Using Group Selection to Evolve Leadership in
Populations of Self-Replicating Digital Organisms

David B. Knoester, Philip K. McKinley, and Charles A. Ofria
Department of Computer Science and Engineering
Michigan State University
East Lansing, Michigan 48824

{dk,mckinley,ofriay@cse.msu.edu

ABSTRACT

This paper describes a study in the evolution of distributed coop-
erative behavior, specifically leader election, through digital evo-
lution and group selection. In digital evolution, a population of
self-replicating computer programs exists in a user-defined compu-
tational environment and is subject to instruction-level mutations
and natural selection. Group selection is the theory that the survival
of the individual is linked to the survival of the group, thus encour-
aging cooperation. The results of experiments using the AVIDA
digital evolution platform demonstrate that group selection can pro-
duce populations capable of electing a leader and, when that leader
is terminated, electing a new leader. This result serves as an exis-
tence proof that group selection and digital evolution can produce
complex cooperative behaviors, and therefore have promise in the
design of robust distributed computing systems.

Categories and Subject Descriptors

1.2.8 [Computing Methodologies]: Artificial Intelligence—Prob-
lem Solving, Control Methods, and Search; D.1.3 [Programming
Techniques]: Concurrent Programming—Distributed program-
ming; F.1.1 [Computation by Abstract Devices]: Models of Com-
putation—Self-modifying machines

General Terms

Experimentation.

Keywords

Digital evolution, leader election, cooperative behavior, natu-
ral selection, group selection, mutation, autonomic computing,
biologically-inspired computing.

1. INTRODUCTION

The increasing interaction between computing technology and
the physical world requires that systems be able to adapt to chang-
ing conditions [24]. Adaptation and robust operation are especially
important at the wireless edge of the Internet, where systems must

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

293

tolerate lossy communication, conserve energy, compensate for
failures, fend off attacks, and optimize performance, all with min-
imal human intervention. Autonomic computing [15] refers to sys-
tems capable of such self-management. To design robust computa-
tional systems, one can take inspiration from nature. Living organ-
isms have an amazing ability to adapt to changing environments,
both in the short term (phenotypic plasticity) and in the longer term
(genetic evolution). Moreover, most complex organisms exhibit
traits desirable in self-managing computing systems: system moni-
toring (senses, awareness); system reconfiguration (muscle growth,
calluses); self-repair (blood clotting, tissue healing); and intrusion
detection/elimination (immune systems).

Biologically-inspired approaches to system design include
biomimetics [14], where computational systems mimic behaviors
found in natural organisms, and evolutionary computation methods
such as genetic algorithms, genetic programming, and digital evo-
lution [10, 13, 17,26], which codify the natural processes that pro-
duce those behaviors. Examples of biomimetics include mimicking
the social behavior of insect colonies in robots [14,23,30] and using
the concept of chemotaxis to facilitate robust network routing [2].
Genetic algorithms and genetic programming have also been ap-
plied to a variety of problems in distributed computing, including
multicast mapping [11], multi-agent systems [6], and the automated
design of communication protocols [38]. In addition, hybrid ap-
proaches have been proposed that use genetic programming to in-
fluence swarm dynamics [18], and neuroevolution has been used to
study communication and cooperative behaviors [22,33].

Our work addresses the application of digital evolution [26] to
the design of robust distributed computing systems. In digital
evolution, a population of computer programs exists in a user-
defined computational environment. These “digital organisms”
self-replicate, compete for available resources, and are subject to
instruction-level mutations and natural selection. Over thousands
of generations, they can evolve to survive, and even thrive, un-
der extremely dynamic and adverse conditions. Unlike biomimetic
approaches, digital evolution is not connected to behaviors found
in existing living organisms. Moreover, digital evolution is open-
ended: whether a given organism self-replicates and moves into
the next generation depends on its environment and its interac-
tion with other organisms. AVIDA [28], a digital evolution plat-
form, has been used to study the evolution of biocomplexity in na-
ture [1,20] and to address complex problems in science and engi-
neering [9, 19,34].

In this paper, we use AVIDA to investigate whether group selec-
tion can produce a cooperative behavior, leader election, in popu-
lations of digital organisms. Leader election is a distributed algo-
rithm whereby a population of processes must eventually elect a
leader, and, if that leader is terminated, elect a new leader [21].



