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ABSTRACT
The runtime analysis of randomized search heuristics is a
growing field where, in the last two decades, many rigorous
results have been obtained. These results, however, apply
particularly to classical search heuristics such as Evolution-
ary Algorithms (EAs) and Simulated Annealing. First run-
time analyses of modern search heuristics have been con-
ducted only recently w. r. t. a simple Ant Colony Optimiza-
tion (ACO) algorithm called 1-ANT. In particular, the in-
fluence of the evaporation factor in the pheromone update
mechanism and the robustness of this parameter w. r. t. the
runtime behavior have been determined for the example
function OneMax.

This paper puts forward the rigorous runtime analysis
of the 1-ANT on example functions, namely on the func-
tions LeadingOnes and BinVal. With respect to EAs,
such analyses have been essential to develop methods for
the analysis on more complicated problems. The proof tech-
niques required for the 1-ANT, unfortunately, differ signif-
icantly from those for EAs, which means that a new reser-
voir of methods has to be built up. Again, the influence
of the evaporation factor is analyzed rigorously, and it is
proved that its choice can be very crucial to allow efficient
runtimes. Moreover, the analyses provide insight into the
working principles of ACO algorithms and, in terms of their
robustness, describe essential differences to other random-
ized search heuristics.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Algorithms, Performance
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1. INTRODUCTION
The analysis of randomized search heuristics is a grow-

ing research area where many results have been obtained in
recent years. This class of heuristics contains not only well-
known approaches such as Randomized Local Search, Sim-
ulated Annealing, and Evolutionary Algorithms (EAs) but
also less-known and more modern instances such as Esti-
mation-of-Distribution Algorithms, Particle Swarm Optimi-
zation, and Ant Colony Optimization (ACO). Such heuris-
tics are often applied to problems whose structure is not
known or if there are not enough resources such as time,
money, or knowledge to obtain good specific algorithms. It is
widely acknowledged that a solid theoretical foundation for
such heuristics is needed. An obvious and accepted theoret-
ical approach stemming from theoretical computer science
is to analyze the (expected) runtime of randomized search
heuristics by adapting the probabilistic methods available
for the analysis of randomized algorithms (e. g., Feller [5, 6]
and Motwani and Raghavan [12]).

The first steps to a runtime analysis of randomized search
heuristics were made for a very simple EA called (1+1) EA.
Initially, the (1+1) EA was investigated for the optimization
of example functions such as OneMax, LeadingOnes, Bin-

Val, trap functions etc. (Droste, Jansen and Wegener [4]),
all of which indubitably may be regarded as toy problems.
Due to the simple structure of these problems, however, it
was possible to develop methods for the analysis of EAs.
This approach can be considered very successful since nowa-
days runtime analyses of EAs can be carried out w. r. t. well-
known combinatorial optimization problems such as max-
imum matchings (Giel and Wegener [7]), minimum span-
ning trees (Neumann and Wegener [13]), partition problems
(Witt [19]), Eulerian cycle problems (Doerr, Hebbinghaus
and Neumann [1]), and graph coloring problems (Sudholt
[18]).

The theoretical runtime analysis for the modern and very
popular randomized search heuristic ACO (e. g., Dorigo and
Stützle [3]), however, lags far behind the results for the clas-
sical EAs. Until 2006, only convergence results (e. g., Gut-
jahr [8]), and results on the dynamics of models of ACO
(e. g., Merkle and Middendorf [11]) were known. In a survey
on theoretical studies of ACO by Dorigo and Blum [2], re-
searchers were encouraged to follow the approach taken for
the analysis of EAs by starting a rigorous runtime analysis
of simple ACO algorithms on OneMax. Soon after this ap-
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peal, first steps towards such analyses appeared in a paper
by Gutjahr [10], and, independently, the first theorems on
the runtime of a simple ACO algorithm were published in a
work by Neumann and Witt [15]. In that paper, a simple
ACO algorithm called 1-ANT is defined based on the model
of Gutjahr [8] and the runtime w. r. t. the fitness function
OneMax is bounded from above and below. It is shown
that the so-called evaporation factor ρ, the probably most
important parameter in ACO algorithms, has a crucial im-
pact on the runtime. More precisely, it is proved that there
exists a threshold value for ρ below which no efficient opti-
mization is possible. A lesson learnt from the results is that
the 1-ANT may not be robust w. r. t. the choice of ρ.

A closer look at the paper by Neumann and Witt [15]
reveals that the mathematical methods employed for the
analysis of the 1-ANT differ heavily from those for the anal-
ysis of EAs. Even more conspicuously, it seems that the
mathematical tools are tailored for the symmetric function
OneMax. It is by no means clear whether a comprehensive
runtime analysis of the 1-ANT can be conducted on more
complicated problems. A recent analysis of the 1-ANT on
the combinatorial minimum spanning tree problem by the
same authors [14] basically considers a special case of the
1-ANT with two pheromone values and fails to deliver state-
ments on the choice of ρ.

