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ABSTRACT

With resemblance of finite-state machines to some biologi-
cal mechanisms in cells and numerous applications of finite
automata in different fields, this paper uses analogies and
metaphors to introduce an element of bio-plausibility to evo-
lutionary grammatical inference. Inference of a finite-state
machine that generalizes well over unseen input-output ex-
amples is an NP-complete problem. Heuristic algorithms ex-
ist to minimize the size of an FSM keeping it consistent with
all the input-output sequences. However, their performance
dramatically degrades in presence of noise in the training
set. Evolutionary algorithms perform better for noisy data
sets but they do not scale well and their performance drops
as size or complexity of the target machine grows. Here, in-
spired by a biological perspective, an evolutionary algorithm
with a novel representation and a new fitness function for
inference of Moore finite-state machines of limited size is
proposed and compared with one of the latest evolutionary
techniques.
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1. INTRODUCTION

The astonishing complexity of natural organisms, and
their remarkable inherent properties like fault-tolerance, im-
munity, robustness, parallelism and adaptation, has made
them good sources of inspiration for engineers. New, emerg-
ing paradigms such as Evolutionary Systems, Artificial Neu-
ral Networks (ANN), and Artificial Immune Systems (AIS)
are all efforts to imitate nature’s solutions to create intelli-
gent, adaptive and secure systems. In the same direction,
it is expected that an evolutionary developmental neural
network on silicon shows desirable features like adaptation,
fault-tolerance, and robustness. With that goal in mind,
evolving a single digital spiking neuron led to evolving finite
state machines.

Finite-state machines (FSM) [12] are used in a variety
of applications. They can be found in almost any piece of
sequential digital hardware in one way or another [27]. Even
a Von Neumann computer could be seen as a large finite-
state machine. Particularly, Moore model FSMs [21] are
popular in designing high-speed synchronous digital circuits
[27]. The same concept is used in software development as
well.

Finite-state machines go from one state to another and
emit output symbols in response to the input symbols they
receive form the environment. This is very similar to the way
biological organisms move in their vast multi-dimensional
state space from one attractor to another and interact with
their environment accordingly. However, biological organ-
isms have very complex gene regulatory networks as their
governing mechanism for these state transitions, while a
finite-state machine, no matter how complex, can be sim-
ply described by a boolean transition function. As nature
has evolved these gene regulatory networks to create bio-
logical organisms that live on this planet, it is possible to
evolve transition functions to create finite-state machines
that interact correctly with their environment.

The problem of learning a deterministic finite-state ma-
chine from examples could be also viewed as a machine
learning problem and has applications in different fields such
as formal language theory, syntactic and structural pattern
recognition, computational linguistics, computational biol-
ogy and speech recognition [7]. Different heuristic and evo-
lutionary algorithms were used to tackle this problem (7,
5]. Although evolutionary approaches perform better than
heuristic algorithms on noisy datasets [17], they do not scale
well and their performance drops as size or complexity of the
target machine increases [22].

Here, inspired by a biological perspective, an evolution-



ary algorithm with a novel representation and a new fitness
function for inference of Moore finite-state machines of lim-
ited size is proposed and compared with one of the latest
evolutionary techniques. This method was initially devised
to evolve an alternative design for soma unit of a stochastic
digital spiking neuron [25].

The next section reviews related literature. Definitions,
notation, and the problem statement are described in sec-
tion 3 before explaining the new evolutionary algorithm in
section 4 . The experiment settings are elaborated in sec-
tion 6 and their results are presented in section 7. Section 8
explains and justifies these results. Section 9 discusses the
extended applications of metaphors and analogies in com-
putational evolution. The paper is concluded in section 10
followed by the list of references.

2. BACKGROUND

As a class of grammatical inference problems, learning
a deterministic finite-state machine from input-output se-
quences has been studied by many researchers [7]. It is triv-
ial to synthesize an FSM, consistent with a given data set,
simply by constructing a prefix tree acceptor [17]. However,
since the synthesized machine is usually expected to gener-
alize the training data set to unseen test data, it is desired
to find the smallest consistent FSM. Gold [9] showed that
inference of a minimum finite state machine from given data
is an NP-complete problem. Even finding a machine with
number of states polynomial on the size of the minimum
machine is also NP-complete [24]. Manovit, Aporntewan
and Chongstitvatana investigated the effects of length [19]
and number of input-output training sequences [6] on the
correctness of the synthesized machines.