Group selection is the theory that the survival of the individ-
ual is linked to the survival of the group1 [35] and is similar to
multi-population evolutionary algorithms [4]. Multi-population ap-
proaches have recently been used to accurately diagnose malig-
nancy in cancer [39] and improve runtime performance of multi-
objective evolutionary algorithms [8]. Automatic grouping and role
determination of individuals has also been applied to cooperative
multi-agent problems [12,25].

In AVIDA, group selection is realized by allowing distinct sub-
populations (called demes) to evolve independently and to period-
ically compete against each other based on a fitness function. Re-
sults of our experiments demonstrate that this method can produce
populations capable of electing a leader, and when that leader is
terminated, electing a new leader. We emphasize that these digital
organisms have no “built-in” ability to perform this task; each pop-
ulation begins with a single organism that possesses only the ability
to self-replicate. Over thousands of generations, random mutations
and natural selection produce an instruction sequence that realizes
leader election. Furthermore, the group selection method used in
our experiments selects only for the desired outcome, not for a par-
ticular implementation.

This study serves as an existence proof that group selection and
digital evolution can produce complex cooperative behaviors. Our
long-term goal is to use digital evolution in the design of robust dis-
tributed systems that remain effective even under extremely harsh
conditions. While these solutions may share the inherent imper-
fections of natural organisms, they might also be resilient to unex-
pected conditions, where human-designed algorithms are limited
and/or brittle. The remainder of this paper is organized as follows.
Section 2 describes the AVIDA platform for digital evolution. Sec-
tion 3 describes AVIDA’s mechanism for studying group selection.
Section 4 describes our experiments in evolving leader election,
presents results from the use of AVIDA, and analyzes the genomes
of a deme that evolved the desired behavior. Finally, Section 5
presents our conclusions and discusses our planned future work.

2. AVIDA BACKGROUND

In this section we provide an overview of AVIDA, including the
structure of digital organisms and their environment.

2.1 Digital Organisms

Figure 1 depicts an AVIDA population and the structure of an
individual organism. Each digital organism comprises a circular
list of instructions (its genome) and a virtual CPU, and “lives” in
a common virtual environment. Within this environment, organ-
isms may communicate with each other via the exchange of mes-
sages, resources may be produced and consumed, and organisms
may sense and change properties of the environment. At any point
in time the population of digital organisms may contain many dif-
ferent genomes. Some may be closely related (e.g., parent and off-
spring), while others may be related only through a distant ancestor.

Instruction set

An organism’s genome is a circular list of instructions, similar in
appearance and functionality to traditional assembly language in-
structions. The instructions enable an organism to perform sim-
ple mathematical operations, such as addition, multiplication, and

"The authors are aware of some controversy concerning group se-
lection, kin selection, the evolution of altruism, and the “selfish
gene” in biological systems. The research presented in this paper
does not address this controversy. Instead, we use a clearly defined
mechanism for group selection to evolve a specific behavior in dig-
ital organisms.
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Figure 1: An AVIDA population containing 4 primary genomes
(bottom), and the structure of an individual organism (top).

bit-shifts, as well as to interact with the organism’s environment,
for example, by sending a message to a neighboring organism, or
outputting a number to the environment. The standard AVIDA in-
struction set is Turing-complete, and therefore theoretically able to
evolve any computable function. A key property of AVIDA’s in-
struction set that differs from traditional computer languages, how-
ever, is that it is not possible to construct a syntactically incorrect
genome in AVIDA; that is, all possible genomes are “runnable.”
Hence, while random mutations will produce many genomes that
do not perform any meaningful computation, their instruction se-
quences will still be valid. Indeed, this property is critical to the
evolutionary process [27].

Instructions are executed by the organism’s virtual CPU. Differ-
ent AVIDA CPU architectures have been implemented and used in
various studies [28]. The architecture used in this study contains
a circular list of three general-purpose registers { AX, BX, CX},
two general-purpose stacks {G'S, LS}, and four special-purpose
heads. Heads may be thought of as pointers into the organism’s
genome and are similar to a traditional program counter or stack
pointer. The instruction-head points to the next instruction to be
executed. The flow-control head points to a location in the genome
to which the instruction-head may be moved upon execution of cer-
tain instructions; it is similar to a got o label in the C programming
language, but may be dynamically changed during execution. The
read-head and write-head are used during replication, and enable
the organism to read and write instructions within its genome.

