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ABSTRACT
In autonomous agent systems, memory is an important ele-
ment to handle agent behaviors appropriately. We present
the analysis of memory requirements for robotic tasks in-
cluding wall following and corridor following. The robotic
tasks are simulated with sensor modeling and motor actions
in noisy environments. In this paper, control structures are
based on finite state machines for memory-based controllers,
and we use the evolutionary multiobjective optimization ap-
proach with two objectives, behavior performance and mem-
ory size. For each task, a quantitative approach to estimate
internal states with a different number of sensors is applied
and the best controllers are evaluated in several test envi-
ronments to examine their generalization characteristics and
efficiency. Finite state machines with a hierarchy of memory
are also compared with feedforward neural networks for the
behavior performance.

Categories and Subject Descriptors: I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search;
I.2 [ [Artificial Intelligence]: Miscellaneous; H.4 [Information
Systems Applications]: Miscellaneous

General Terms: Algorithms

Keywords: evolutionary robotics, internal states, percep-
tual aliasing, evolutionary multiobjective optimization, gen-
eralization behaviour

1. INTRODUCTION
In mobile robots, the reactive control mapping from per-

ceptions to motor actions has been emphasized. The rel-
evance of hidden states in robotics research or agent be-
haviours can be observed in research on reactive systems [1,
2, 9]. A hidden state is defined as any world state informa-
tion not determined by the current immediate perception
of a mobile agent [17]. When an agent has only partial in-
formation about the surrounding environment through its
sensory inputs, and the same perceived situation requires
different actions in different contexts, the agent may require
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internal memory to solve the hidden state problem (it is
often called perceptual aliasing problem, and we also say
that the agent is in a non-Markovian environment). In the
situation, purely reactive control cannot succeed in solving
hidden state problems [22, 20, 16]. Perceptual aliasing of-
ten appears when sensors have a limited range of view of
the surrounding environment or when there are a limited
number of sensors.

Many agent problems in a grid world suffer from the per-
ceptual aliasing problem, and encoding internal memory in
the control structure has been suggested and tested as an
alternative solution. Wilson used a zeroth-level classifier
system (ZCS) for his animat experiments [23]. The original
formulation of ZCS has no memory mechanisms, because
the input-output mappings from ZCS are purely reactive,
but Wilson suggested how internal temporary memory reg-
isters could be added. Adding an internal memory register
consisting of a few binary bits can increase the number of
possible actions in the system. Following Wilson’s proposal,
one-bit and two-bit memory registers were added to ZCS in
Woods environments by Cliff and Ross [4]. They insisted
ZCS manipulate and exploit internal states appropriately
and efficiently in non-Markovian environments. To see the
effect of internal memory, finite state machines have been
applied to the Woods problems [14]. It was shown that
more internal states can handle perceptually aliased situa-
tions more effectively. Recently Kim [10, 12] showed state
machines can solve several agent problems in a grid world
and perceptual configurations and internal states play a sig-
nificant role on the behaviour performance.

Most of researches relevant to the memory analysis have
focused on the grid world environment and it is quite differ-
ent from real robotic experiments, even though they showed
the potential and importance of internal states for robotic
behaviors. Especially, grid world problems have restricted
environments and their agents have simple value sensors,
while robotic environment is involved with noise on continu-
ous sensor readings and more flexible motor actions. Yet it is
shown that a simple structure with state machines can solve
robotic world problems [13]. Even with primitive behaviors,
memory internal to the controller is useful in robotic simula-
tion experiments to overcome limitations of purely reactive
systems. It is notable that some “reactive” robots employ
internal state to deal with perceptual aliasing and their con-
trol systems are not actually purely reactive [3]. Recently
some researchers studied recurrent neural networks and plas-
tic mechanism to solve real-world robotic problems [21, 8, 5].
It has been shown that the dynamic property in the neural
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networks can handle perceptually aliased problems without
difficulty.

