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ABSTRACT
This paper discusses the concept of an artificial ecosystem
for use in machine-assisted creative discovery. Properties
and processes from natural ecosystems are abstracted and
applied to the design of creative systems, in a similar way
that evolutionary computing methods use the metaphor of
Darwinian evolution to solve problems in search and optimi-
sation. The paper examines some appropriate mechanisms
and metaphors when applying artificial ecosystems to prob-
lems in creative design. General properties and processes of
evolutionary artificial ecosystems are presented as a basis for
developing individual systems that automate the discovery
of novelty without explicit teleological goals. The adapta-
tion of species to fit their environment drives the creative
solutions, so the role of the designer shifts to the design of
environments. This allows a variety of creative solutions to
emerge in simulation without the need for explicit or human-
evaluated fitness measures, such as those used in interactive
evolution. Two example creative ecosystems are described
to highlight the effectiveness of the method presented.

Categories and Subject Descriptors
J.5 [Arts and Humanities]: Fine Arts—creativity ; I.2.11
[Distributed Artificial Intelligence]: Multiagent systems—
artificial ecosystems, evolutionary algorithms

General Terms
Algorithms, Design, Experimentation

Keywords
Ecosystem theory; creativity

1. INTRODUCTION
Evolutionary Computing (EC) has successfully exploited

the metaphor of Darwinian evolution to solve problems in
search, optimisation, and machine learning. Different EC
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techniques selectively adopt particular processes and meta-
phors from biological evolution. For example, many complex
multi-modal problems are intractable to algorithms such
as the Simple Genetic Algorithm (SGA), hence the use of
more sophisticated techniques such as competitive and co-
operative evolution, spatially distributed, diffusion model
and island model Evolutionary Algorithms (EAs), see e.g.
[7].

Search and optimisation problems suited to EC approaches
are generally characterised by the requirement of explicit
ranking. That is, a machine representable fitness function is
required to rank and select potential solutions, which seek
to minimise or maximise the fitness function. However,
there exist classes of problems where explicit specification
of an appropriate fitness function is impractical to compute
or impossible (practically or theoretically) to express as a
machine-representable function. Selection methods such as
tournament selection may help, but such methods still re-
quire an explicit evaluation of an individual’s relative fitness
[3].

For creative problems, methods such as Interactive Evo-
lution have found wide application and popularity [24]. In
this approach, the problem of finding machine-representable
fitness functions for aesthetic or subjective properties is cir-
cumvented in favour of human fitness evaluation and rank-
ing. While this is a popular method for this problem, it
is not without significant problems [6, 18]. These problems
include: difficulty in fine-grained evaluation; limited popu-
lation sizes; slow evaluation times; poor balancing between
exploration and exploitation (one of the GA’s main benefits
as a search method [7, p. 29]).

Traditionally in EC, the emphasis has been placed on se-
lection of individuals by fitness ranking, and the modifi-
cation of genotypes using mutation and crossover. As EC
operates using a metaphor based on evolution1, it is not
surprising that it focuses on some features of Darwinian se-
lection, while ignoring or minimising others, such as envi-
ronment. Genes exist in cells, cells may form multi-cellular
groupings, organs, and so on. Organisms develop and inter-
act in a physical environment. Selection pressures come from
other individuals, species, and from the environment itself.
The evolutionary process typically results in adaptation of
populations to fit their environment, so fit organisms will
devise features suited to the specifics of their evolutionary
milieu. In addition, populations of species may (explicitly
or implicitly) modify their environment, creating feedback

1Actually, the metaphor is closer to selective breeding than
evolution by natural selection.
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loops between adapting populations and their environment.
The design of environments from which creative behaviour

is expected to emerge is at least as important as the design
of the individuals who are expected to evolve this behaviour.
This paper introduces the concept of an Artificial Ecosystem
as a generalised evolutionary approach for creative discov-
ery. Natural ecosystems exhibit a vast array of complex
phenomena, including homeostasis, food-webs, wide causal
dependencies and feedback loops, even (controversially) evo-
lution at the ecosystem level [23]. Species within the ecosys-
tem compete for resources in order to survive and reproduce.
Typical co-operative and competitive evolutionary strategies
are observed, such as mutualism, symbiosis, predation and
parasitism. To be glib, it could be said that the ecosystem
has a lot of interesting features going for it. We would like
to harness some of these features for the purposes of creative
discovery—the discovery of novelty in a system without ex-
plicit teleology.