Replication cycle

During the replication cycle an organism’s genome experiences
variation in the form of random instruction-level mutations. Fig-
ure 2 depicts the instructions comprising the replication cycle of
the default AVIDA organism (mutations are likely to modify this
sequence in descendants). The first step in replication is for the
parent to allocate space for the offspring in its genome, and posi-
tion the read- and write-heads at the beginning of its own genome,
and its offspring’s genome, respectively. The parent then executes
its “copy-loop,” where instructions are copied individually from
the read-head to the write-head. Finally, the parent organism ex-
ecutes an h—divide instruction, which splits its genome into two



parts, creating two organisms. Each time an instruction is copied, a
mutation may be introduced according to a predefined probability.
These mutations may take the form of a replacement (substitut-
ing a random instruction for the one copied), an insertion (insert-
ing an additional, random instruction into the offspring’s genome),
or a deletion (removing the copied instruction from the offspring’s
genome).

Allocate space at the end of this genome

(Zaloec 1| _—— and position the read-head and write—head here.
h-search Position the flow—control head at the end of
nop-C the parent’s genome.
nop-A
mov-head .
nop—-C —— Move the write-head to match flow—control head.
Move the flow-control head to the following h—copy.
[h—search — ) , )
(i Copy a single instruction from the read-head to the
write—head, and advance them each one instruction.

If the end of the genome is reached,
then divide this organism.

mov-head
nop-A
nop-B

If not, go to to the beginning of the loop.

Figure 2: Instruction sequence for the replication cycle of a
typical AVIDA organism.

Merit

During an AVIDA experiment, the merit of a given digital organism
determines how many instructions its virtual CPU is allowed to ex-
ecute relative to the other organisms in the population, similar to
a priority-based scheduling algorithm. For example, an organism
with a merit of 2 will, on average, execute twice as many instruc-
tions as an organism with a merit of 1. Since digital organisms are
self-replicating, a higher merit (all else being equal) results in an
organism that replicates more frequently, spreading throughout and
eventually dominating the population. Merit of a digital organism
is updated based upon the tasks that are performed by the organism.
Tasks are designed by the user and reward desirable behavior (they
may also punish undesirable behavior), thereby driving natural se-
lection. For example, in order to encourage communication within
a population, a user might define a task that rewards an organism
by doubling its merit when it sends a message to a neighboring or-
ganism. Tasks are generally defined in terms of externally visible
behaviors of the organisms (their phenotype), rather than in terms
of the specific instructions that must be executed by the digital or-
ganism’s CPU. This approach allows maximum flexibility in the
evolution of a solution for a particular task. The evolved solution
might not be optimal when considering the task in isolation, but
it is likely to have other properties that made it well-suited for its
environment — robustness to mutation, for example.

2.2 Environment and Communication

Figure 3 depicts an AVIDA environment that has been subdivided
into multiple demes (discussed further in Section 3). In the upper
portion of this figure, we see that the environment comprises a num-
ber of cells, each of which can contain at most one organism; or-
ganisms cannot live outside of cells. Each cell has a circular list of
directed connections to neighboring cells; these connections define
the topology of the environment. The topology is configurable by
the user. Currently, three topologies are available: GRID, TORUS,
and CLIQUE (completely connected).

Each cell in the environment has a facing, a single connection se-
lected from its connection list that defines the orientation of the res-
ident organism. The facing of a cell may be used by the organism
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Figure 3: Depiction of an AVIDA environment of 16 demes, in-
cluding cells and organisms within a single deme. An organism
may replicate into a cell within its deme, replacing the resident
organism (if present), while entire demes may be replaced dur-
ing deme competition.

in a number of different ways. For example, an organism can send
a message to the neighbor it is facing. The organism can also read
and manipulate the facing of its cell via the get ~facing and vari-
ants of the rotate instruction, respectively. Each cell has two as-
sociated identifiers, one that is allocated sequentially over all cells
in the population, termed the cell-sequential ID, and another iden-
tifier that is a random 32-bit integer, termed the cell-random ID.
A resident organism may obtain its cell identifier via the get-id
instruction, which is configured by the user to refer to either the
cell-sequential ID or the cell-random ID. These IDs might be used
to identify the organism to its neighbors, for example by sending a
message containing the ID.

When an organism replicates, a target cell that will house the
new organism is selected from the environment. Different models
to select this target cell are available, including MASS-ACTION (se-
lect at random from among all cells) and NEIGHBORHOOD (select
from cells adjacent to the parent), among others. In every case, an
organism that is already present in the target cell is replaced (killed
and overwritten) by the offspring. Figure 3 depicts the replication
of two organisms.