A family of heuristic algorithms, called evidence-driven
state merging (EDSM) devised by Lang and Price [16], can
process FSMs with large number of states. Oliveira and
Silva proposed a new search algorithm and reviewed the
state of the art search algorithms for inference of minimum
DFAs in [23]. However, these techniques are very sensi-
tive to noise and their performance dramatically decrease
in presence of noise in the data sets [17]. Recently, a num-
ber of competitions were dedicated to deterministic finite
automata inference [16, 15, 10] and provided evidence that
evolutionary approaches have a superior performance in ex-
tracting a deterministic FSM from noisy data compared to
the heuristic methods [17, 5].

Fogel, et al [8] were some of the first who used an evolu-
tionary approach to tackle this type of problem. Recently,
Niparnan and Chongstitvatana [22] introduced an evolution-
ary algorithm for inference of Mealy machines using GA and
statistical inference of the output function. Later, Lucas and
Reynolds [17] used a multi-start hill-climber and a similar
statistical method called Smart State Labeling for inference
of language acceptors from noisy data. Bongard and Lipson
also introduced a coevolutionary approach to active learning
of DFAs, which can be used when the target machine or an
oracle is available to label input strings [5].

As shown by [22, 17], it is possible to evolve an FSM
only by evolving the transition function. This transition
function can be described in a Boolean form. Evolution-
ary algorithms have difficulties evolving large and complex
Boolean functions but a developmental process can improve
the scalability of the evolution [11] as it uses an implicit map-
ping from genotype to phenotype. Using Fractal Proteins,
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Bentley [3, 4] evolved Gene Regulatory Networks, which
showed a better evolvability than representations with di-
rect genotype-phenotype mappings. Bentley’s primary ex-
periments with on-off fractal proteins (without concentra-
tion) produced machines equivalent to finite-state machines
[3]. Inspired by that, it is possible to create a more bio-
plausible representation and a biologically more meaningful
fitness function for evolutionary inference of FSMs in hope
of gaining evolvability and scalability. This paper proposes a
novel indirect genotype-phenotype mapping and a new pro-
gressive fitness function for evolutionary inference of Moore
Model FSMs using the same output estimation technique of
[17] and [22]. A Moore model FSM [21] is used here as it
is widely employed in design of synchronous sequential dig-
ital circuits. In Moore machines, outputs only depend on
the current state, which is in contrast with Mealy machines
where outputs are functions of the inputs and the current
state [27].

3. PROBLEM FORMALIZATION

A Moore finite-state machine [21] is defined here with a
notation similar to [12] and [22].

3.1 Basic Definitions

Definition 1. A Moore finite-state machine is defined as
a six-tuple M = (Q, X, A, d, A, qo) where:

Q is the set of states with cardinality u = |Q)],

go € Q is the initial state,

Y is the input alphabet with cardinality v = |X|,

A is the output alphabet with cardinality w = |A|,

0(g,a) : Q@ x 3 — Q is the transition function and,

A(g) : @ — A is the output function.

A specific state, a specific input and a specific output are
represented respectively as ¢, a, and b. It is possible to
describe the transition function d(g,a) in a state transition
table or illustrate it in a state transition diagram [12].

Definition 2. An input-output sequence S of length L is
an ordered set of pairs {(ao, bo), (a1,b1), -+, (aL—1,b—1)}
where (a,b) € ¥ x A. An input-output sequence set D is
a set {S1,52, -+ ,Sn} of N = |D| members with different
lengths L1, Lo, --- , Ln.

Notation: The final state of the Moore machine M after
receiving input sequence apai - - - an is written succinctly as
0(qo, aoas - - - an) and therefore d(qo, apa1) = §(6(qo, ao),a1).