The aim of this paper is to put forward the analysis of the
1-ANT on example problems in a similar fashion to Neu-
mann and Witt [15]. As Gutjahr [9] has observed, such
analyses are an important and emergent issue in the com-
munity of ACO. We choose the non-symmetric functions
LeadingOnes and BinVal investigated by Droste, Jansen
and Wegener [4] and analyze the runtime of the 1-ANT on
these functions w. r. t. n, the dimensionality of the search
space, and the evaporation factor ρ. It turns out that a sim-
ilar phase transition behavior can be observed as by Neu-
mann and Witt [15]. If ρ is asymptotically smaller than
a threshold, no efficient optimization is possible; however,
for values a little above the threshold, polynomial runtimes
are very likely. Hence, our investigations again suggest that
the 1-ANT is not robust w. r. t. the choice of ρ. The proofs
contribute new methods for the runtime analysis of ACO
algorithms and may serve as a basis for further theoretical
studies.

The outline of the paper is as follows. In Section 2, we
provide the necessary definitions and recapitulate the previ-
ous results for OneMax. Section 3 is a technical part, where
general properties of the pheromone update mechanism of
the 1-ANT are summarized and proved. The following Sec-
tions 4 and 5 deal with the main results of the paper, namely
lower and upper bounds on the runtime of the 1-ANT on
LeadingOnes, respectively. A generalization of the results
to the function BinVal is discussed in Section 6. The paper
is finished with some conclusions.

2. THE ALGORITHM
ACO algorithms construct solutions by random walks on

so-called constructions graphs. This random walk is influ-
enced by values on the edges called pheromone values. In
addition, the walk may be influenced by heuristic informa-
tion about the problem. We use the setting of Neumann
and Witt [15] where no heuristic information is used. As in
[15], our main aim is to consider the effect of the pheromone
update in a simple ACO algorithm called 1-ANT (see Algo-

rithm 2) and to analyze its effect on the runtime for growing
sizes of the optimization problem.

Let C = (V, E) be the construction graph with a desig-
nated start vertex s and pheromone values τ on the edges.
Starting at s, an ant traverses the construction graph de-
pending on the pheromone value using Algorithm 1. Assum-
ing that the ant is at vertex v, the ant moves to a successor
w of v, where w is chosen proportionally to the pheromone
values of all non-visited successors of v. The process is iter-
ated until a situation is reached where all successors of the
current vertex v have been visited.

Algorithm 1 (Construct(C, τ)).

1.) v:=s, mark v as visited.

2.) While there is a successor of v in C that has not been
visited:

a.) Let Nv be the set of non-visited successors of v
and T :=

P
(v,w)|w∈Nv

τ(v,w).

b.) Choose one successor w of v where the probability
of selection of any fixed u ∈ Nv is τ(v,u)/T .

c.) Mark w as visited, set v := w and go to 2.).

3.) Return the solution x and the path P (x) constructed
by this procedure.

In the initialization step of 1-ANT, each edge gets a phero-
mone value of 1/|E| such that the pheromone values sum
up to 1. After that, an initial solution x∗ is produced by a
random walk on the construction graph and the pheromone
values are updated with respect to this walk. In each iter-
ation, a new solution x is constructed and the pheromone
values are updated if this solution is not inferior to the cur-
rently best solution x∗. We formulate our algorithm for
maximization problems although it can be easily adapted to
minimization.

Algorithm 2 (1-ANT).

1.) Set τ(u,v) = 1/|E| for all (u, v) ∈ E.

2.) Compute x (and P (x)) using Construct(C, τ).

3.) Update(τ, P (x)) and set x∗ := x.

4.) Compute x (and P (x)) using Construct(C, τ).

5.) If f(x) ≥ f(x∗), Update(τ, P (x)) and set x∗ := x.

6.) Go to 4.).

For theoretical investigations, it is common to have no ter-
mination condition in such an algorithm. One is interested
in the random optimization time which equals the number
of constructed solutions until the algorithm has produced an
optimal search point. Often one tries to bound the expected
value of this time.