Organisms in AVIDA can communicate with their neighbors us-
ing the send-msg and retrieve-msg instructions. Each mes-
sage contains a data and a label field, both of which are 4-byte
values. A third instruction, 1 f-inbox—empty, returns a boolean
value representing whether or not there are messages in the organ-
ism’s inbox. Sending and receiving messages in AVIDA proceeds
as follows. First, the sending organism must execute a send-msg
instruction, which marshals two registers into a message and sends
the message in the direction currently faced. If the sending organ-
ism is facing a neighboring organism, the message is deposited in
that neighbor’s inbox. If the sender was facing an empty cell, the
message is lost. Finally, the recipient of the message must execute a
retrieve-msg instruction to extract the message from its inbox
and place its two fields into registers.

3. GROUP SELECTION IN AVIDA

The theory of group selection was originally proposed in 1962 by
the biologist V. C. Wynne-Edwards [37], and later formalized into



multilevel selection theory by D. S. Wilson and E. Sober [32, 36].
At a high level, multilevel selection theory states that groups of
individuals may be vehicles for selection, similar to how a single
individual is a vehicle for the selection of its components. In other
words, multilevel selection posits that the survival of the individ-
ual is linked to the survival of the group. There are many different
ways that these groups may be defined. For example, a group may
be defined by a common trait (a trait-group), shared ancestry (clade
selection), membership in the same species (species selection), or
the interactions between related individuals (kin selection). Multi-
level selection has been used in biology to explain the evolution of
altruism, where an individual will sacrifice fitness for the benefit of
the group, and the evolution of social behavior, particularly in pop-
ulations of social insects, such as ant and bee colonies [3,7,29,31].

In AVIDA, each deme in the population is configured with the
same dimensions and environmental topology. Within each deme,
organisms replicate, compete for resources, and are subject to mu-
tations. When using demes, the cell in which an organism’s off-
spring is placed belongs to the same deme as the parent, however, it
is still selected according to the strategies described in Section 2.2.
Entire demes periodically compete against each other based on a
fitness function, where demes with a higher fitness probabilistically
replace demes with a lower fitness. When a deme is replaced, all
organisms in the target deme are removed, and each organism from
the source deme is copied into the corresponding position in the
target deme.

Deme competitions may be triggered periodically or as a reac-
tion to a specific behavior occurring in the population. Deme com-
petition may be thought of as an incomplete one-to-many mapping
between D, the current set of demes in the population, and D’,
the resultant set of demes following the competition. First, the fit-
ness of every deme in the population is calculated, and the sum-
mation of these fitnesses (T') is determined. For every deme d’
in D’, each deme d; in D is replicated into d’ with probability
P = fitness(d;)/T. This algorithm is similar in approach to a
genetic algorithm, where the fitness function operates over a sub-
population of digital organisms.

The fitness of a deme in AVIDA is calculated by a user-defined
fitness function. This fitness function takes as input the set of or-
ganisms in the deme, and produces a fitness value (a floating-point
number) as output. Commonly used fitness functions include the
number of replications, the average merit of organisms in the deme,
and the average lifetime of organisms within the deme. Deme fit-
ness functions can also be based on behavioral characteristics of or-
ganisms within the deme. For example, a fitness function may con-
tinually monitor each deme for a particular behavior (e.g., leader
election) in order to increase their fitness during the next competi-
tion.

4. EXPERIMENTAL RESULTS

In this section we present experimental results into using AVIDA
to evolve leader election in populations of digital organisms, where
group selection is the only selective pressure acting upon the or-
ganisms. In related work [16], the authors have shown that leader
election can evolve in a single AVIDA population, without group
selection, but only under carefully designed environmental condi-
tions. By using group selection instead of such an environment, we
are able to decouple the desired cooperative behavior from the spe-
cific actions that must be performed by individual organisms within
the population. The strength of this approach is that not specifying
constituent behaviors enables evolution to discover novel strategies
that might not otherwise have been apparent.
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Experimental setup

In [16], we configured AVIDA to use a single population of 3,600
digital organisms in a 60 x 60 torus. For this study, we configured
AVIDA with a population of 100 demes, each comprising 25 digital
organisms. Each deme is configured in a 5 x 5 torus, except where
noted. In both of these studies, experiments are run for 100,000
updates (an update averages 30 CPU instructions per organism, and
is the standard unit of time in AVIDA). To account for the stochastic
nature of evolution, 20 separate runs of AVIDA were performed for
each experiment. Finally, the copy mutation rate was set to 0.75%,
while the insertion and deletion mutation rates were set to 5.0%;
these parameters correspond to the default AVIDA configuration.