Definition 8. M = (Q, %, A,d,\, qo) is said to be consis-
tent with input-output sequence
S ={(ao,bo), (a1,b1), -, (ap—1,br-1)}
iff
A(0(qo,a0ar ---ar)) = b

A Moore finite-state machine is said to be consistent with
data set D iff it is consistent with all S; € D.

3.2 Problem Statement

Given the training data set D of input-output sequences
randomly generated from target machine M of unknown size
u and given an upper bound 2™ < u, the problem is to syn-
thesis a Moore finite-state machine M’ of size u’ consistent
with D where u < v <2™.

forallteZ:0<t< L.
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Figure 1: Chromosome structure for representing a
finite state machine with 3 inputs bits and 4 state
bits.

4. EVOLUTIONARY ALGORITHM

It is shown in [17] and [22] that instead of evolving both
transition function §(g,a) and output function A(g), only
the transition function needs to be evolved and the output
function can be inferred using a statistical method. The
same statistical method of [22] for learning the output func-
tion (with slight modifications for a Moore model) is used
here. A direct genotype-phenotype mapping was used in
[17] and [22] meaning that the chromosome was constructed
simply by concatenating all the next states in the right-hand
column of the state transition table:

8(qo,a0)8(qo,a1) - - - 6(qo, av—1)0(q1, a0)d(q1,a1) - -

(g, av—1) -+ 0(qu-1,00)0(qu-1,01) - - - 6(qu-1, av-1).

Here, an indirect genotype-phenotype mapping is used in-
stead, with intention of creating neutral networks in the fit-
ness landscape [26] and bringing more evolvability to the
evolutionary algorithm. A fitness function based on the
number of correct output symbols was used in [22]. However
a new progressive fitness function based on the number of
correct output symbols before emitting an incorrect symbol
is used in this study.

4.1 FSM Representation

Figure 1 shows the single-chromosome structure of the
genome, as an array of genes. A parameter (chromosome
size) specifies number of genes in the chromosome. Each
gene has two parts: a regulatory region, and a coding re-
gion [14]. The regulatory region has n + m condition or
TF (transcription factor [14]) sites. The n leftmost sites
control how this gene is expressed in different input bit set-
tings. The m rightmost sites control the gene expression in
response to the state bits. Each site in the regulatory region
can be '0’, '1’, or ", each representing a condition. A gene
can be expressed only when all conditions in the regulatory
region are satisfied. A ’0’ at a specific site shows that this
gene will not be expressed if the corresponding bit (in the
input vector or current state of the FSM) is set and this con-
dition is satisfied only when the corresponding bit is 0’. A
’1’ means that the gene can only be expressed if that bit in
the input vector or current state is set. A * (representing
a wild card) means that the gene does not care about this
bit and its expression is not controlled by this bit (always
satisfied).

The coding region of the gene comprises m sites and speci-
fies the next state of the FSM. Each site in the coding region
can be ’0’, ’1’, "T”, or '"H’. Having a "1’ or '0’ at a specific
site means that if this gene is expressed, this bit in the next
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state will be set or reset respectively. A ’T7 (standing for
Toggle) means that the corresponding bit in the next state
is the compliment of the same bit in the current state. An
"H’ (representing Hold) means this bit should be copied from
the current state to the next state. Only one gene from the
whole genome can be expressed at a time. The first gene in
the chromosome (from left) with the least number of wild
cards that matches input vector and current state will be ex-
pressed. The coding region of the expressed gene determines
the next state of the FSM.

An FSM with u’' < 2™ states and input alphabet of size
v’ = 2" can be described with this representation. For ex-
ample, if we have one input (n = 1) and eight states (m = 3),
the regulatory region will be four “bits” (sites) long (n+m)
and the coding region of each gene will be three “bits” (m).
Then, the following genome is one of many representations
for a 3-bit binary counter with a count-enable input (counter
increments when input is '1’ and holds if it is ’0’).

o*** HHH | 1*** HHT [ 1**1 HTO | 1*** 170 |1*11 TOT|

The faded gene in the above example is always inactive
due to the first gene being expressed instead. In this rep-
resentation, there can be many inactive genes, which con-
tribute to the neutral networks [26]. Neutral networks allow
an evolving population to drift around equally-fit points in
the search space until it reaches the neighborhood (within
one mutation distance) of a fitter point. This helps the
evolving population to escape from a local optimum. It is
discussed in detail in section 8.