Considering the optimization for pseudo-Boolean fitness
functions f : {0, 1}n → R with n ≥ 3, we use construction
graph Cbool = (V, E) (see Figure 1) with s = v0. In the
literature, this graph is also known as Chain (Gutjahr [10]).
Optimizing bit strings of length n, the graph has 3n+1 ver-
tices and 4n edges. The decision whether a bit xi, 1 ≤ i ≤ n,
is set to 1 is made at node v3(i−1). In case that the edge
(v3(i−1), v3(i−1)+1) is chosen, xi is set to 1 in the constructed
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Figure 1: Construction graph for pseudo-Boolean optimization

solution. Otherwise xi = 0 holds. After this decision has
been made, there is only one single edge which can be tra-
versed in the next step. In case that (v3(i−1), v3(i−1)+1) has
been chosen, the next edge is (v3(i−1)+1, v3i), and other-
wise the edge (v3(i−1)+2, v3i) will be traversed. Hence, these
edges have no influence on the constructed solution and we
can assume

τ(v3(i−1),v3(i−1)+1) = τ(v3(i−1)+1,v3i)

and

τ(v3(i−1),v3(i−1)+2) = τ(v3(i−1)+2,v3i)

for 1 ≤ i ≤ n. We call the edges (v3(i−1), v3(i−1)+1) and
(v3(i−1)+1, v3i) 1-edges and the other edges 0-edges.

The pheromone values are chosen such that at each timeX
(u,v)∈E

τ(u,v) = 1

holds. In addition, it seems to be useful to have bounds
on the pheromone values (e. g., Stützle and Hoos [17]) to
ensure that each search point has a positive probability of
being chosen in the next step. We restrict each τ(u,v) to

the interval
ˆ

1
2n2 , n−1

2n2

˜
and ensure

P
(u,·)∈E τ(u,·) = 1

2n
for

u = v3i, 0 ≤ i ≤ n − 1, and
P

(·,v) τ(·,v) = 1
2n

for v =

v3i, 1 ≤ i ≤ n. This can be achieved by normalizing the
pheromone values after an update and replacing the current
value by 1

2n2 if τ(u,v) < 1
2n2 and by n−1

2n2 if τ(u,v) > n−1
2n2

holds. Depending on whether edge (u, v) is contained in
the path P (x) of the accepted solution x, the pheromone
values are updated to τ ′ in the procedure Update(τ, P (x))
as follows:

τ ′
(u,v) = min

j
(1 − ρ) · τ(u,v) + ρ

1 − ρ + 2nρ
,
n − 1

2n2

ff
if (u, v) ∈ P (x)

and

τ ′
(u,v) = max

j
(1 − ρ) · τ(u,v)

1 − ρ + 2nρ
,

1

2n2

ff
if (u, v) /∈ P (x),

where ρ < 1.
Let pi = Prob(xi = 1), 1 ≤ i ≤ n, be the probabil-

ity of setting the bit xi to one in the next constructed
solution. A consequence of the described setting is that
pi ∈ [1/n, 1− 1/n] holds due to the upper and lower bounds
on the pheromone values.

In the paper by Neumann and Witt [15], it has been shown
that the introduced 1-ANT behaves for ρ ≥ (n−2)/(3n−2)
as the well-known evolutionary algorithm called (1+1) EA.
In this case, the pheromone values always attain their upper
or lower bounds after the first update has occurred. For the

function OneMax with

OneMax(x) =

nX
i=1

xi

the influence of ρ has been analyzed in greater detail. Neu-
mann and Witt have shown that there is a phase transi-
tion from exponential to polynomial runtime as ρ grows. In
particular they have given an exponential lower bound for
the case ρ = O(n1−ε) and a polynomial upper bound for
ρ = Ω(n1+ε) where ε > 0 is in each case a positive con-
stant. The main argument for the lower bound is that the
value of the currently best solution and the expected value
of the one constructed in the next iteration may differ in
the function value that leads to an exponential optimization
time. In contrast to this, the polynomial upper bound re-
lies on the observation that the function value of the last
accepted solution determines the expected value of the next
constructed solution almost exactly.

We consider the function LeadingOnes (proposed by Ru-
dolph [16]) with

LeadingOnes(x) =

nX
i=1

iY
j=1

xj ,

whose function value equals the number of leading ones in
the considered bit string x. A non-optimal solution may al-
ways be improved by appending a single one to the leading
ones. LeadingOnes differs from OneMax in the essential
way that the assignment of the bits after the leading ones
do not contribute to the function value. This implies that
bits at the beginning of the bit string have a stronger influ-
ence on the function value than bits at the end. Because of
this, the methods developed by Neumann and Witt [15] can-
not be used for analyzing the 1-ANT on LeadingOnes as
these methods make particular use of the fact that all bits
contribute equally to the function value. We will develop
new methods to deal with the circumstance that different
bits may have different priorities for the optimization pro-
cess. A well-known linear function that relies on the differ-
ent priorities is BinVal (introduced by Droste, Jansen and
Wegener [4]) defined as

BinVal(x) =
nX

i=1

2n−ixi,

which interprets a bit string as the binary representation of
an integer. After having analyzed the 1-ANT on Leading-

Ones, we will show how to adapt the developed methods
for analyzing the 1-ANT on BinVal.
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3. ON THE PHEROMONE UPDATE MECH-
ANISM