In this paper, control structures are based on finite state
machines, with internal memory represented as a set of in-
ternal states, in order to quantify easily the complexity of
agent-environment interaction in noisy world. With the im-
portance of internal states, an evolutionary multiobjective
optimization is used to quantify memory amount needed
for robotic tasks in noisy environments (only wall following
and corridor following tasks will be shown in this paper).
Also state machines with binary sensors are compared with
feedforward neural networks in several test environments.
Here, we test the generalization characteristics of evolved
controllers with respect to variation of environment. We
follow Kim and Hallam’s evolutionary approach [13, 14] and
observe whether an evolved control structure can be applied
to different environments for the same task. We will see
whether memory encoding structures can be more useful in
the generalization of a given behaviour rather than purely
reactive systems.

2. METHODS
To determine how many memory elements are required

to solve a particular agent-environment interaction prob-
lem, evolutionary computation will try to optimize agent
performance for each quantity of controller memory. By do-
ing so, the trade-off between performance and quantity of
memory can be explored. If sensors are discretized, a con-
troller with internal memory can easily be expressed as a
finite state machine (FSM). If a task can be completed with
a purely reactive system, the controller can be represented
as a 1-state FSM1 which is equivalent to memoryless strat-
egy. The amount on memory needed for a given task can
be determined by counting the number of states in the FSM
representing the minimal effective controller.

There has been research of memory analysis in a noise-
free grid world environment [14], which uses an evolution-
ary multiobjective optimization (EMO) with two objectives,
memory size and behaviour performance. Similar to their
approach, we will use the two objectives, behavior perfor-
mance and memory size, in the Pareto optimization to try to
maximize behavior performance and minimize the quantity
of memory (number of controller states) for a given robotic
task. The shape of the Pareto surface after a run indicates
a desirable number of memory elements for a given perfor-
mance level. As a result, one can determine a threshold
amount of memory needed to achieve a task. We assume
that the quantity of memory in the optimal control struc-
ture for a given task represents the complexity of the prob-
lem faced by the agent.

We test two different control architectures, the Finite State
Machines (FSMs) and feedforward neural networks. The
FSM we consider is a type of Mealy machine model [15], and
the machine is encoded for the evolutionary algorithm as a
sequence of pairs (next state number, state output) on each
sensor value in canonical order of state number. That is,
each sensor configuration specifies the next state transition
and the wheel motor outputs. In our multi-objective opti-
mization experiments, the genetic pool should allow variable
length chromosomes for variable state machines; the size of

1One state means every action mode has the same internal
state and thus it is purely reactive.

FSMs depends on the number of states and thus different
members of the pool may have different length genetic rep-
resentations. FSMs have binary sensors with a threshold on
the continuous sensor range. In contrast, feedforward neu-
ral networks can be one of the best control architecture in
purely reactive control systems, since they can in principle
represent any mapping from sensor readings to motor ac-
tions. Neural networks used infrared sensors in the front of
the robot, each of which produces a continuous integer value
ranging from 0 to 1023. In neural networks weight parame-
ters are encoded into integer values from -128 to 127 with 8
bit representation. One hidden layer and four nodes in the
hidden layer are used for control structures. Then the chro-
mosome representation will be a series of weight parameters
from input layer to hidden layer and from hidden layer to
output layer.

In the experiments, tournament selection of size four is
used for Pareto optimization. A population is initialized
with random length chromosomes. The two best chromo-
somes are selected using a dominating rank method[6]2 over
the two objectives, memory size and behavior performance.
They reproduce themselves and the two worst chromosomes
are replaced by new offspring produced using one point crossover
followed by mutation. In the application of variable state
machines, offspring with variable numbers of states should
be generated to keep diversity in the genetic pool. Thus,
a size modifying genetic operator is introduced to maintain
variable length coding. New offspring are thus produced
with a size modifying operator, crossover and mutation by
turns.

