kinase, muscle 
7 LDHA : lactate dehydrogenase A 
 PKM2 : pyruvate kinase, muscle; 
 PGAM1 : phosphoglycerate mutase 1 (brain) 
8 PKM2 (NM_182471): pyruvate kinase, muscle 
 ALDOA : aldolase A, fructose-bisphosphate 
 IFI30 : interferon, gamma-inducible protein 30 
 ALDOA : aldolase A, fructose-bisphosphate 
 ITGA4 : integrin, alpha 4 (antigen CD49D, alpha 4 

subunit of VLA-4 receptor) 
 
All features from cluster 5 are present in “primary metabolic 
process” with a non significant p-value (1; HSPD1, ALDOA, MIF 
and GM2A). We know that metabolic processes are affected in 
cancer and tumors (recently reviewed by [26]). Clusters 6 to 8 
reinforce this idea as they all obtained lower and more significant 
p-values for the “glycolysis” category (0.0041, 2 out of 3 features: 
ENO1 and PKM1 - cluster6; 2.74e-6, 3 out of 3 features: LDHA, 
PGAM1 and PKM2 - cluster 7; 0.016, 2 out of 5 features: 
ALDOA and PKM2 - cluster8). Cluster 8 also have features 
within “developmental process” (ITGA4, CTSB) and “response to 
stimulus” (IFI30, CTSB) but these with near one p-values. 
However, Integrins (ITGA4) are a type of cell-adhesion 
molecules known to have roles in many types of cancers 
(reviewed by [4]) and Cathepsin-L (of the family of CTSB) are 
involved in lymphoid organ regulation [14]. 

3.2.1.2 MUTIC 
MUTIC clustering produced 6 clusters on the Lymphoma dataset. 
Those are listed in Table 4. 
Clusters 1 and 2 do not show much biological information or GO 
categorization support. But from cluster 3 on, there is a strong 
support for metabolism, especially “glycolysis”, as with the 
MOBRA results. Clusters 3 and 4 have higher p-values, but with a 
bias to “metabolic process”. Cluster 3 (ALDOA, HSPD1), had a 
non-significant p-value to “macromolecule metabolic process” 
and cluster 4 (MIF, GM2A) has a p-value of 0.14 to “cellular lipid 
metabolic process”. Cluster 5 had a p-value of 0.0087 for 
“glycolysis” with ALDOA and PKM2, and also joined within 
“developmental process” the features ITGA4 and CTSB, just like 
MOBRA in its cluster 8. 

Cluster 6 grouped 11 features and, from these, 5 have a strong 
support to 'glycolysis' category with a p-value of 9.51e-08 
(LDHA, ALDOA, PGAM1, ENO1, PKM2). This is the best result 
obtained by both MUTIC and MOBRA. Also, “cell organization 
and biogenesis” was annotated with low significance to TUBB 
and ENO1. This category is broadly known to be disrupted in 
cancers and tumors. 

3.2.2 Aging Brain Dataset 
In the Aging Brain Dataset, MOBRA and MUTIC mutually 
corroborated in many GO categorizations. Their best cluster 
categorization to “negative regulation of apoptosis” has relevance 
to the dataset. In sum MUTIC and MOBRA had equal 
performance, with categorizations with more or less the same 
significance. A more detailed exposition is presented below. 

3.2.2.1 MOBRA 
MOBRA generated nine clusters on the Aging Brain dataset, as 
shown in Table 5. 
 

Table 4. MUTIC clustering of Lymphoma dataset. 

# Genes 

1 PPIA : peptidylprolyl isomerase A (cyclophilin A) 

 ENO1 : enolase 1, (alpha) 

2 CCL21 : chemokine (C-C motif) ligand 21 

 HMGA1 : high mobility group AT-hook 1 

3 HSPD1 : heat shock 60kDa protein 1 (chaperonin) 

 ALDOA : aldolase A, fructose-bisphosphate 

4 PKM2 : pyruvate kinase, muscle 

 GM2A : GM2 ganglioside activator 

 MIF : macrophage migration inhibitory factor (glycosylation-
inhibiting factor) 

5 PKM2 : pyruvate kinase, muscle 

 ITGA4 : integrin, alpha 4 (antigen CD49D, alpha 4 subunit of 
VLA-4 receptor) 

 ALDOA : aldolase A, fructose-bisphosphate 

6 GPR18 : G protein-coupled receptor 18 

 MT2A : metallothionein 2A; 

 LGALS3 : lectin, galactoside-binding, soluble, 3 (galectin 3) 

 MT2A : metallothionein 2A; 

 LDHA : lactate dehydrogenase A 

 LGALS3 : lectin, galactoside-binding, soluble, 3 (galectin 3) 

 ENO1 : enolase 1, (alpha) 

 PKM2 : pyruvate kinase, muscle 

 IFI30 : interferon, gamma-inducible protein 30 

 PGAM1 : phosphoglycerate mutase 1 (brain) 

 ALDOA : aldolase A, fructose-bisphosphate; 
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Table 5. MOBRA clustering of Aging Brain dataset. 