To analyze the 1-ANT for pseudo-Boolean optimization,
it is necessary to understand the interrelation of pheromone
values and success probabilities at single bits. As defined in
Section 2, for each bit, there is a pair of 1-edges and a pair
of 0-edges. The pheromone values on the edges in a pair
are always the same. Therefore, we speak of only a single
1-edge and a single 0-edge for each bit when considering the
pheromone values for a bit. We already know that the prob-
ability of setting a bit to 1 is proportional to the pheromone
value on the corresponding 1-edge by a factor of 2n. An
analogous statement holds for the probability of setting the
bit to 0 and the 0-edge. Finally, throughout the paper it is
crucial to note that the bits are processed independently by
the 1-ANT.

Consider an arbitrary but fixed bit xi. If this bit is set to 1
in the next constructed solution, we speak of a success and
a failure otherwise. Obviously, if a success occurs, the suc-
cess probability in the next step is increased, too. However,
the amount of increase depends on the previous pheromone
value on the 1-edge (or, equivalently, the previous success
probability). The larger the pheromone value, the lower the
amount of increase will be.

In the following, we gather some formulas describing how
the success probabilities interrelate and how they increase.
Moreover, we estimate the number of successes sufficient to
reach the upper bound 1 − 1/n on the success probability.
All following estimations in this section assume that this
bound has not been broken yet.

Definition 1. Let p be the current success probability of
a certain bit. Let I(t)(p) be the cumulative increase of its
success probability after t > 0 successes and no failures at
the bit.

We prove some properties such as monotonicity of the
increases I(t)(p) and of the actual success probabilities.

Lemma 1. If p ≤ q then I(t)(p) ≥ I(t)(q) for any t >

0. However, p + I(t)(p) ≤ q + I(t)(q). Finally, I(1)(p) =
2nρ

1−ρ+2nρ
· (1 − p).

Proof. If we can show the claims for t = 1, the lemma
follows for general t by a trivial induction. For the sake
of readibility, we omit the index 1 in I(1). By the update
mechanism of the 1-ANT and the proportionality of success
probabilities and pheromone updates,

I(p) = 2n · (1 − ρ)p/(2n) + ρ

1 − ρ + 2nρ
− p =

2nρ

1 − ρ + 2nρ
· (1− p).

This proves the first and the third claim. For the second
claim, we assume p ≤ q and consider the difference q+I(q)−
(p + I(p)). By the expression just derived, the difference
equals

(q−p)+ (p− q) · 2nρ

1 − ρ + 2nρ
= (q−p) · 1 − ρ

1 − ρ + 2nρ
≥ 0.

By the preceding lemma, we justify in our forthcoming
analyses the places where actual success probabilities are
replaced with lower bounds on these probabilities. We define
some worst-case lower bounds.

Definition 2. Let p(0) := 1/n and p(t) := p(0)+I(t)(p(0)).

After t successes and no failures at a bit, the success prob-
ability is at least p(t). We are interested in concrete lower
bounds on p(t).

Lemma 2. p(t) ≥ 1 −
“

1
1+2nρ

”t

.

Proof. We prove the lemma by induction on t. The
base case t = 0 is trivial. Since the update mechanism of
the 1-ANT and the proportionality of success probabilities
and pheromone values implies the recursion

p(t) = 2n · (1 − ρ)p(t−1)/(2n) + ρ

1 − ρ + 2nρ
=

(1 − ρ)p(t−1) + 2nρ

1 − ρ + 2nρ

we obtain by our induction hypothesis

p(t) ≥
(1 − ρ) − (1 − ρ)

“
1

1+2nρ

”t−1

+ 2nρ

1 − ρ + 2nρ

= 1 − 1 − ρ

1 − ρ + 2nρ

„
1

1 + 2nρ

«t−1

≥ 1 −
„

1

1 + 2nρ

«t

,

which proves the lemma.

We are interested in the number of successes necessary to
increase the success probability of the bit to a certain value r
or above, where 1/n < r < 1 − 1/n.

Definition 3. Let N(r) := min{t | p(t) ≥ r}. Moreover,

let N∗ := max{t | p(t) < 1 − 1/n}.

Lemma 3. N(r) ≤ − log(1−r)
log(1+2nρ)

.

Proof. For p(t) ≥ r, which is equivalent to 1 − p(t) ≤
1 − r, it is by Lemma 2 sufficient that„

1

1 + 2nρ

«t

≤ 1 − r.

Taking logarithms and observing that the base is smaller
than 1, we obtain that the choice

t(r) =

‰− log(1 − r)

log(1 + 2nρ)

ı

implies that p(t(r)) ≥ r.

The quantity N∗ +1 denotes how many of the p(t) are less
than the common upper bound 1 − 1/n.