2. ARTIFICIAL ECOSYSTEMS
In biology, an ecosystem is defined as “the interactions of

species with each other and their physical environment” [23].
Ecosystem models typically place emphasis on abiotic fac-
tors and heterogeneous environments. Natural ecosystems
have been well studied in the biological literature from math-
ematical modelling perspectives [15, 11, 14]. Models are,
naturally, diverse and approached from particular research
directions (e.g. chemical and energy cycles, predator-prey
systems, population genetics, trophic levels, co-evolution,
migration, disease propagation, territorial behaviour). Much
“traditional” ecological research models a species or popu-
lation as an individual, normalised unit, rather than as an
emergent collection of individual agents. Hence, models are
expressed in terms of differential equations. An alternative
approach models the interaction and behaviour at an indi-
vidual level (referred to in the Ecology community as an
“individual-based model” or IBM [9]). The approach de-
scribed here is more closely based on this IBM approach to
modelling ecosystems (see Section 2.1.1).

Biologists also experiment with artificial ecosystems, i.e. ar-
tificially constructed ecosystems made with biological mate-
rials [23]. Examples include soil or water ecosystems and
bacterial cultures. However, for the remainder of this paper
I will use the term “artificial ecosystem” to refer to a type of
computer simulation based on dynamic processes that occur
in biological ecosystems (either natural or artificial).

The concept of an artificial ecosystem used here is forma-
tive and based on abstractions of selected processes found
in biology. We are interested in developing general algo-
rithms for creative discovery. These algorithms are based
on dynamic evolutionary processes observed in biological
ecosystems. Just as genetic algorithms are not a simula-
tion of natural selection, the artificial ecosystem algorithms
presented here are not intended to simulate real biological
ecosystems. The ecosystem is seen as a dynamic, complex
system, one that is essential for selection and a driving force
behind biological novelty when established with the appro-
priate conditions. We would like to harness the novel po-
tential of ecosystem processes and apply them to creative
processes of interest to humans.

2.1 Related Work
The idea of abstracting a process from biology and ap-

plying it to other domains, or exploiting it as a more gen-
eral problem-solving technique is not new, EC being a fine
example. The central question in relation to the suitabil-
ity of translating biological novelty to creative novelty lies
in both metaphors and mechanisms. Metaphors—in terms
of how we replace the biological literal with the creative
symbolic—determine the scope and framework of the sys-
tems to be explored. The mechanisms form the machine
representable abstractions of natural ecosystem processes.
Real ecosystems are highly complex and diverse systems, so
we need to be careful about the processes we wish to mimic
and how well suited (or otherwise) they are to the goal of
creative discovery.

2.1.1 Artificial Life and Ecological Models
A number of artificial life models employ the concept of

an abstract or simplified ecosystem. This concept of the
artificial ecosystem was introduced in [4]. A population of
independent software agents interact within a programmer-
specified artificial physics and chemistry. Agent interac-
tion is simplistically analogous to that which occurs in a
real ecosystem. Agents must gain sufficient resources from
their environment in order to survive and reproduce. Typi-
cally, a number of successful survival strategies will emerge
(niches) often with inter-dependencies between individual
species (e.g. symbiosis and parasitism). Similar artificial
ecosystem methods have been useful in modelling problems
in economics [2], ecology [19] and social science [8].

The majority of such systems focus on single-niche, ho-
mogeneous environments, and operate at evolutionary time-
scales, simulating the “evolution” of a single-species popula-
tion. This focus, and the use of minimal, broad assumptions
are primarily for the purposes of verification and validation
of evolution in artificial life models [1]. Artificial life agents
adapt their behaviour through an evolutionary process to
best fit their (typically homogeneous) environment.

Ecological models, on the other hand, tend to operate on
far smaller time scales, simulating periods typically ranging
from hours to several decades, with a focus on fitness seeking
through organisational changes or behavioural adaptation of
an individual species. This level of simulation reflects the
practical questions asked by ecologists in relation to real
ecosystems, whereas artificial life research tends to focus on
abstract evolutionary dynamics. Important to both styles
of investigation is the emergence of macro phenomena or
properties from micro interactions. The micro interactions
(typically interacting agents) being formally specified in the
model; the macro properties an emergent outcome of the
simulation.