When offspring are produced, the number of memory states
is randomly pre-selected for each new offspring. The chro-
mosome size for each offspring will depend on this chosen
amount of memory. The size-modifying operators are then
used to produce new offspring such that they have charac-
teristics of their parents and have the pre-chosen chromo-
some length. After applying the size-modifying operator,
crossover is applied to the two offspring. The crossover point
is selected inside both chromosome strings after aligning the
prefixes of two strings. During this crossover process, mu-
tation can be used to change randomly one integer value in
the strings. The size-modifying operator is applied to 75% of
new offspring, in experiments with variable state machines.
When it is not used, the offspring keep the size of their par-
ents.

A realistic simulation method is required to imitate real
robot behaviors and we take a Khepera robot model [19] for
simulation. Instead of whisker-like sensors, the sensor range
for each infrared sensor will be shaped with a cone-bearing,
because the real infrared sensors cover almost cone-shaped
areas. The simulation will indirectly give us a hint of how
a real Khepera robot behaves, since robotic dynamics and
sensor readings model real robot tasks very closely. Figure
1(a) shows the detection ranges and angles of eight infrared
sensors in a real robot. The developed simulation program
will follow such real robot configurations. An example of
sensor ranges with cone-bearing angles in a simulation pro-
gram is shown in Figure 1(b). It models 40 degrees bearing

2The dominating rank method defines the rank of a given
vector in a Pareto distribution as the number of elements
dominating the vector. Individuals of rank 0 are dominated
by no other members of the population; individuals of rank
n are only by individuals of rank k for k < n.
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Figure 1: Khepera robot simulation model (a) robot
sensor configurations (α: angular position of each
sensor on the circular board, β: angular direction of
each sensor) (b) cone-bearing area of each infrared
sensor

angles with a set of 30 sensor points in a cone area. The sen-
sor values are computed by estimating the detection point
and its appropriate sensor value with the 30 sensor points.
A uniform random noise ±10% is added to the sensor values.
The wheel dynamics are also subjected to random noise. A
uniform random noise of ±10% is added to the motor speeds
for the two wheels, and the direction of the robot is influ-
enced by ±5% random noise.

In simulation, the world environment has a binary map
to help sensor processing detect any object easily. Instead
of calculating each sensor detection area directly, objects
and walls are masked with one in the environment array. If
one of the 30 points which belong to an infrared sensor is
overlapped with any masked area, its proper sensor value is
recorded; each of the sensor points has the magnitude of the
proximity sensor at the corresponding distance3. From that
point, a more exact sensor value is estimated by measuring
the interpolated detection point with any object.

The motor actions for both left and right wheels are re-
stricted to the set {−8,−6,−4,−2, 2, 4, 6, 8} and only eight
possible actions are allowed for each wheel. They thus have
64 possible combinations for two wheel motors. For neu-
ral network controllers, the motor actions will have integer
values ranging from −8 to 8; neural network outputs are
continuous but separated into integer values, since the real
Khepera robot control uses integer values instead of real
values.

3. EXPERIMENTS
Some robotic behaviors such as exploration, obstacle avoid-

ance and box pushing behaviour can be achieved by purely
reactive systems with binary sensors [13]. In this paper, we
provide two robotic task experiments: wall following behav-
ior and corridor following. These tasks especially require
internal memory with simple sensor configurations and so
we investigate how sensor processing are related with in-
ternal states. For evolutionary computation, tournament
selection of group size four is used for the test, as explained
above. The two best chromosomes in a group will be copied
to a new population and the others will be reproduced with
genetic operators. Mutation rate is set to 2 over chromo-

3This point scanning method was used with 15 sensor vec-
tors in Khepera simulation package 2.0 [18]

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

(a) (b)

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

(c) (d)

Figure 2: Test environments for wall following (a)
env0 (this is used as an evolved environment) (b)
env1 (c) env2 (d) env3

some length, crossover rate is 0.6, and population size 100
is applied. To see the memory effect, FSMs are applied to
control structures, and 25 runs are tested to validate the
performance. In the experiments, three kinds of infrared
sensor configurations are used: two sensors (45◦, 135◦), four
sensors (45◦, 78◦, 102◦, 135◦) and six sensors (22◦, 45◦, 78◦,
102◦, 135◦, 158◦). We apply a threshold of 500 to the con-
tinuous sensor values to build binary sensors.