Message-based leadership, single population

Let us first summarize the non-deme results [16]. Key to the suc-
cess of evolving leader election in a single population was the envi-
ronment in which the organisms lived. We defined the leader to be
the organism with the numerically-largest ID, and we considered
leader election to have occurred when greater than 95% of all mes-
sages sent carried this ID. Leader election evolved in the presence
of three tasks, SEND-SELF, MAX-ID, and SEND-NON-ID. These
first two tasks, SEND-SELF and MAX-ID, rewarded organisms for
sending messages that carried their own ID and the maximum ID
that had been received, respectively. The last task, SEND-NON-ID,
penalized an organism for sending any message that did not carry
an ID. We also showed that re-election of a leader is possible under
this environment, however it requires that organisms voting for the
old leader be selected against (via the SEND-NON-ID penalty).

Figure 4 depicts the typical messaging behavior of a population
that evolved leader election using this environment. In this figure,
four different values are plotted over the previous 100 updates: To-
tal Sent, the total number of messages sent; ID-Carrying, the num-
ber of messages sent that carry any valid ID; Sender ID, the number
of messages sent that carry the sender’s ID; and >Sender ID, the
number of messages sent that carry an ID greater than that of the
sender. An indicator of successful leader election is that Total Sent,
ID-carrying, and >Sender ID converged to approximately the same
value. Here we see that each of these values converged to approx-
imately 500,000 messages per 100 updates, while the number of
Sender ID messages approached 0.

8  Total Sent
1.5%x10° <% ID—Carrying
6 A Sender ID
1.25x10 4  >Sender ID
1x10°
750000
500000
250000
£ A— At —-B—b—4A- Update x 100
200 400 600 800 1000

Figure 4: Typical messaging behavior for leader election in a
single population.

Message-based leadership, without deme competition

In our first experiment using group selection, demes were not com-
peted against each other, that is, no group-level selection was per-
formed. This experiment was designed to determine if simply split-
ting the population into demes would have a substantial effect upon
behavior. Figure 5 shows messaging behavior averaged over 20 dif-
ferent AVIDA experiments (runs). Here we see that of the 50,000



Total Sent messages, approximately 45,000 were Sender ID mes-
sages, thus indicating that leader election did not take place. This
figure also shows that >Sender ID messages were not increasing
during the run, implying that leader election would not occur even
if the experiment were run longer.

140000
8  Total Sent
120000 g ID—Carrying
A Sender ID
100000 4  >Sender ID
80000
60000 w
40000 A
20000
_ Update x 100
200 400 600 800 1000

Figure 5: Messaging behavior using the SEND-SELF, MAX-
ID, and SEND-NON-ID tasks, with the population divided into
demes, without deme competition.

Message-based leadership, with deme competition

Our next experiment added competition between demes, where a
fitness function, MaxVote, was used to probabilistically replicate
demes according to the strategy described in Section 3. Two AVIDA
instructions, SET-LEADER and GET-LEADER, were implemented to
support MaxVote. These instructions set and retrieve the value of a
variable internal to each organism that represents the leader of that
organism, respectively; it may be thought of as a special-purpose
register. The MaxVote fitness function has three primary compo-
nents: .S, the maximum size of the deme, in number of organisms;
L, the number of leaders that have been elected by the deme since
the previous deme competition; and C, the current maximum num-
ber of organisms in the deme that have called SET-LEADER with
the same ID. Specifically, MaxVote = (S x L+ C)?, where in these
experiments S = 25. Whenever at least 95% of the organisms
in a single deme agree on the same leader, the leader’s ID is reset
and MaxVote records that an election has occurred (by increment-
ing L for that deme). For example, if at most 10 organisms in a
deme agree on the same leader, the fitness of the deme will be 100:
MaxVote = (25 * 0 + 10)2. If, however, that same deme had al-
ready elected two leaders since the previous deme competition, its
fitness will be 3,600: MaxVote = (25 * 2 + 10)%. Demes compete
with each other every 100 updates, thus MaxVote encourages each
deme to elect as many leaders as possible over the course of 100
updates. Note that a fitness of 625 or greater indicates that a deme
has elected at least one leader.