Lemma 4. N∗ ≤ log(n)
log(1+2nρ)

≤ log n
log n−log(1/ρ)

. If ρ ≤ 1/n

then N∗ ≤ 2 log n
nρ

.

Proof. The first inequality follows by setting r := 1−1/n
and applying Lemma 3. For the second inequality, we use
the trivial estimation log(1 + 2nρ) ≥ log(nρ) = log(n) −
log(1/ρ). If ρ ≤ 1/n then we use log(1 + 2nρ) ≥ nρ/2 since
ex ≤ 1 + 4x for x ≤ 2.

4. LOWER BOUND
In this section, we show that the 1-ANT is very ineffi-

cient on LeadingOnes if ρ = o(1/(n log n)), i. e., if ρ is
asymptotically smaller than 1/(n log n). The following the-
orem shows that then even polynomially many multistarts
fail within polynomial time with overwhelming probability.
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One of the main reasons for the failure is that with the
small evaporation factor, the success probabilities at single
bits can reach large enough values only slowly. In conse-
quence, the 1-ANT is faster in finding good solutions than
in storing this knowledge in the pheromone values. This
leads to the claimed time bound already for (re-)detecting
an acceptable solution.

Theorem 1. With probability 1 − 2−Ω(min{1/(nρ),n}), the
runtime of the 1-ANT on LeadingOnes is 2Ω(min{1/(nρ),n}).

Note that the lower bound of the theorem is only mean-
ingful for ρ = O(1/(n log n)). However, if we choose, e. g.,
ρ = 1/(n log2 n), the bound is already superpolynomially
large.

Proof. Let k = 1/(8nρ). Consider the state of the
1-ANT at the earliest time when one of the following two
conditions is fulfilled.

(i) The fitness fc of the current solution is at least n/2.

(ii) 1-ANT has performed k accepted steps.

We first convince ourselves that in this situation, all success
probabilities never left the interval [1/4, 3/4], then, that with
high probability we are not done yet, and finally, that the
next accepted step takes the time claimed in the theorem.

Consider the success probability of a certain bit. From
Lemma 1, we see that in each accepted step, it increases by
at most 2nρ/(1 − ρ + 2nρ) ≤ 2nρ. A simple induction to-
gether with the monotonicity statement of Lemma 1 shows
that in at most k accepted steps, independent of the partic-
ular accepted solutions, the success probability can increase
by at most k · 2nρ. Hence the success probability p after k
such steps is bounded by p ≤ 1/2+2nkρ ≤ 3/4. By symme-
try, the same holds for the failure probability 1 − p. Hence
p ∈ [1/4, 3/4].

Now let us regard the last (accepted) step before the sys-
tem reached the state fixed above. At the start of this step,
we have all success probabilities in [1/4, 3/4] and our cur-
rent solution has fitness f0 < n/2. Hence the probability
that the 1-ANT finds the optimal solution in this single step
is bounded by (3/4)(n/2)—recall that we know already that
this step will be accepted, hence the first f0 bits of this solu-
tion are one with probability one. Nevertheless, we see that
with probability 1−2−Ω(n), we have not found the optimum
yet.

Finally, let us estimate the time to obtain an accepted step
from the state fixed above. We first estimate the current
fitness fc. If we did not perform k accepted steps, then
clearly fc ≥ n/2. Hence let us assume that we actually did
perform k accepted steps. Conditional on the fact that a
step was accepted, the probability that this lead to a fitness
increase is at least 1/4 since the probability of a success at
the leftmost zero-bit is at least 1/4. Hence E(fc) ≥ k/4,
and the usual Chernoff bounds imply Prob(fc ≥ k/8) =

1 − 2−Ω(k) = 1 − 2−Ω(1/(nρ)). Combining the two cases, we
have

Prob
`
fc ≥ min{n/2, k/8}´ = 1 − 2−Ω(1/(nρ)).

If fc ≥ min{n/2, k/8}, then the probability that the next

step is accepted is at most (3/4)min{n/2,�k/8�}, i. e., at most

2−Ω(min{n,1/(nρ)}). Consequently, there is some small con-
stant c > 0 such that a phase consisting of 2c·min{n,1/(nρ)}

steps does not produce another accepted step with proba-
bility 1 − 2−Ω(min{n,1/(nρ)}).

5. UPPER BOUND
In contrast to the situation from the last section, large

values of ρ allow the 1-ANT to rediscover the leadings ones
of previous solutions efficiently. To prove the following theo-
rem, we make heavy use of the observations from Section 3.

Recall the notations p(t) and N∗ from Definitions 2 resp. 3.
First, we need a lower bound on the product of the frac-
tion p(t)/(2 − p(t)) for all p(t) below 1 − 1/n, which will be
used to lower bound the probability of creating an accepted
solution.

Lemma 5.