Each evolutionary run proceeds as follows: Initially N
starting positions for the robot are randomly selected in the
arena to represent the whole environmental situations. Then
every generation evolutionary computation chooses dynami-
cally K samples among N positions depending on the fitness
of each position; the higher penalty fitness, the more chance.
This dynamic sample selection method reduces the compu-
tation time and also has the effect of running over all initial
positions [7]. The best chromosomes in the population are
evaluated multiple times to support robustness in noisy en-
vironments and they are used for the elitism strategy.

3.1 Wall Following Behavior
Wall following behavior requires at least two internal states

for whisker-like binary sensor robots without noise [13]. In
this paper, we study how noisy environments can influence
the memory requirement. Wall following fitness is estimated
with the number of energy tanks that a robot agent has vis-
ited. The energy tanks are placed on empty spaces (10 cm
by 10 cm) around walls and obstacles. If a robot agent can
visit all energy tanks within a limited amount of time, we
can say that the agent is successful for the wall following
behavior. Random noise will increase the possibility of col-
liding with walls. The collision will have a high penalty and
thus the fitness is defined as a penalty function as follows:

fW = P − V + C(T − tc) (1)

where P is the base of the penalty (P = 100 is set), V is
the number of energy tanks that a robot has visited, and
T is the maximum time steps for exploration, which is set
to 1200 time steps in the experiments. If collision occurs,
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Figure 3: Memory analysis with FSMs for wall fol-
lowing behavior with 4 sensors (dotted: 5 genera-
tions, dashdot: 100 generations, solid: 300 genera-
tions)

the exploration stops and the fitness is calculated with the
collision time tc. C is the binary collision flag to say if a
robot has collided with any obstacle. The environment is
shown in Figure 2(a) with 30 random starting positions. N-
K sampling with N = 30, K = 5 is used. The arena size is
100 cm by 100 cm. The arena has 46 energy tanks around
the wall. The optimal fitness will be 54 (=100-46) as the
least lower bound. A single run takes 1200 time steps.

3.1.1 Memory Analysis with the EMO Approach
The evolutionary multiobjective optimization (EMO) ap-

proach is applied to variable state machines as control archi-
tecture in order to analyze the best performance over quan-
tified memory states. Figure 3 shows the memory analysis
for wall following behavior with 4 sensors. For significance
statistics, 25 runs are tested and their error bars with 95%
confidence intervals (t-distribution) are displayed together
at the same generations. When the number of generations is
increased, the performance becomes close to optimal, visit-
ing all energy tanks (fitness 54). There is a significant differ-
ence between memoryless (one state) approach and memory-
based (more than one state) approach; when we take inde-
pendent runs for each number of states using a fixed length
of chromosomes instead of the EMO approach, it was hard
to see the significant difference. However, two states are not
significantly different from more than two states, though
more than two states are a little better in the average per-
formance. From the figure, one can just say that more than
two states are easily leading to a little faster convergence.

Even if we take only two infrared sensors at 45◦ and 135◦

in front, similar results are obtained from the EMO anal-
ysis. Figure 4 shows wall following behaviors by the best
chromosomes for purely reactive controllers and two state
controllers. In Figure 4(a), the memoryless reactive system
has circular movements to detect any wall and begins to
follow walls when any sensation is recognized. On 10 start-
ing positions among 30 positions, the robot shows circular
movements and the performance becomes degraded since the
robot cannot scan other areas. Once any wall is detected,
the controller shows good performance to follow walls and
visit all energy tanks. Wall following behavior with two state
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Figure 4: Comparison of the best performance be-
tween memoryless and memory-based systems for
wall following behavior (with FSMs) (a) purely re-
active system (b) 2 state machines

machines is demonstrated in Figure 4(b). The behavior is
decomposed into two simple behaviors: one is to go straight
to reach any wall when the robot sees no obstacle and the
other is to follow walls by repeating two actions of turning
right and moving forward depending on sensory readings.
There is a conflict of perceptions in the two primitive be-
haviors. The sensation of no obstacle in front should be
distinguished between the two behaviors and internal states
can solve the conflict by memorizing each distinct situation,
but purely reactive controllers have a limitation on the prob-
lem because they cannot separate the perceptual aliases.