2.1.2 Creative Ecosystems
The concept of an ecosystem has been employed in cre-

ative works, in addition to the work described in this pa-
per. Most of these works are characterised by some form
of user interaction or influence over the environment or in-
dividuals. Avolve, an interactive artwork by Sommerer and
Mignonneau allows users to manually design agents, then re-
lease them into an artificial ecosystem in which they interact
with other agents created by users [22]. The ecosystem is
projected into a pool of real water, which also forms its user
interface. Moving one’s hand through the water influences
the swimming movement, hunting behaviour, and reproduc-
tion of the virtual organisms. Similar in its use of artificial
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ecosystems with user-specified agents, the artwork Techno-
sphere by Prophet and Selley uses agents built by the user
from a fixed catalogue of components, such as wheels, heads
and eyes [21]. Agents are then released into a shared virtual
world to compete for resources and mate with others. The
E-volver work of Dutch artists Erwin Driessens and Maria
Verstappen uses a population of virtual creatures to con-
struct a continuously changing image [12]. Each pixel-sized
creatures modifies its local environment, hence creating a
dynamic interaction between populations of agents and their
environment. The system uses interactive evolution to se-
lect and breed creatures that create the images. The pixels
of the image and the agents that interact with them form
the ecosystem, which is the artwork itself.

Each of these systems are highly individual and specific to
the creative concerns of the individuals who created them.
The goal of this paper is to begin to formalise some of
the metaphors and mechanisms appropriate when using ar-
tificial ecosystems for creative discovery. In doing this it
is hoped that artificial ecosystem algorithms may be more
readily applied as general problem solvers for creative ap-
plications, rather than highly specific, ad-hoc mechanisms
used by individual artists.

2.2 Processes for Artificial Ecosystems
In many artificial ecosystem models, the designers are

driven by specific applications or outcomes, so the mecha-
nisms, abstractions and terminology differ between systems.
This section attempts to define both properties and concepts
for general artificial ecosystems. They are positioned at a
“middle level” of abstraction: for example an individual is
an indivisible unit, it is not represented as a combination of
self-organising sub-units, even though this might be possi-
ble. In any agent or individual-based model there is always
a conflicting tension between model complexity, model val-
idation, and simulation outcomes. In contrast to ecological
models, the focus of creative discovery is on the suitability
and sophistication of creative outcomes, not the verification
of models with empirical data or their validation in terms
of answering questions not explicit in the original model [9].
This allows us some creative licence in our interpretation,
but we would still hope for some (at least) semi-formal vali-
dation of any general ecosystem models for creative discov-
ery.

While not an essential characteristic of ecosystem models,
the use of evolution and the operation on evolutionary time
scales is an assumption of the ecosystem models proposed
here. This does not preclude the possibility of the model
operating at other time scales.

The basic concepts and processes for artificial ecosystems
are:

• the concepts of genotype and phenotype as used in
standard EC algorithms. A genotype undergoes a pro-
cess of translation to the phenotype. The genotype
and phenotype form the basis of an individual in the
model;

• a collection of individuals represent a species and the
system may potentially accommodate multiple, inter-
acting species (this is further explained in Section 2.3);

• physical spatial distribution and (optionally) move-
ment of individuals;

• the ability of individuals to modify and change their
environment: either directly or indirectly as a result
of their development within, and interaction with, the
environment;

• the concept of individual health as a scalar measure of
an individual’s success in surviving within its environ-
ment;

• the concept of an individual life-cycle, in that an indi-
vidual undergoes stages of development that may af-
fect its properties, physical interaction and behaviour;

• the concept of an environment as a physical model
with consistent physical rules on interaction and causal-
ity between the elements of the environment;

• an energy-metabolism resource model, which describes
the process for converting energy into resources that
may be utilised by species in the environment to per-
form actions (including the production of resources).