N∗Y
t=1

p(t)

2 − p(t)
= Ω

“
2−5/(nρ)

”
.

A proof of this lemma is given at the end of this section.

Theorem 2. The expected runtime of the 1-ANT on
LeadingOnes is bounded from above by O(n2 · 25/(nρ)).

Note that the bound is polynomial for ρ = Ω(1/(n log n))
and only O(n2) for ρ = Ω(1/n). For ρ = o(1/(n log n)), it is
superpolynomially large.

Proof. We show that the probability of increasing the
so far maximum LeadingOnes-value is always bounded be-
low by Ω(2−5/(nρ)/n) provided the optimum has not been
reached. Multiplying the expected time for an improvement
by the maximum number of improvements, n, will yield the
theorem.

Suppose the currently best LeadingOnes-value equals
k < n. For an improvement, it is necessary and sufficient to
set the first k + 1 bits in a newly constructed solution to 1.
Since the (k + 1)-st bit was set to 0 in the last accepted
solution, its success probability, i. e., the probability of be-
ing set to 1, was decreased in the last pheromone update.
Therefore, we estimate the success probability from below
by 1/n for this bit. If we can prove that the first k bits are

all set to 1 with probability at least Ω(2−5/(nρ)), we obtain
the theorem.

The success probabilities for the first k bits may differ sig-
nificantly. However, it is crucial that these probabilities are
non-decreasing in all following pheromone updates and that
at least one increase has happened due to the last accepted
solution. There may be a block of � < k leading bits whose
success probabilities have reached the upper bound 1−1/n.
All these bits will be set to 1 in the next constructed solution
with probability at least (1− 1/n)� = Ω(1). We concentrate
on the window of size k − � from the (� + 1)-st bit to the
k-th bit. Obviously, for � + 1 ≤ i ≤ k − 1, it holds that the
success probability of the i-th bit has been increased at least
as often as the one of the (i + 1)-st bit.

If a new solution could only increase the best Leading-

Ones-value by at most 1, we could estimate the probabilities
in the window by bounding the success probability of the
i-th bit from below by p(k−i+1) for �+1 ≤ i ≤ k. Hence, the
probability of having only successes in the window would be

at least
QN∗

t=1 p(t), which is explicitly bounded from below

by Ω(2−5/(nρ)) in the proof of Lemma 5.
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However, the assumption that the best LeadingOnes-
value increases by at most 1 is unrealistic since we are faced
with additional one-bits gained in accepted solutions, so-
called free-riders (see Droste, Jansen and Wegener [4]). We
observe that the rightmost n− k− 1 bits (following the left-
most zero at position k + 1) do not contribute to the Lea-

dingOnes-value and do not influence the decisions whether
to accept a solution, implying that the corresponding suc-
cess probabilities are governed by a random walk on the
pheromone values. If a new solution increases the best Lea-

dingOnes-value from k to k + g, g ≥ 1, we obtain a block
of g bits that will form the right end of the window w. r. t.
the next improvement. All of these g bits have to be success-
ful then. The success probability for each bit in the block
can only be bounded below by p(1) after the improving step
and, generally, only by p(t) after another t−1 improvements.
Therefore, the probability of all bits in the block being suc-
cessful is only bounded from below by

`
p(t)
´g

. This suggests
to show that large values of g are unlikely.

Due to the symmetry of the pheromone update process for
the possible free-rider bits, we can show that each of these
bits is independently set to 1 with probability 1/2; a formal
derivation is deferred to the end of this proof. Hence, the
probability of having exactly g−1 free-riders in an improving
step is at most 2−g , which holds independently for each
improvement. Under the condition of g − 1 free-riders, we
use the proposed bound of

`
p(t)
´g

on the success probability
for the gained block of g bits after t updates of the block.
Hence, using the law of total probability and p(t) < 1, the
unconditional success probability for a block is at least

∞X
g=1

“
p(t)
”g

· 2−g =
1

1 − p(t)/2
− 1 =

p(t)

2 − p(t)

after t updates of the block. (Here we pessimistically assume
that the number of free-riders is unbounded.) Since we have
at most N∗ blocks with success probabilities smaller than
1 − 1/n, we arrive at the lower bound

N∗Y
t=1

p(t)

2 − p(t)

on the probability of obtaining only successes in the window.
Note that this bound is independent of the window size. By
Lemma 5, the product is at least Ω(2−5/(nρ)), which will
prove the theorem.