4.2 Genetic Operators

4.2.1 Crossover

Recombination of two chromosomes is performed simply
by a standard 2-point uniform crossover. The crossover
probability is always 1.0 during this research as other means
for transferring fittest individuals to the next generation ex-
ist in the algorithm.

4.2.2  Mutation

Five types of variation (mutation) are used: normal muta-
tion, gene randomization, gene duplication, gene swap, and
cross mutation. Normal mutation can replace a site in a
gene by a random symbol from {0,1,*} or {0,1,T,H} (de-
pending on the region). If a gene randomization happens,
all of the sites in a randomly selected gene is randomized.
It cannot happen more than once for each chromosome in
each generation. Gene duplication is when all the sites of
a randomly selected gene is copied to another randomly se-
lected gene. Gene swap, simply swaps the location of two
randomly selected genes in the chromosome. Cross muta-
tion is copying part of the regulatory region of a random
gene on the coding region of another random gene. This
is performed by first selecting two random loci in the chro-
mosome, then extracting the state bits from the regulatory
region of one of them, replacing wild cards with random alle-
les from {0,1,H,T} and overwriting the result on the coding
region of the second gene. Mutations have no bias, which
means equal probability for all alleles {*,0,1}, {0,1,H,T}.

4.3 Fitness Function

For fitness evaluation, each evolved FSM is initialized to
qgo (all zeros) before being simulated over each sequence S;



in the training set D. In [22] fitness of each FSM is de-
fined as the fraction of time during simulation that output
symbols emitted by the evolving FSM are equal to the out-
put sequences in the training set. This fitness function is
called the reference fitness function throughout this paper.
As will be explained later, this reference fitness function
adds a needless raggedness to the fitness landscape. Here,
a progressive fitness function, called “Average Lifespan”, is
used instead to prevent that raggedness.

4.3.1 Average Lifespan

In this method, first, the output function is inferred using
the same algorithm explained in [22]. Then evolved FSM
M = (Q,X,A"§, N, q) is simulated on each sequence
Sj = {(ap,b3),- -+, (a1, b7), -+, ((1][‘71, bJL—l)} of length L;
in the training set D = {S1,S2, ---,Sn}, and its output,
X(qy), is compared with b} at each time step ¢ until they
do not match (g;’ is the state of the M’ at the step t of the
sequence Sj). The number of correct output symbols that
M’ emits before the first incorrect symbol on each sequence
Sj is recorded as Ij(M') and is called “Lifespan” of M’ on
Sj. Its scaled average over all sequences in the training set
D is regarded as fitness of M’, which can be written as:

> (M)
j:S;€D

> L

j:S;€D

F(M') 1

where

)\l(qg):b{, for allteZ* 0§t<l](M/)

and

X(qzlj(M/)) # b, vy I;(M'") < L;.

Emission of the first incorrect output symbol reveals an
inconsistency and shows that M’ is no longer in a correct
state. As a result, the number of correct symbols emitted
after this point, which is used in the reference fitness func-
tion evaluation, is irrelevant and should not contribute to
the fitness value.

For example, take the FSM illustrated in figure 2a as M.
Assume that the evolved FSM, M’, has the same transition
diagram except that in state 2, by receiving a '1’ input, it
goes to state 4 instead of going to state 3. During processing
an input sequence, M enters state 3 by receiving a '1’ and
emits a 0’ in the output. But M’ enters state 4 and emits a
’1’. From now on, some of the output symbols generated by
M’ may be correct (for instance if it immediately receives
a ’1” in the input) but they are only accidentally correct
symbols, which can easily mask the effect of that incorrect
transition on the fitness value and create a deceptive clue
for the evolution.