For populations to evolve, there must be some kind of se-
lection pressure that gives some species a higher reproduc-
tion rate over others, creating an implicit measure of fit-
ness [20, Chapter 2]. Let us assume any given environment
has finite resources and a total population carrying capac-
ity, κ. Species compete for finite resources. These resources
are used by individuals to better their reproductive success,
until the total population reaches κ. Hence, those able to
discover successful strategies for efficiently exploiting those
resources are able to reproduce at a higher rate, dominating
the population. In contrast to EAs with explicit fitness func-
tions, selection is implicit: successful strategies (individuals)
emerge in response to the challenges set by the environment.
Moreover, in locating and processing resources, species may
alter the environment itself. In this case, adaptation is a dy-
namic process involving feedback loops and possibly delicate
balances and novel changes.

Individuals maintain a scalar measure of “health”, which
indicates the success of the individual during its lifetime.
This is roughly akin to a fitness measure in traditional EC al-
gorithms, but different strategies may lead to similar health
levels. If the health level of an individual falls to zero, the
individual dies and is removed from the population (nor-
mally returning its resources to the environment). Health
is normally affected by the individual’s ability to acquire
resources from the environment (which may include other
individuals). Other internal factors, such as age, may also
change an individual’s health measure.

In the context of problem solving, individual species may
represent competing or co-operating parts of a global so-
lution. This is highly suitable when many different com-
binations of components form equally good solutions (e.g.
notes or phrases forming a musical composition). When us-
ing standard EA methods for search or optimisation, the
challenge faced is in choosing appropriate genotype repre-
sentations, selection methods, and fitness functions. The
challenge for artificial ecosystems is in the design of envi-
ronments and the interaction of species within them.

2.3 Species and Speciation
Biological ecosystems consist of multiple species interact-

ing with each other and their environment. This may lead to
inter-species relationships such as symbiosis or parasitism.
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“Extended phenotype” effects, such as co-operative building
from resources in the environment, may also be observed [5].
In artificial ecosystem models, species may be one of (i) ex-
plicitly specified, or (ii) emergent within the simulation. A
species is defined as a individual type that may reproduce
with other individuals of a matching type, but not with any
others. The measure of matching type may be may be bi-
nary or over some equivalence interval.
With explicit specification, species are fixed from the on-

set of the simulation. Their number and type do not change
during simulation. For example, in predator-prey models,
predator and prey species, each with their fixed roles, are
established a priori. One species may not change into an-
other, nor can new species emerge in simulation.
Implicit specification gives individuals some form of “type”

information (similar to what Holland refers to as tags [10]).
This type information is normally encoded in the genome of
the individual. Individuals may reproduce with other indi-
viduals with type equivalence (matching tags). The measure
of equivalence may be over some interval or a stochastic
measure (e.g. ≥ 95% equivalent). This permits new species
to dynamically emerge within the simulation.
A “species” might also be defined implicitly without the

need for explicit type information by the percentage of alleles
shared with other individuals (e.g. individuals with ≥ n%
of their alleles identical or within some normally-distributed
limits are permitted to mate). Such a method may form the
basis of speciation mechanism that restricts intra-species re-
production and permits the evolution of new species during
simulation. Combining this mechanism with the concept of
a spatial distribution of phenotypes over a heterogeneous
landscape encourages allopatric speciation, for example.

3. EXAMPLES
I now highlight the way the artificial ecosystem model,

described in this paper, has been successfully used as an
alternative to other EC methods for creative discovery.

3.1 Colourfield
Colourfield is a simple one-species ecosystem of colour

patterns and sounds. It consists of a one-dimensional dis-
crete world of fixed width, n, populated by 0 ≤ m ≤ n indi-
viduals (Figure 1). Each space in the world is called a cell
and may be occupied by at most one individual. Individu-
als occupy one or more cells and are represented visually as
lines of colour and sonically as a sine tone: frequency maps
logarithmically to hue; phase to saturation; and amplitude
to area. A large, red colour produces a loud, deep tone; a
small blue colour produces a quiet, high tone. A popula-
tion of individuals thus produces a field of colour and sound
simultaneously.
An individual’s genome is a fixed-length array of real num-

bers representing: the natural colour (hue, saturation, light-
ness: HSL); propensity to change to the natural colour, and
to the colour of the individual to the left and right of this
individual (a normalised weight); propensity to grow into
empty neighbouring cells. Each individual in the popula-
tion maintains a separate state, which consists of: the age
of the agent, health, current resources held, number of cells
currently occupied and current colour.
All individuals begin with no colour (black) and attempt

to acquire resources to reach their target colour (a weighted
sum, as determined by the genome, of the natural colour and

1 . . .2 3 4 5 6 7 8 9 10 11 12 13 n-3 n-2 n-1 n cells

resources

individuals

histogram

resources
added based
on histogram
distribution

H S L wl wr ws wg
genome

colour colour weights
left, right, self

growth
weight

age health R width H S V
state

individual

. . .