From the above results, it is inferred that the wall fol-
lowing behavior requires two states, or 1-bit memory even
in noisy environments regardless of the number of sensors.
The EMO approach showed it was very effective for tak-
ing the significance test on fitness distribution as well as for
obtaining solutions for each number of states.

For neural network controllers, two, four and six sensors
were tested, where each case has no internal state. Their
performance is not significantly different, which indirectly
implies that two sensors are sufficient to evolve wall follow-
ing behavior for a given environment. It is because neural
networks have continuous ranges on sensors and motor ac-
tions.

3.1.2 Testing Controllers
Robot controllers, FSM controllers and neural network

controllers, were evolved over 30 random positions and di-
rections in one environment. To prove the usefulness and
generalization characteristics of evolved controllers, the con-
trollers were tested in several environments. The purpose of
testing controllers is to see what kind of controllers demon-
strate better generalization property when applied to vari-
ous environments. The testing will check whether memory
structure and sensor configurations are important to adapt
controllers to environments. Also, it will show whether con-
trollers adapted to one environment can be easily applied to
other different environments.

Various control structures have been investigated in the
experiments as shown in Table 1. The testing environments
consist of four environments, env0, env1, env2, env3 shown
in Figure 2. The first environment (env0) is the same as
the evolved environment and has 30 starting positions. The
environment env1 has the same arena but 100 random posi-
tions. The chromosomes with the best performance are first
collected by evolving robots in the environment env0. Each
evolved controller is evaluated 10 times for each of the four
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control structure env0 env1 env2 env3

2 sensors, 1 state c0 0.1 ± 0.3 0.7 ± 0.7 3.3 ± 0.6 2.6 ± 1.6
c1 0.0 ± 0.0 0.6 ± 0.7 2.9 ± 0.9 0.1 ± 0.3

2 sensors, 2 states c2 0.0 ± 0.0 1.2 ± 0.8 4.6 ± 0.7 0.5 ± 0.7
c3 0.0 ± 0.0 2.0 ± 0.0 3.8 ± 0.7 0.0 ± 0.0

2 sensors, 3 states c4 0.0 ± 0.0 0.0 ± 0.0 4.4 ± 0.5 0.0 ± 0.0
c5 0.0 ± 0.0 0.0 ± 0.0 4.1 ± 0.9 0.0 ± 0.0

2 sensors, 4 states c6 0.0 ± 0.0 0.0 ± 0.0 4.7 ± 0.9 0.1 ± 0.3
c7 0.0 ± 0.0 0.5 ± 0.5 4.0 ± 0.0 0.6 ± 0.7

4 sensors, 1 state c8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5
c9 0.0 ± 0.0 0.5 ± 0.5 0.0 ± 0.0 1.7 ± 0.9

4 sensors, 2 states c10 0.0 ± 0.0 0.6 ± 0.5 1.4 ± 0.5 0.6 ± 0.8
c11 0.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0

4 sensors, 3 states c12 0.0 ± 0.0 0.6 ± 0.8 0.8 ± 0.9 0.3 ± 0.5
c13 0.0 ± 0.0 4.0 ± 0.0 2.1 ± 0.9 1.6 ± 0.8

4 sensors, 4 states c14 0.0 ± 0.0 0.5 ± 0.5 0.7 ± 0.9 0.7 ± 0.6
c15 0.0 ± 0.0 0.5 ± 0.7 3.0 ± 1.2 0.5 ± 0.7