4.4 Algorithm

A generic evolutionary algorithm was adopted from [3,
1]. It is based on two populations of children and adults.
The adult population is maintained in order of fitness and
parents are randomly (with equal probability) selected from
amongst a number (selection size) of top adults. The child
population is reproduced by these parents and evaluated
with the fitness function at each generation. If a child’s
fitness is greater or equal to the fitness of one of the adults
it is transferred to the right place in the adults population
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to maintain the order of the adults population and the least
fit adult dies.

It is particularly important that algorithm inserts a child
with a fitness equal to one of the adults at that adult’s place,
so that an individuals with a neutral mutation can take an
old individual’s place and algorithm can exploit neutral mu-
tations [20]. Preliminary experiments showed that turning
off this feature (i.e. using > instead of > in the search and
insert algorithm) dramatically deteriorates the performance
of the algorithm, which confirms the importance of the neu-
tral networks in the fitness landscape.

These two populations can be implemented as linked lists
for better performance [1]. As new individuals enter the
adults population and less fit adults go out, the time that
each adult is amongst the parents is proportional to its fit-
ness. It is possible to change the selection pressure by chang-
ing relative size of two populations and the selection size
parameter. In this algorithm, only new individuals in the
children population are evaluated in each generation.

One of the effective changes that could be made in the al-
gorithm is tuning the selection pressure. This pressure can
be controlled by relative size of the child population to adult
population size and number of parents (select size). Typical
values for these parameters are child population size=80%
and select size=40% of the adult population size [3]. In fact,
putting more pressure can lead to early convergence to a
suboptimal solution and low chances of escaping that, while
a low pressure results in more diversity in the population
but a very slow progress in evolution. Preliminary experi-
ments showed that a slightly lower pressure gives a better
performance for this problem.

S. A BIOLOGICAL PERSPECTIVE

It is possible to look at this representation from a bio-
logical standpoint [13, 14]. Each state of the FSM can be
regarded as a binary abstraction of the protein concentra-
tion state of a very simple biological cell. Each state bit
is a binary abstraction of the concentration of one specific
protein synthesized in the cell. Input bits can be compared
to inter-cellular communication proteins, hormones or envi-
ronmental factors. Outputs can be regarded as physiologi-
cal properties of the proteins produced by behavioral genes.
Even the initial state can be compared to the maternal fac-
tors for a zygote cell [14].

The functional graph of the combinational digital circuit
implementing a finite-state machine can also be regarded
as a Gene Regulatory Network (GRN), which encodes the
developmental and functional program of biological cells [13,
14]. For example, in a gene regulatory network, protein D
is synthesized only in presence of proteins A and B, and
absence of proteins C' and D. It can be seen as four flip-flops
labeled A, B, C, D with input of the D flip-flop connected
to the logic function F(A, B,C, D) = ABCD.

We can think of the genome as the chromosome of a bio-
logical organism. An organism can live as long as it interacts
correctly with its environment. Its chance for reproduction
or replication is proportional to its lifespan. So we can think
of its lifespan as a fitness affecting its reproduction. How-
ever, in [22], the fitness function is the average correctness
of the organism interaction over the length of the input se-
quence. This difference led to the new fitness function de-
tailed in section 4.3.1. The hold and toggle alleles ("H’ and
"T7) can be also regarded as abstraction of coding for those



Figure 2: (a)State transition diagram of a modulo-8 up-down counter as an example of the counters used
in the experiments. (b)A perfect evolved FSM targeting the FSM a. (c)A minimum size perfect solution
generated by evolution beyond perfection only one generation after the FSM b. The ¢/b in each state means
that the FSM emits output symbol b in state q. Input symbols are shown on state transitions.

proteins that interact with other proteins to decelerate their
defusion rate or negate each other’s effect (respectively for
'H’ and 'T").

There are also some inconsistencies between this represen-
tation and what happens in nature. Each biological gene can
only produce one protein (in simple organisms) and many
genes can be expressed at the same time and many expressed
genes can contribute to concentration of one protein. In con-
trast, in this representation, each gene can even produce all
the proteins, only one gene is expressed at a time, and when
more than one gene can be activated only the first one with
the least number of wild cards is expressed.