. . .

Rt = f(Ht)

Figure 1: Schematic overview of Colourfield

the current colours of neighbours). Resources are required
to change and maintain a particular colour, proportionate
to the rate of change. If a neighbouring cell is empty, the
individual may “grow” into that cell, the propensity to grow
determined by the genome. The more cells occupied, the
more resources are required to change colour, but the greater
the contribution to the overall colour histogram of the world
(detailed shortly).
Let the current colour of an individual i in RGB colour

space be the vector Ci = (ri, gi, bi) and the width wi. The
resources required by this individual are:

ri = w2
i

„
k0 + k1 log

„
d||Ci||

dt

««
+ k2

dwi

dt
,

where k0, k1and k2 are constants.
Individuals receive resources from the environment via a

feedback process based on the composition of the world. At
each timestep, t, a histogram of chroma and intensity values
for the world is built. This histogram, Ht is used as a basis
for delivering resources to the world. A total resource Rt for
timestep t is calculated via a function f : Rn → R:

Rt = f(Ht)

and then distributed equally to all the cells in the world,
e.g.:

rk,t+1 = rk,t +
Rt

n
, k = 1, 2, . . . , n

where n is the size of the world. Individuals that occupy
more cells therefore receive a greater amount of resources,
as they make a greater contribution to the histogram.
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Figure 2: Installation view of Eden

A number of different versions of the function f have been
tested. These include: favouring chroma values with peaks
at equal division, maximising chroma or intensity variation;
matching a normal distribution; matching histograms based
on paintings recognised for their skilful use of colour.

Given sufficient resources, and following some period of
“growth”, an individual may reach its desired colour and
width (which may be dependent on the individual’s neigh-
bour states). At this time, it may choose to reproduce, either
by crossover with an immediate neighbour, or—if there are
no neighbours—by mutation. In the case of two immediate
neighbours, the mating partner is selected with probability
weighted to the normalised Euclidean distance between the
colour of the individual and its neighbours, so individuals
are more likely to mate with others who produce colours
similar to themselves. Offspring are placed in the nearest
empty cell, or if none exists, they replace parent cells. If
there are insufficient resources, the agent is unable to main-
tain its target colour, causing it to fade and eventually die.

Over time, the system evolves to maximise the produc-
tion of resources according to the composition of the his-
togram, which is determined by the size and colour of all
the individuals in the world. The system exhibits novel
colour patterns with patterns of stasis followed by large-
scale change as new optimal configurations are discovered.
Due to the configuration of co-dependencies, Colourfield ex-
hibits classic ecosystem phenomena such as parasitism (a
rogue colour contributing little to resource production but
“feeding off” other resource producing colours) and mutu-
alism (co-operative combinations of colours mutually con-
tributing to high resource production).

Colourfield is a simple experiment in adapting ecosystem
concepts to a simple creative system. It demonstrates cre-
ative discovery in a limited domain (creative relationships
between fields of colour and sound). Let us now move to a
more complex ecosystem example.

3.2 Eden: an Evolutionary Sonic Ecosystem
Eden is an installation artwork that makes extensive use of

the concepts discussed in this paper. The details presented
here focus on the ecosystem aspects of the work. For detailed
technical descriptions, see [16, 17].

The work consists of a complex artificial ecosystem run-

ning in real-time on a two-dimensional lattice of cells. This
world is projected into a three-dimensional environment, ap-
proximately 6m x 6m (see Figure 2). The ecosystem consists
of three basic types of matter: rocks, biomass, and evolving
agents. If a rock occupies a cell, agents or biomass may not.
Agents attempting to move into a cell occupied by a rock
will “feel” pain and suffer energy loss.