2 sensors, neural c16 0.0 ± 0.0 1.9 ± 0.3 34.2 ± 2.8 7.0 ± 0.0
c17 0.0 ± 0.0 1.3 ± 0.6 54.8 ± 3.8 0.1 ± 0.3

4 sensors, neural c18 0.0 ± 0.0 0.0 ± 0.0 2.4 ± 1.5 0.8 ± 0.4
c19 0.0 ± 0.0 1.0 ± 0.0 6.6 ± 1.0 4.9 ± 0.3

6 sensors, neural c20 0.0 ± 0.0 0.0 ± 0.0 2.4 ± 0.7 0.1 ± 0.3
c21 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 0.1 ± 0.3

(a) collision test

control structure env0 env1 env2 env3

2 sensors, 1 state c0 68.18 ± 0.72 69.92 ± 0.33 40.00 ± 0.19 82.98 ± 0.53
c1 68.21 ± 0.62 69.83 ± 0.29 37.07± 0.13 82.03 ± 0.30

2 sensors, 2 states c2 54.00 ± 0.00 54.00 ± 0.00 46.76 ± 0.19 77.98 ± 0.11
c3 54.00 ± 0.00 54.00 ± 0.00 38.96 ± 0.06 76.84 ± 0.24

2 sensors, 3 states c4 54.00 ± 0.00 54.00 ± 0.00 44.58 ± 0.10 78.91 ± 0.04
c5 54.00 ± 0.00 54.00 ± 0.00 39.27 ± 0.12 76.89 ± 0.33

2 sensors, 4 states c6 54.00 ± 0.00 54.00 ± 0.00 39.82 ± 0.22 76.80 ± 0.19
c7 54.00 ± 0.00 54.00 ± 0.00 41.83 ± 0.08 78.04 ± 0.07

4 sensors, 1 state c8 67.71 ± 0.94 69.67 ± 0.37 38.43 ± 0.14 81.61 ± 0.41
c9 68.27 ± 0.91 69.90 ± 0.32 45.74 ± 0.40 83.67 ± 0.36

4 sensors, 2 states c10 54.36 ± 0.03 54.37 ± 0.02 49.27 ± 0.04 78.92 ± 0.29
c11 54.00 ± 0.00 54.00 ± 0.00 38.29 ± 0.30 76.10 ± 0.31

4 sensors, 3 states c12 54.00 ± 0.00 59.19 ± 0.59 49.46 ± 0.10 81.67 ± 0.28
c13 54.00 ± 0.09 54.00 ± 0.00 37.45± 0.24 77.88 ± 0.42

4 sensors, 4 states c14 54.00 ± 0.01 59.15 ± 0.27 49.62 ± 0.12 81.81 ± 0.21
c15 54.01 ± 0.02 54.16 ± 0.20 48.01 ± 0.38 79.11 ± 0.11

2 sensors, neural c16 56.46 ± 0.59 60.25 ± 0.64 50.84 ± 0.32 77.92 ± 0.44
c17 55.66 ± 1.15 59.70 ± 0.67 49.62 ± 0.65 77.78 ± 0.21

4 sensors, neural c18 55.57 ± 0.94 59.54 ± 0.67 49.57 ± 0.43 77.05 ± 0.55
c19 55.71 ± 1.13 59.20 ± 0.67 56.81 ± 0.94 77.84 ± 0.31

6 sensors, neural c20 54.00 ± 0.00 57.66 ± 0.24 41.18 ± 0.09 78.91 ± 0.09
c21 54.61 ± 0.60 58.86 ± 0.63 46.89 ± 0.12 77.19 ± 0.60

(b) fitness performance

Table 1: Comparison of performance with various control structures for wall following (each data shows the
average fitness and standard deviation over 10 evaluations, bold: best performance)

environments and its performance is recorded. The two best
controller data with desirable performance in four environ-
ments are collected into Table 1. It is assumed that the best
solution controllers evolved with each control structure will
represent the control structure. The two best controllers for
each control structure are collected and they are compared
with the two best controllers for other control structures.