6. EXPERIMENTS

Experiments were designed to compare the new tech-
niques with the reference methods in terms of their evolv-
ability and scalability. This was done by changing the com-
plexity of the problem in a controlled fashion while keeping
all other parameters fixed, repeating experiments with the
new and the reference methods. Another variable, which af-
fected the success rate of the evolutionary algorithm through
preliminary experiments, was maximum size of the evolving
FSMs (u’ < 2™). Tt can be only changed in steps of pow-
ers of two (2™) due to the nature of the binary representa-
tion. Therefore, FSMs of maximum sizes 16, 32 and 64 were
evolved.

6.1 Training Set

In many studies, randomly generated target FSMs were
used as target machines for creating the training sets. How-
ever, it is difficult to generate a random FSM with a con-
trolled level of complexity as its complexity highly depends
on many other factors besides number of states. There-
fore, this experiment was performed on Modulo-N up-down
counters anticipating that their complexity is an increasing
function of their sizes. Each modulo-N up-down counter
was generated with all the N states placed in one single loop
in wrapped-around binary order. A ’1’ in the input of the
modulo-N counters made their binary state increment and
a ’'0’ decremented their binary state. States 0 to % —1 emit
a ’0’ and states % to N emit a ’1’ in the output. The state
transition diagram of a modulo-8 up-down counter of this
kind is shown in figure 2a as an example. Each modulo-N
up-down counter was used to generate a data set consisting
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of 20 input-outputs sequences of length 4N. Each input se-
quence was generated by a random bit stream of probability
0.7 and each output sequence was generate by feeding the
input sequence to the target counter.

6.2 Experiment Setup

Experiments were performed on training sets generated by
module-N up-down counters of size N = {2,4,6, 8,10, 12, 14,
16}. FSMs were evolved for 25 runs. The number of runs
that generated a perfect solution was recorded for three dif-
ferent settings of the number of state bits (m = {4,5,6})
using the following combinations of mappings and fitness
functions:

1. Direct mapping with the reference fitness function
(same as [22])

Indirect mapping with the reference fitness function

Direct mapping with the Average Lifespan fitness func-
tion

Indirect mapping with the Average Lifespan fitness
function.

In the direct mapping representation method, the state tran-
sition table was directly coded into the chromosome, while
in the indirect mapping technique the state transition table
was developed by expression of genes using the new algo-
rithm. The Smart State Labeling [17] were used for output
function estimation with both the Average Lifespan and the
reference fitness functions.

Parameters were tuned, fixed, and identical for all tech-
niques throughout the experiments as reported in table 1.
However, normal mutation is based on probability of mu-
tation per site. Therefore, normal mutation probability was
tuned each time, according to the chromosome size. More-
over, the chromosome size was set to 2™+ where n is
number of input bits and equals to one and m is the num-
ber of state bits, which is a variable during experiments.

7. RESULTS

Results for evolving 4-bit FSMs of maximum size 16
(u" < 16) are shown in figure 3. Using the Average Lifespan
fitness function showed a significant improvement. How-
ever, both mappings had almost the same performance, with
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Value

0.003, 0.0015, 0.0008 per
site for m = 4,5,6

0.001 per chromosome

0.2 per chromosome

0.2 per chromosome

0.7 per chromosome

Parameter
Normal mutation probability

Gene randomisation probability
Gene duplication probability
Gene swap probability

Cross mutation probability

Crossover probability 1.0
Adult population size 30
Children population size 24
Selection size 16
Chromosome size onTmTL — 64,128,256 for
m =4,5,6
Mazximum number of generations 20000 (480000 evaluations)
Number of runs 25

Table 1: Parameter settings used in the experiments

slightly higher number of perfect solutions for combination
of direct mapping and Average Lifepan fitness function. For
the u' < 32 case in figure 4, direct and indirect mapping
still had almost equal performances using the reference fit-
ness function. Again, using Average Lifespan fitness func-
tion, improved the successes rate. However, indirect map-
ping outperformed the direct mapping representation in this
case. This difference was more significant in u’ < 64 case,
shown in figure 5. Both mapping techniques showed almost
the same performance with the reference fitness function
and their performances were both improved using Average
Lifespan fitness function. The number of reachable states
of the evolved FSMs were usually very close to the number
of states in the target FSM and they generally converged
to the correct number when evolution continued for a while
after finding a perfect solution. Figure 2b shows a perfect
evolved FSM with 9 states, which is consistent with a data
set generated from the FSM shown in figure 2a. In the same
run, continuing the evolution for one generation created the
8-state FSM of figure 2c.