Biomass provides a food source for the agents. Biomass
is modelled on an extended Daisworld model [13], with the
growth rate βi for an individual biomass element, i, a Gaus-
sian function of local temperature at the location (x, y) of
the element, Tx,y:

βi = e−0.01(22.5−Tx,y)2 .

Local temperature is determined by the amount of biomass
present at (x, y). The Eden world exists on an imaginary,
Earth-like planet, orbiting a sun with a period of 600 days.
The orbit eccentricity and polar orientation give rise to sea-
sonal variations of temperature, affecting biomass growth.
As with Lenton and Lovelock’s model, the system exhibits
self-regulation and stability under a range of conditions.
However, overpopulation by agents may reduce biomass to
negligible levels, resulting in a temperature increase. The in-
creased temperature lowers the growth rate of the biomass,
leading to agent extinction and a dead planet. The sys-
tem detects such conditions, at which time the planet is
“rebooted” to initial conditions and a fresh batch of agents
and biomass seeded into the world.

Agents are oriented, omnivorous, autonomous, mobile en-
tities with a collection of sensors and actuators controlled by
a learning system, based on classifier systems (a version of
Wilson’s XCS [25]). Agents are able to metabolise biomass
into energy, which is required to perform actions via the
agent’s actuators. Possible actions include: eating, resting,
moving, turning left or right, singing, attacking whatever
occupies the cell in front of the agent, mating. The energy
cost of these actions varies according to the action (attack-
ing costs more energy than resting, for example), and to
physical factors, such as the mass of the agent (mass also
increases the power of attacking—a big, heavy agent is more
likely to injure or kill a smaller agent). If an agent’s energy
(health) level falls to 0, the agent dies. Dead agents may
be eaten by other agents for a certain time period following
death.

Agent sensors are both internal (enabling introspection)
and external (enabling sensation of the environment). They
include: sensation of cell contents within the single-distance
Moore neighbourhood of the agent; sound intensity and fre-
quency arriving at the agent’s location according to a sim-
ple physical model; introspection of pain; introspection of
low energy (health). The LCS evolves sets of rules based
on past experience and performance of successful rules. At
regular periods the agent’s health and resource acquisition
differentials are examined and a credit or penalty is pro-
vided to those rules used since the previous evaluation. A
positive differential pays credit proportional to its magni-
tude, likewise a negative differential penalises. Successful
rules gain credit and so are more likely to be selected in the
future. rules that consistently receive penalty are eventually
removed.

Rules evolve during an agent’s lifetime, with a penalty
imposed on energy for large rule sets to encourage efficiency.
Two agents may mate: the resultant offspring inherit the
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most successful rules of their parents, hence the system uses
Lamarkian evolution.

The Eden environment is visualised and sonified in the
installation space. The two-dimensional world is projected
onto two translucent screens, configured in an ‘X’ shape.
This enables people experiencing the work to move freely
around the screens at close range, examining details of the
world as it updates in realtime. The sounds made by the
agents are spatially mapped to four speakers located at the
corners of each screen. This rough spatialisation permits
the listener to approximately locate the sound source within
the Eden world. The bandwidth devoted to sound is much
higher than any other sensory information used by the agent.
Agents are able to differentiate and make sound over a range
of frequency bands, giving rich opportunities for the use of
sound in an ecosystem context.

In addition to the internal ecosystem model, the Eden
world is also connected to the physical world of the instal-
lation space via an infrared video camera which tracks the
presence and motion of people looking and listening to the
artwork2. The presence of people in the installation space
influences the growth of biomass in the virtual space. The
longer people spend with the work, the more food is likely
to grow in the virtual environment. The rationale for this
is that the more interesting the work, the longer the audi-
ence will stay. If people find the work uninteresting (either
visually or sonically), they will not spend much time with
it. A good way to maintain people’s interest is to produce
sounds, moreover, interesting, changing sounds.

Over time, the agents evolve to make complex sounds in
order to maintain their food supply. The agents have no
specific knowledge of people in the environment, however,
by making interesting combinations of sounds they attract
and maintain the interest of the human audience in the envi-
ronment3. This interest translates to a more stable supply
of food, hence improving chances of survival in the envi-
ronment. Therefore, Eden is a symbiotic ecosystem, which
includes the human audience experiencing the work.