# Genes 

VDAC1 : voltage-dependent anion channel 1 

carbonic anhydrase XI (CA11), mRNA. 

ATPase, H+ transporting, lysosomal 13kDa 

HBB : hemoglobin, beta 

1 

glutamate receptor, ionotropic 

PAK1 : p21/Cdc42/Rac1-activated kinase 1  

CALM1 : calmodulin 1  

DUSP3 : dual specificity phosphatase 3  

2 

spondin 1, extracellular matrix protein (SPON1) 

PAK1 : p21/Cdc42/Rac1-activated kinase 1  

synapsin II (SYN2), transcript variant IIb, mRNA. 

OGT : O-linked N-acetylglucosamine) transferase  

3 

FADS1 : fatty acid desaturase 1 

INPP4A : inositol polyphosphate – 4 - phosphatase 

hemoglobin, beta (HBB), mRNA. 

ZNF238 : zinc finger protein 238 

4 

PCMT1 : protein-L-isoaspartate (D-aspartate) O - 
methyltransferase; 

50h7 Human retina cDNA randomly primed sublibrary Homo 
sapiens cDNA, mRNA sequence; 

protein kinase C, zeta (PRKCZ), mRNA. 

Thy-1 cell surface antigen (THY1), mRNA. 

Thy-1 co-transcribed (LOC94105), mRNA. 

5 

annexin A4 (ANXA4), mRNA. 

HBB : hemoglobin, beta;CD113t-C, HBD 6 

RAB6A : RAB6A, member RAS oncogene family 

VAMP1 : vesicle-associated membrane protein 1  7 

ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 
(Hu antigen B) (ELAVL2), mRNA. 

p21/Cdc42/Rac1-activated kinase 1  8 

syndecan 2 (heparan sulfate proteoglycan 1, cell surface-
associated, fibroglycan) (SDC2), mRNA. 

MAP2 : microtubule-associated protein 2 

HLF : hepatic leukemia factor 

S100 calcium binding protein, beta (neural)  

9 

adaptor-related protein complex 1, sigma 1 subunit (AP1S1), 
transcript variant 2, mRNA. 

 
The GO::TermFinder package was used to evaluate MOBRA 
clusters with GO categorization within “biological process”. The 
most significant cluster obtained by MOBRA was cluster 5, with 
a p-value of 0.00019. It was categorized as “negative regulation 
of apoptosis” based on 3 out of 4 features (ANXA4, THY1, 
PRKCZ). By definition, apoptosis is an event linked to aging by 

many aspects. A deregulated apoptosis system can lead to cancers 
or neurodegenerative diseases, common in aging (reviewed by 
[1]). 
Four other clusters obtained lower p-values with little significance 
and biological importance yet to be explored. Cluster #1 obtained 
a p-value of 0.07 for “ion transport” features (ATP6V1G2, 
VDAC1, GRIN2A). Cluster #2, with the features DUSP3 and 
PAK1 scored a p-value of 0.64618 for “phosphate metabolic 
process”. Cluster #6 for “transport” with the features HBB and 
RAB6A. Cluster #9 with a p-value of 0.11 for 2 out its 5 features 
(S100B and MAP2) to “regulation of protein metabolic process”. 
Clusters #3, 4, 7 and 8 scored low significance (p-value equal or 
over 1.0) according to GO::TermFinder and will not be discussed. 
They may of course have biological significance not revealed by 
the current state of the GO database. 

3.2.2.2 MUTIC 
MUTIC applied to the Aging brain dataset produced ten clusters, 
shown in Table 6. 
The most significant MUTIC cluster supported the best MOBRA 
cluster result: cluster #2 was also categorized to “negative 
regulation of apoptosis” with a significant p-value of 0.007 (little 
less significant than the correspoding MOBRA value), and with 2 
same features (ANXA4, THY1). The other feature was left to 
another cluster with no significant categorization. 
MUTIC also generated a more significant cluster, #10, with a p-
value of 0.02. This cluster has a total of 6 features, 4 of them 
categorized to “phosphate metabolic process” (PAK1, DUSP3, 
THY1, PRKCB1). The features PAK1 and DUSP3 was also part 
of a cluster with the same categorization from MOBRA, but with 
less significant p-value. The biological importance of the GO 
category corresponding to these two clusters was already 
discussed in the MOBRA section. 
Three other clusters had less significant categories. Cluster #8, p-
value of 0.38, for “transport” also joined the HBB and RAB6A 
features like MOBRA, but another feature VDAC1 was added to 
this category. Cluster #4 for “regulation of biological process” 
with the features “ELAVL2, SYN2, MAP2” and a p-value of 
0.34. Cluster #9 for “biosynthetic process”, with a p-value of 0.39 
and 3 out of 5 features in this category (OGT, ATP6V1G2, HBB). 
The other clusters had no significance according to 
GO::TermFinder, and will not be discussed. 