8. ANALYSIS

The above results show a significant improvement in all
cases when Average Lifespan fitness function is used. Us-
ing the Average Lifespan fitness function seems to help the
evolution as explained in section 4.3.1. It may contribute
to the neutrality of the fitness landscape by neutralizing
those adaptive mutations that affect deeper transitions. By
deeper transitions, we refer to those state transitions that
are not experienced by Average Lifespan fitness function
during evaluation of an FSM due to early incorrect output
symbols.

Another noticeable occurrence was that the indirect map-
ping representation started to outperform the direct map-
ping technique as the maximum size of the evolving FSMs
(2™) was increased. This is the typical behavior in develop-
mental evolutionary approaches to scale well when evolving
a modular structure (like modulo-N counters in this prob-
lem) [11]. This might be because this coding technique cre-
ates a one-to-many mapping by having different redundan-
cies in the representation and many inactive genes, which in
turn contributes to neutrality in the fitness landscape [26].
While adding {* H,T} to a default set of alleles ({0,1}) adds
to the redundancy needed for neutral networks, it is also re-
sponsible for the emergent modularity and formation of mo-
tifs in the transition diagram of the evolved FSMs, which are



other typical features of a developmental evolution. Inter-
estingly, this scalability shows itself only when the indirect
mapping and the Average Lifespan fitness function are used
together. This suggests a connection between them on this
particular problem, which needs more investigation.

The other perceptible observation was that evolution
tends to reduce the number of states in the evolving FSMs
when evolution continues after finding the first perfect solu-
tion. Emergence of this property and graceful degradation in
evolved solutions by “evolving beyond perfection” is inves-
tigated in more detail in [4]. As evolution tries to make the
chromosome robust to adaptive mutations, it tends to use
redundancy and/or code compression to create an efficient
and robust genotype [4]. In this particular representation,
this tendency leads to fewer number of active genes with
higher number of wild cards ("*’), which consequently shows
itself as more regular and usually smaller evolved FSMs.

9. DISCUSSION

Great similarities between different complex natural sys-
tems such as evolution, gene regulatory networks, develop-
ment, brains, immune systems, swarms, and complex social
systems may imply existence of a common set of fundamen-
tal laws governing all these systems in nature [2]. Nature-
inspired computing is trying to extract these essential rules
to create abstracted models for solving difficult engineer-
ing problems. However, as our understanding of biology
increases, computer scientists can progress in their quest for
these underlying laws by imitating nature in their models
more accurately. On the other hand, biologists, neurosci-
entists, sociologists, economists and other scientists study-
ing natural complex systems may also find an opportunity
to use these models to gain insight into their own subjects
[18]. This mutually beneficial multidisciplinary approach is
not possible without a proper mapping between two inter-
acting domains. This mapping shows itself as analogies or
metaphors in the literature.

These analogies and metaphors help scientists to compare
the artificial evolution with the natural evolution and locate
their similarities and differences. Some of these differences
point us to the essential properties of a successful evolution-
ary system. Most of the artificial evolutionary systems over-
simplify at least two major processes in natural evolution
by means of abstraction: selection and genotype-phenotype
mapping.