3.3 Feedback Loops
The success of the systems described is in part due to the

feedback loops of resources within the environments. Figure
3 shows the causal relations between entities and resources
within each of the artificial ecosystem models discussed in
this section. As can be seen, Eden has a more complex net-
work of relations which mirrors, in part, the more complex
range of creative behaviours it is capable of producing.

3.4 Discussion
Table 1 summarises the properties and processes (as de-

scribed in Section 2.2) for the example creative ecosystems.
Adopting metaphors and mechanisms appropriate to the
problem domain is a major consideration in developing a
successful ecosystem. Note that both systems operate using
both individual (I) and evolutionary (E) time scales, that is,
each individual has a simulated life-cycle and the simulation
is run long enough for populations to discover adaptations
to their environment via evolution. In the case of Eden,

2The original version of the work used infrared distance sen-
sors.
3When shown in a gallery environment, it is important to
remember to compensate for opening hours, otherwise the
population dies out each night when the gallery is closed!

Table 1: Summary of Ecosystem Characteristics
Colourfield Eden

Genotype scalar vector xcs rules
Phenotype colours/sounds sonic agents

Species model single multiple
Spatial model 1D discrete 2D discrete
Environment colours agents, biomass, etc.

Health from environment from food
Energy source colour histogram sunlight, users

Metabolism colour histogram food processing
Timescales I, E I, E
Evolution Darwinian Lamarkian
Discovery Colour composition Musical composition

an agent’s classifiers evolve during the lifetime of the agent,
and successful rules are passed to offspring, so adaptations
may occur faster than in a Darwinian model. This essen-
tially circumvents the need for agents to re-learn how to
live in their world from birth, akin to parents teaching their
children what they have learned in their lifetime.

Ecosystem algorithms circumvent the problems of inter-
active evolution by replacing explicit fitness evaluation with
environmental adaptations. The problem thus becomes one
of designing environments from which creative solutions are
likely to emerge. As illustrated in the examples, the spe-
cific nature of the discovery domain determines the compo-
sition of the environment and the interactions between its
elements.

4. CONCLUSIONS
The concept of an artificial ecosystem algorithm for cre-

ative discovery is still formative. However, as demonstrated
by the examples in this paper, it holds potential as a method
to permit creative discovery where other methods, such as
interactive evolution or traditional EC methods are inap-
propriate. Artificial ecosystems exploit the novel discovery
of real ecosystem processes. The big question remains as
to how to exploit these properties. This paper proposed a
focus on metaphor and mechanism as a suitable approach.
The examples show how suitable metaphors (e.g. individ-
ual = colour, species = colour spectrum in Colourfield) and
mechanisms (e.g. symbiosis between audience and artificial
agents in Eden) can be applied to create successful creative
works.

The potential of artificial ecosystems is only beginning to
be discovered. It is hoped that future work may further
formalise the concepts and process and lead to more general
modes of creative discovery.

5. REFERENCES
[1] C. Adami. Ab initio modeling of ecosystems with

artificial life. Natural Resource Modeling, 15:133–146,
2002.

[2] W. B. Arthur, S. Durlauf, and D. A. Lane, editors.
The economy as an evolving complex system II.
Addison-Wesley, Reading, MA, 1997.

[3] T. Blickle and L. Thiele. A comparison of selection
schemes used in genetic algorithms. Technical
Report 11, Swiss Federal Institute of Technology,
December 1995.

306



energy
source

entities

chroma and intensity
histogram (H)radiant

energy

f(H)

growth hue, saturation, lightness

death

energy
source

animals biomass

eat /
death

eat

death

f(Aa + Ab, day)

albedo (Aa)
albedo

(Ab)

radiant
energy

COLOURFIELD EDEN
people

Figure 3: Causal resource flows for Colourfield and Eden

[4] M. Conrad and H. H. Pattee. Evolution experiments
with an artificial ecosystem. Journal of Theoretical
Biology, 28:393, 1970.

[5] R. Dawkins. The extended phenotype: the gene as the
unit of selection. Freeman, Oxford; San Francisco,
1982.

[6] A. Dorin. Aesthetic fitness and artificial evolution for
the selection of imagery from the mythical infinite
library. In J. Kelemen and P. Sośık (eds), Advances in
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