Figure 6 depicts maximum deme fitness averaged over 20 runs.
We see here that the average deme was unable to elect an initial
leader, since the fitness does not reach 625, though up to 20 out of
25 organisms did agree on a leader. Figure 7 shows the different
message types sent, again averaged over 20 runs. Here we see that
the number of >Sender ID messages are roughly 50% of all mes-
sages sent, indicating that organisms are forwarding IDs larger than
their own.

Competition without tasks

Our next experiment removed the rewards for organisms that per-
formed the MAX-ID, SEND-SELF, and SEND-NON-ID tasks. This
experiment tests to see if group selection alone, without reward-
ing for constituent behaviors, is sufficient to evolve leader elec-
tion. Figure 8 depicts the maximum deme fitness averaged over
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Figure 6: Maximum deme fitness using tasks and deme compe-
tition.

400000 8 Total Seqt
-~ ID-Carrying
A Sender ID

300000 4  >Sender ID

200000

100000 PG S

Update x 100
200 400 600 800 1000
Figure 7: Messaging behavior using tasks and deme competi-

tion.

20 AVIDA runs without rewarding for tasks. Here we see that fit-
ness is generally increasing, though it does not indicate that leader
election has occurred. Figure 9 shows the message types averaged
over 20 AVIDA runs. A notable difference between this experiment
and those that include tasks is that 60% of messages do not carry
an ID. However of those messages that carry an ID, 50% carry an
ID larger than the sender’s, indicating that the same leader election
strategy is being employed.

400
350
300
250
200
150
100

50

Fitness

Update x 100

200 400 600 800 1000
Figure 8: Maximum deme fitness without using tasks, with

deme competition.

Competition in a clique

In the experiments described to this point, organisms have no direct
mechanism to examine their neighbors. In this experiment, we add
another instruction to AVIDA, GET-NEIGHBOR-ID, that directly re-
turns the ID of the faced organism. We also change the topology of
each deme to a clique, so that each organism is capable of calling
GET-NEIGHBOR-ID on every other organism in the deme. We note
that the introduction of GET-NEIGHBOR-ID, without also altering
the topology, had little effect on experimental results.
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8  Total Sent
120000 <% ID—Carrying
A Sender ID
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Update x 100
200 400 600 800 1000

Figure 9: Messaging behavior without using tasks, with deme
competition.

Figure 10 depicts the maximum deme fitness averaged over 20
AVIDA runs. Here we see that fitness is steadily increasing, and is
an improvement over the average fitness shown in Figure 8. How-
ever, as in the previous experiment, no evidence of leader election
is found. Figure 11 shows the message types averaged over these
same 20 AVIDA runs. Here we see that messages are now almost
completely non-ID carrying, indicating that other means (e.g., the
GET-NEIGHBOR-ID instruction) are being used to retrieve IDs. This
experiment indicates that topology is an important factor for the
evolution of leader election.

400
350
300
250
200
150
100

50

——— Fitness

Update x 100

200 400 600 800 1000

Figure 10: Maximum deme fitness without using tasks, with
deme competition, in a clique topology.

140000
8  Total Sent
120000 < ID-Carrying
A Sender ID
100000 4  >Sender ID
80000 5‘”
60000
40000
20000
_ Update x 100
200 400 600 800 1000

Figure 11: Messaging behavior without using tasks, with deme
competition, in a clique topology.

Competition in a clique, with neighbor scanning

Using the ROTATE family of instructions, organisms in AVIDA
have the capability to rotate through their list of neighbors, where
the particular neighbors of an organism are dependent upon the
topology. There are a number of variations of the rotate instruc-
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tion. One such variant is SCAN-ROTATE-{L,R }, where the organ-
ism will rotate to the first neighbor that contains a specified /a-
bel. A label in AVIDA is a series of one or more NOP-{A,B,C}
instructions anywhere in the organism’s genome. When a SCAN-
ROTATE-{L,R} instruction is followed by a label, it will rotate left
(counter-clockwise) or right (clockwise) until it faces a neighbor
whose genome contains the complement label. Complements are
formed from the following replacements: NOP-A—NOP-B; NOP-
B—NOP-C; NOP-C—NOP-A. In every case, rotation stops at the
first neighbor containing the complement, or at the original fac-
ing, whichever comes first. An example of the SCAN-ROTATE-R
instruction and the use of labels is shown in Figure 12. This figure
contains fragments of two genomes, where the three instructions
in the left-most genome scan neighboring organisms for the label
shown in the right-most genome. Once found, the GET-NEIGHBOR-
ID instruction will place the ID of the faced neighbor directly into
a register.