From Table 1, the best control architecture is the con-
troller c11 with 4 sensors and 2 internal states. It has almost
no collision and uniformly good fitness performance in every
test environment. The behaviours demonstrate that binary
sensor information without the continuous sensor range is
sufficient to process perceptions appropriately.

Table 1 shows the results of two components of perfor-
mance measurement. One is to check how many collisions
occur for each environment by testing controllers at all start-
ing positions. The other is to see the fitness which is related
with how many energy tanks are visited. The fitness is av-

eraged over starting positions that experience no collision.
The optimal fitness (penalty fitness) is 54 for env0 and env1,
37 for env2, and 76 for env3. The two component measures,
collision and fitness, are estimated with 10 runs to see the
distribution. Desirable controllers should have the least col-
lisions and the best fitness. In the experiments, there was
no perfect controller; no collision and the optimal fitness for
every test environment. For the generalization performance
of the controllers, we can consider a Pareto distribution of
the two objectives. Table 1 shows that two internal states
or more with 4 sensors are better than purely reactive sys-
tems in that respect. Also two sensors with multiple internal
states outperform purely reactive systems in the fitness per-
formance.

Noisy sensors and motor actions often influence the per-
ceptual states on robots with a few sensors, which is a sig-
nificant factor for the generalization performance [11]. In-
creasing the number of sensors gives a potential to obtain
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Figure 5: An example of corridor following behav-
ior (a) energy tank distribution (b) purely reactive
controller with two sensors (c) two state machine
controller with two sensors (d) neural network with
two sensors

better generalization performance in different environments.
Adding sensors can help robots recognize perceptual situa-
tions better even with noisy sensor readings. It will prevent
misunderstanding environmental states due to noise and can
solve perceptual aliases partly. The collision rate for neural
network controllers can be reduced by increasing the num-
ber of sensors from two to six as shown in Table 1(a). This
also happens for state machine controllers; four sensors have
smaller collision rates than two sensors (see test environment
env2).

Internal states play an important role in achieving desir-
able generalization performance. Two state machines with
two sensors or four sensors are better in fitness performance
than even neural networks (see Table 1(b)). Purely reactive
systems with continuous sensor range and expanded motor
actions still have restrictions in wall following behavior, even
though they improve the performance. Thus, one can say
that wall following behavior requires at least two internal
states in noisy environments.

3.2 Corridor Following
Corridor following is similar to wall following behavior.

The task is to follow narrow corridors from one end to the
other end. Figure 7(a) shows the environment and 30 ran-
dom positions selected in the arena. The environment has
narrow corridors in the middle of the path and robots need to
pass through corridors appropriately to enter a small room
at the end of corridor. Narrow corridors are not open fields,
so robots tend to hesitate to go through them since there is
a higher probability of collision. For exploration time, 1200
time steps are assigned for each genome controller. The en-
ergy tanks are distributed around walls as shown in Figure
5(a), which will lead robots to follow corridors.

Evolutionary computation for corridor following uses the
same fitness function given in equation (1). The experiments
first investigate memory analysis for how many states are re-
quired for corridor following. The basic control structure is a
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Figure 6: Memory analysis with FSMs for corridor
following behavior with 4 sensors (dotted: 60 gen-
erations, dashdot: 100 generations, solid: 300 gen-
erations)
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Figure 7: Test environments for corridor following
(a) env0 (b) env1 (c) env2 (d) env3

finite state machine tested in wall following behavior. Mem-
ory and its corresponding performance will be analyzed with
the number of sensors. Neural networks are also compared
with single-threshold state machines. The sensor range and
the number of sensors are relevant factors related to percep-
tual aliases.

3.2.1 Memory Analysis with the EMO approach
In this environment, robots always move close to corridors

and so they will not need the effort of exploration to reach
a corridor; for wall following, robots need to go straight or
make a circular movement to approach a wall. We still have
the question of whether or not corridor following requires in-
ternal memory. The EMO approach was quite effective to
investigate the memory hierarchy and fitness performance,
instead of running each state machine controller indepen-
dently.