We still have to prove the claim on the free-rider prob-
abilities. Consider a bit that has not yet influenced the
decisions of the 1-ANT whether to accept or reject a newly
constructed solution. Conditioned on the event that the
best-so-far LeadingOnes-value is at most k, this applies
to the rightmost n − k − 1 since their values have not yet
contributed to the LeadingOnes-value. Let τt denote the
pheromone value on the 1-edge of the considered bit after t
(not necessarily positive) pheromone updates. Note that τt

itself is a random variable and that large τt favor increases of
the τ -value during the next update and vice versa. The con-
ditional success probability for the bit, given a pheromone
value of τt, equals 2nτt. We can prove that τt is a martingale
according to

E(τt+1) = 2nτt · (1 − ρ)τt + ρ

1 − ρ + 2nρ
+(1−2nτt)· (1 − ρ)τt

1 − ρ + 2nρ
= τt.

Due to the initialization of the 1-ANT, this means that

E(τt) = τ0 = 1/(4n). Hence, for any t, the considered bit
leads to a success with probabilityZ (n−1)/(2n2)

1/(2n2)

2np · Prob(τt = p) dp = 2n · E(τt) =
1

2
.

This proves the claim and, therefore, the theorem.

Finally, we provide the proof of the technical estimation
of Lemma 5.

Proof Proof of Lemma 5. We first bound the product
of the denominators 2 − p(t) from above. By Lemma 2,

N∗Y
t=1

“
2 − p(t)

”
≤

N∗Y
t=1

 
1 +

„
1

1 + 2nρ

«t
!

≤
N∗Y
t=1

e

“
1

1+2nρ

”t

≤ e
P∞

t=1

“
1

1+2nρ

”t

= e
1

2nρ .

Thus, we have shown

N∗Y
t=1

p(t)

2 − p(t)
≥ e−

1
2nρ ·

N∗Y
t=1

p(t)

and only need to bound the product of the p(t). Now, if
ρ > 1/(2n) we have

p(t) ≥ 1 −
„

1

1 + 2nρ

«t

≥ 1 − 2−t

and along with 1 − x ≥ e−2x for x ≤ 1/2, we arrive at

N∗Y
t=1

p(t) ≥
N∗Y
t=1

`
1 − 2−t

´ ≥ N∗Y
t=1

e−2·2−t ≥ e−2
P∞

t=1 2−t

= e−2

which proves the claim for ρ > 1/(2n).
For ρ ≤ 1/(2n), we handle the first α := �1/(5nρ)� factors

separately and exploit that the p(t) grow almost linearly as
long as p(t) ≤ 1/2.

By Lemma 1, I(1)(p) = 2nρ
1−ρ+2nρ

·(1−p) ≤ 2nρ. Moreover,

I(1)(p) is bounded below by nρ
1−ρ+2nρ

≥ nρ/2 if p ≤ 1/2 and

ρ ≤ 1/(2n). W. l. o. g., n ≥ 10. Since p(0) = 1/n and α
updates can increase p by at most α · 2nρ ≤ 2/5 (cf. the

proof of Theorem 1), we have p(t) ≤ 1/2 for all t ≤ α,

implying that tnρ/2 is a lower bound for these p(t). Thus,

αY
t=1

p(t) ≥
αY

t=1

“
t · nρ

2

”
=
“nρ

2

”α

α!

≥
“nρ

2

”α “α

e

”α

≥ (10 · e)− 1
5nρ .

For the remaining factors, we exploit that the p(t) con-
verge to 1 quite fast. By Lemma 2 along with ρ ≤ 1/(2n),

1 − p(t) ≤
„

1

1 + 2nρ

«t

=

„
1 − 2nρ

1 + 2nρ

«t

≤ (1 − nρ)t .

We obtain

p(t) ≥ 1 − (1 − nρ)t ≥ 1 − e−tnρ.
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Let β = �1/(5nρ)	, then

N∗Y
t=β

p(t) ≥
N∗Y
t=β

`
1 − e−tnρ

´

≥
∞Y

t=β

“
1 − e−nρ·β·�t/β�

”

≥
∞Y

t=β

“
1 − e−�t/β�/5

”
.

Grouping sets of β equal factors each and performing an
index transformation with j = tβ, we arrive at

N∗Y
t=β

p(t) ≥
∞Y

j=1

“
1 − e−j/5

”β

.

Using 1 − x ≥ e−2.1x for x ≤ e−1/5, we obtain

∞Y
j=1

exp
“
−2.1 · e−j/5 · β

”
= exp

 
−2.1β

∞X
j=1

e−j/5

!

= exp

„
− 2.1β

e1/5 − 1

«

= Ω
“
e
− 2

nρ

”
.

The claim follows since e−1/2 · (10 · e)− 1
5 · e−2 > 2−5.

Theorems 1 and 2 show that there is a phase transition in
the behavior of the 1-ANT on LeadingOnes when ρ crosses
the threshold 1/(n log n). Below the threshold, no efficient
optimization is possible since the effect of pheromone up-
dates is more or less irrelevant. This is similar to the behav-
ior observed on OneMax [15], where the threshold has been
identified at 1/n. This shows that the 1-ANT is not robust
w. r. t. to the choice of the parameter ρ on two well-known
and simple example functions. Other randomized search
heuristics, e. g., the (1+1) EA, are not so sensitive to their
parameter settings. Decreasing the mutation probability in
the (1+1) EA from 1/n to, e. g., 1/n2 would not have such
desastrous effects for simple functions.