4. Conclusions 
We have presented a novel analytical method, model-based 
clustering, and illustrated its behavior by discussing the results of 
its application to two test datasets, and using two different model-
based mappings. In both cases the method has shown itself able to 
identify interesting inter-gene, inter-process and condition-related 
interactions.  
Like standard expression-based clustering, this is ultimately a 
method of qualitative data analysis, and therefore the evaluation 
of the method is not a simple thing. The true test of the method 
will be whether, when applied across a wide variety of datasets 
and interpreted by researchers familiar with those datasets and 
their biological contexts, the method is successful at directing 
researchers toward useful and novel interpretations of their data.  
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Table 6. MUTIC clustering of Aging Brain dataset. 

Quality Genes 

PAK1 : p21/Cdc42/Rac1 - activated kinase 1  0.6454 

SDC2 : syndecan 2  

THY1 : Thy - 1 cell surface antigen 0.6268 

ANXA4 : annexin A4 

ANK2 : ankyrin 2, neuronal 

RHOBTB3 : Rho-related BTB domain containing 3 

0.5375 

GRIN2A : glutamate receptor, ionotropic, N - 
methyl D - aspartate 2A 

MAP2 : microtubule - associated protein 2 

SYN2 : synapsin II;SYNII, SYNIIa, SYNIIb 

0.5335 

ELAVL2 : ELAV - like 2 (Hu antigen B) 

SPON1 : spondin 1, extracellular matrix protein 

PCMT1:protein-L-isoaspartate O- methyltransferase 

FADS1 : fatty acid desaturase 1 

0.5306 

HLF : hepatic leukemia factor 

AP1S1:adaptor-related protein complex 1,sigma 1  0.5105 

S100B : S100 calcium binding protein B; 

VAMP1 : vesicle - associated membrane protein 1  

50h7 Human retina cDNA randomly primed 

0.4912 

PRKCZ : protein kinase C, zeta 

RAB6A : RAB6A, member RAS oncogene family 

HBB : hemoglobin, beta 

CA11 : carbonic anhydrase XI 

HBB : hemoglobin, beta 

0.4859 

VDAC1 : voltage - dependent anion channel 1 

ATP6V1G2 : ATPase, H+ transporting, lysosomal 
13kDa, V1 subunit G2 

INPP4A : inositol polyphosphate - 4 - phosphatase 

ATP6V1G2 : ATPase, H+ transporting, lysosomal 
13kDa, V1 subunit G2 

ZNF238 : zinc finger protein 238 

HBB : hemoglobin, beta 

0.4634 

OGT : O - linked N - acetylglucosamine transferase  

THY1 : Thy - 1 cell surface antigen 

KLHDC3 : kelch domain containing 3 

DUSP3 : dual specificity phosphatase 3  

PRKCB1 : protein kinase C, beta 1 

PAK1 : p21/Cdc42/Rac1 - activated kinase 1  

CALM1 : calmodulin 1  

0.4583 

PAK1 : p21/Cdc42/Rac1 - activated kinase 1  

 

However, there is also an objective component to the advantage 
of the present approach over traditional clustering, in that there 
are some types of interrelationships that utilization-based 
clustering can capture, which traditional expression-based 
clustering is mathematically unable to.  
A note should be made on the use of MOSES in these 
experiments, rather than some other supervised categorization 
method. A requirement for model-based clustering is a 
categorization method that learns a variety of different models for 
a single problem, in which the different models have differences 
in feature utilization that are easy to detect. In [11] we have 
reported some results obtained using standard Genetic 
Programming (GP) together with the MUTIC methodology; 
however, for the further explorations given here with MUTIC and 
MOBRA, we chose to switch from GP to MOSES. The reason for 
this switch was the improved compactness of the MOSES models. 
GP models often suffer from “bloat,” a phenomenon which often 
leads to the incorporation into a model of features that aren’t 
really essential to the model’s accuracy, but are difficult to 
remove via simplistic pruning methods. Being smaller, MOSES 
models introduce less noise into the model-based clustering 
process. A systematic comparison of model-based clustering 
using GP and MOSES goes beyond the scope of this paper, but 
qualitatively speaking we have observed that the MOSES-based 
model-based clustering results tend to have higher clustering 
quality and more biological relevance. 
While we have dealt only with static gene expression data in this 
work, the method can be applied to time series data, when 
available, and we intend to do so in the future, along with 
carrying out more extensive applications to other gene expression 
datasets.  
Finally, it should be noted that the model-based clustering 
algorithm itself is not restricted to gene expression data, but may 
be of much more general value in a variety of different domains. 
It is potentially applicable to any dataset that is may be 
meaningfully treated as categorical and that displays complex 
inter-feature interactions. 
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