Selection and the survival of the fittest are known to be
the central drives for evolution. However there is a large
difference between the selection process in nature and se-
lection in computational evolution. Typically, individuals
(solutions) are evaluated using a predefined static fitness
function that determines how well this individual can solve
the problem. Then, some of the fittest individuals are ran-
domly selected and mated as parents. In nature, there is no
such a thing as fitness function and there is no clear measure
for fitness. Organisms develop, mature, move around and re-
produce, interacting with each other and their environment,
with lots of competition and symbiosis within their popu-
lation and with other species. Each organism goes through
a unique trajectory of its own during its lifetime and there
is no accurate way of comparing two different individuals.
The environment and the evolving populations are changing
all the time and consequently the meaning of the fitness is
also evolving through time. It looks as if evolution is free
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to take different approaches to the problem of survival. Al-
though the environment dictates the basic rules of the game,
evolution can tackle the problem from another angle, trans-
forming the problem to a completely different problem. This
can be seen in nature that how species start to evolve in a
habitable environment and gradually adapt and migrate to
more hostile environments.

The way nature develops an organism from its genome
and maintains it during its lifespan is another vital pro-
cess of evolution. In traditional approaches to evolutionary
computing, a solution (phenotype) is usually generated di-
rectly from the genotype. However, in natural evolution it
is performed through a very complex process of develop-
ment governed by intricate gene regulatory networks which
in turn are based on complex processes of gene expression,
protein production, folding, interaction, and diffusion [14].
Each one of these processes is orders of magnitude more
complex than all the evolutionary systems we have imple-
mented in our computers. It is believed that these pro-
cesses might be partly responsible for the high evolvability
of the natural evolution [14]. Creating detailed abstractions
of these processes may improve the evolvability of the com-
putational evolution [3, 11] while giving developmental biol-
ogists a chance to look at development through the aperture
of these abstract models to unravel some of its mysteries.

Extending these analogies can lead to a bio-plausible (or
AlLife) approach to multi-objective optimization. Environ-
ment can be a metaphor for the objective space, spanning
from suboptimal areas to optimal areas. Species living in
this environment are the solutions to the problem, which
tend to gradually migrate/grow toward hostile (optimal)
zones due to shortage of resources (energy, food, light, etc.)
in the habitable (suboptimal) areas. The phenotype of each
individual represents a specific setting of variables, develop-
ing (moving/growing in the objective space) according to its
developmental program while interacting with the environ-
ment (objective space) and other individuals (solutions) by
sensing the environment (objective functions), reproduction,
consuming resources, etc. Constraints can also be enforced
by death, injuries or other means that affect the individ-
ual’s development and lifespan. Such a method seems very
promising in creating speciation as individuals with simi-
lar trajectories in the environment have a higher chance of
mating.

This paper shows how analogies helped us to incorpo-
rate only an element of these details into our computa-
tional model and how even such subtle changes toward bio-
plausibility may cause improvements. First, it showed how
using a more bio-plausible indirect mapping and a fitness
function, wildly used by ALife community, affected the scal-
ability of the evolutionary algorithm and improved its per-
formance in a particular case. All these results substanti-
ate the claim that incorporating abstracted biological de-
tails into evolutionary algorithms can be helpful to compu-
tational evolution.

10. CONCLUSIONS

A new representation, based on a simplified model of gene
regulatory networks, and a novel fitness function called “Av-
erage Lifespan” were introduced for evolving Moore finite-
state machines and were used for evolving FSMs consistent
with data sets from modulo-N up/down counters of size 2 to
16 states. A Moore model was used as it is widely employed



in the design of synchronous sequential digital circuits. The
average Lifespan fitness function improved the number of
perfect solutions even when used with a standard represen-
tation. Results confirmed that, in this problem, using both
new methods together improved the success rate of the evo-
lutionary algorithm when higher maximum number of states
were used (v’ < 32 and v’ < 64). This is a positive result
as it is desired to use higher upper bounds for the number
of states when size of the target machine is unknown. This
is in contrast with the standard direct mapping representa-
tion, which showed a dramatic degradation when this upper
bound was increased.

Both the indirect representation and the new fitness func-
tion are biologically more plausible than the reference meth-
ods and, together they outperformed those methods in the
experiments reported here. This may be a consequence of
neutrality in the fitness landscape. This performance com-
parison can be carried out in detail for a broader range of
target FSMs in future studies. It is also of great interest to
see how this new representation and fitness function perform
in presence of noise in the training set. Other avenues are
deeper investigation of the effects of using a reduced set of
alleles and “evolution beyond perfection” [4] on the evolving
FSMs.
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