6. GENERALIZATION TO BINVAL
The example function BinVal (see Section 2) is a linear

function, although, in some respect an extreme example.
The coefficient 2n−i of the i-th bit outweights the sum of all
smaller coefficients. This leads to the following relation to
LeadingOnes: If LeadingOnes(x′) > LeadingOnes(x)
for x, x′ ∈ {0, 1}n then also BinVal(x′) > BinVal(x). This
allows us to treat the LeadingOnes-value of the current so-
lution as a potential function while BinVal is optimized. It
is sufficient to increase the potential at most n times to reach
the optimal solution (albeit the number of different BinVal-

values is 2n). Similarly, with probability 1−2−Ω(n), it is nec-
essary to increase the potential altogether by at least n/2
to reach the optimum since the initial LeadingOnes-value
does not exceed n/2 with this probability.

When the (1+1) EA optimizes BinVal, the described ap-
proach allows us to immediately take over the upper bound
O(n2) for the expected optimization time on LeadingOnes.
This is not the best bound possible since O(n log n) can be
shown by a direct approach. Such a direct approach seems

difficult for the 1-ANT on BinVal. Therefore, we rather try
to transfer our results from LeadingOnes to BinVal using
the potential function.

With respect to the lower bound, we inspect the proof
of Theorem 1. Instead of considering the real BinVal, we
take the LeadingOnes-value of a bit string as a pseudo-
fitness. The arguments on the pheromone values are still
valid, and moreover, it is still necessary to create a solution
with pseudo-fitness at least n to optimize BinVal, implying
that the optimum is not found with probability 1 − 2−Ω(n)

before the crucial point of time in the proof is reached.
The Chernoff-bound-type arguments on the (pseudo-)fitness
carry over, too. Moreover, for an accepted step, it is after-
wards still necessary to create a search point with pseudo-
fitness at least fc. We have shown that ρ = o(1/(n log n))
leads to superpolynomial runtimes also on BinVal.

Theorem 3. With probability 1 − 2−Ω(min{n,1/(nρ)}), the
runtime of the 1-ANT on BinVal is 2Ω(min{n,1/(nρ)}).

It is slightly more difficult to adapt the proof of the upper
bound on LeadingOnes. The only but essential difference
is that the BinVal is influenced by the configuration of the
bits after the leftmost zero. Hence, the probability of a bit
being a “free-rider” does not necessarily equal 1/2; in fact
we conjecture larger probabilities. Pessimistically assuming
that each bit is a success with probability 1 − 1/n, we esti-
mate the probability of g − 1 free-riders, i. e., a block length
of g, by (1/n)(1 − 1/n)g−1. This decreases the estimation
of the unconditional success probability for a block after t
updates to

∞X
g=1

“
p(t)
”g

· 1

n
·
„

1 − 1

n

«g−1

=
p(t)

n − (n − 1) · p(t)
=: p̃(t).

Using the techniques from the proof of Lemma 5, it can be

shown that
QN∗

t=1 p̃(t) = 2−O((log2 n)/(nρ)). We obtain the
following.

Theorem 4. The expected runtime of the 1-ANT on Bin-

Val is bounded from above by O(n2 · 2O((log2 n)/(nρ))).

Note that this upper bound is polynomial only if ρ =
Ω((log n)/n). Hence, it is open whether the phase transition
from superpolynomial to polynomial runtime of the 1-ANT
on BinVal occurs at ρ = Θ(1/(n log n)) as in the case of
LeadingOnes or at larger values, e. g., ρ = Θ(1/n) as in the
case of OneMax, or even larger. In any case, our analyses
suggest that the efficiency of the 1-ANT on pseudo-Boolean
optimization problems is not robust w. r. t. the pheromone
update mechanism and the choice of ρ.

7. CONCLUSIONS
We have investigated the pheromone update mechanism

in a simple ACO algorithm. Our investigations show some
general properties for the update scheme used in the 1-ANT.
Based on these investigations, we have shown that there is
a phase transition for ρ = 1/(n log n) from exponential to
polynomial for the function LeadingOnes. Afterwards we
have shown how the results obtained for LeadingOnes can
be transferred to BinVal. There are several open questions.
First of all, it would be desirable to determine the behavior
of the 1-ANT on BinVal for the remaining values of ρ. An-
other open problem is to analyze the 1-ANT on a classical
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combinatorial optimization problem for update parameters
that do not enforce the pheromone values to touch their
upper or lower bounds.
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