Rotate clockwise until the complement of
the nop-C label is found.

scan-rotate-r
nop-C

Clockwise rotation stops when the
organism is facing a neighbor that
has a nop-A label in its genome.

[ get-neighbor-Td

Directly retrieve the ID of the organism
that is faced.

Figure 12: An example of the usage of labels in AVIDA.

In this experiment, we configured AVIDA to use the SCAN-
ROTATE-{L,R} instructions, while keeping the topology a clique.
Figure 13 depicts the maximum deme fitness averaged over 20
AVIDA runs (please note the scale change). Here we see a sig-
nificant improvement over previous experiments, with the average
deme electing just under 3 leaders in 100 updates. Figure 14 depicts
the messaging behavior averaged over these same 20 AVIDA runs,
where we see that again, the majority of messages do not carry an
ID. So, while organisms are successfully electing leaders, they are
apparently not using messages to do so.

8000

Fitness
6000

4000

2000

Update x 100
200 400 600 800 1000
Figure 13: Maximum deme fitness without using tasks, with

deme competition, in a clique topology, with neighbor scanning.

We investigated this result by examining the best-performing
deme out of all AVIDA runs, which elected 9 leaders during a 100
update period. Figure 15 shows the fitness of that deme, which
reaches a maximum of 51,076 at update 78,900.

Figure 16 shows the 12 different genomes present in this deme
during the election of a leader (13 of the 25 organisms in this deme
shared a genome). Each genome contains a common sequence of
instructions that implements leader election, shown at the top of
this figure. Specifically, each organism rotates clockwise, stopping
at the first organism that contains a nop—A2 label (the complement
of the nop—C label). It then sets its leader ID to the ID of the faced
organism. Every time this deme elected a leader, there was exactly
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Figure 14: Messaging behavior without using tasks, with deme
competition, in a clique topology, with neighbor scanning.
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Figure 15: Maximum fitness of the best-performing population
using deme competition, in a clique topology, using neighbor

scanning. Maximum fitness of 51,076 occurs at update 78,900.

one organism in the deme that contained a nop—A2 label, shown at
the bottom of this figure. In other words, a leader was elected when-
ever exactly one organism contained a specific identifying feature
that the group had agreed upon. Interestingly, this approach is simi-
lar to the immunological question of detecting “non-self,” where an
immune system will attack cells that are identified as not belonging
to the host [5].

5.  CONCLUSIONS AND FUTURE WORK

We have demonstrated that digital evolution, in combination
with group selection, can produce a relatively complex cooperative
behavior, leader election, in a population of digital organisms. Fur-
thermore, we have shown that in the presence of mutations, popu-
lations of organisms are able to recover from the death of the leader
multiple times. Moreover, digital evolution and group selection can
produce these behaviors by selecting for the global effect of leader
election, rather than by specifying tasks or roles for individual or-
ganisms.

Our ongoing and future investigations include the following.
First, we are using AVIDA to study the evolution of other dis-
tributed operations, such as data gathering, which can be applied
to wireless sensor networks. Second, to study evolution in indi-
viduals capable of movement, such as mobile robotic agents, we
have recently developed an instruction set that includes simple mo-
tor control primitives and sensors. We expect to use this platform
to evolve individuals that use these new features in order to traverse
obstacle courses, elude predators, and catch moving targets.

Further Information.
Technical papers on digital evolution, along with downloads of
the AVIDA software are available at the Digital Evolution Labora-
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Rotate the organism to face

scan— rotate r its first neighbor that has a

no—C nop-A label.
et—nelthI’—Id Retrieve that neighbor’s ID.
[set-leader | Set the leader to that ID.

The only nop-A label

|I out of all genomes in this
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Figure 16: Depiction of the 12 different genomes active in the
deme that elected 9 leaders. 13 organisms shared a genome,
while exactly one organism had a genome containing the NOP-
A instruction, which indicated the leader.

tory website: http://devolab.cse.msu.edu. Related pub-
lications of the Software Engineering and Network Systems Labo-
ratory are available at http://www.cse.msu.edu/sens.
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