The maze-style arena has a room with a small exit at the
end of the corridor in the middle section. Purely reactive

290



control structure env0 env1 env2 env3

2 sensors, 1 state c0 0.0 ± 0.0 1.2 ± 0.4 2.0 ± 0.4 5.1 ± 1.3
c1 0.0 ± 0.0 1.2 ± 0.4 2.0 ± 0.0 1.8 ± 1.0

2 sensors, 2 states c2 0.0 ± 0.0 1.8 ± 0.4 4.5 ± 0.5 3.0 ± 0.9
c3 0.0 ± 0.0 1.9 ± 0.5 4.6 ± 0.7 2.0 ± 1.0

2 sensors, 3 states c4 0.0 ± 0.0 2.2 ± 0.4 2.1 ± 0.3 3.7 ± 1.0
c5 0.0 ± 0.0 4.1 ± 0.9 2.4 ± 0.5 4.7 ± 1.1

4 sensors, 1 state c6 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 0.6 ± 0.5
c7 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 0.2 ± 0.4

4 sensors, 2 states c8 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 0.0 ± 0.0
c9 0.0 ± 0.0 0.1 ± 0.3 1.1 ± 0.8 1.0 ± 0.0

4 sensors, 3 states c10 0.0 ± 0.0 0.2 ± 0.4 0.5 ± 0.5 0.2 ± 0.4
c11 0.0 ± 0.0 0.6 ± 0.8 1.0 ± 0.0 0.3 ± 0.5

2 sensors, neural c12 0.0 ± 0.0 1.2 ± 0.4 0.7 ± 0.6 0.5 ± 0.5
c13 0.0 ± 0.0 0.0 ± 0.0 1.5 ± 0.5 0.0 ± 0.0

4 sensors, neural c14 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.5 1.0 ± 0.0
c15 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0

(a) collision test

control structure env0 env1 env2 env3

2 sensors, 1 state c0 59.66 ± 1.22 59.46 ± 0.34 54.68 ± 0.08 55.84 ± 0.54
c1 59.05 ± 1.02 59.15 ± 0.37 61.15 ± 0.21 61.37 ± 0.35

2 sensors, 2 states c2 50.03 ± 0.09 50.49 ± 0.07 49.03 ± 0.10 47.24 ± 0.09
c3 50.11 ± 0.12 50.65 ± 0.22 49.02 ± 0.06 47.33 ± 0.21

2 sensors, 3 states c4 50.92 ± 0.27 51.57 ± 0.07 49.78 ± 0.07 47.54 ± 0.12
c5 50.16 ± 0.15 51.81 ± 0.07 49.98 ± 0.17 47.49 ± 0.15

4 sensors, 1 state c6 50.19 ± 0.15 50.73 ± 0.09 48.96 ± 0.05 46.97 ± 0.16
c7 50.19 ± 0.13 50.79 ± 0.09 49.33 ± 0.15 46.66 ± 0.22

4 sensors, 2 states c8 49.14 ± 0.16 49.19 ± 0.09 48.02 ± 0.16 46.03 ± 0.14
c9 49.09 ± 0.08 49.09 ± 0.10 47.79 ± 0.15 44.98 ± 0.06

4 sensors, 3 states c10 49.10 ± 0.09 49.51 ± 0.06 48.80 ± 0.19 46.67 ± 0.29
c11 49.02 ± 0.07 49.11 ± 0.05 47.62 ± 0.11 45.30 ± 0.22

2 sensors, neural c12 49.54 ± 0.05 49.55 ± 0.06 47.96 ± 0.07 45.37 ± 0.18
c13 49.76 ± 0.08 49.82 ± 0.06 48.36 ± 0.16 45.85 ± 0.15

4 sensors, neural c14 49.00 ± 0.00 49.47 ± 0.00 46.61± 0.07 43.70 ± 0.04
c15 49.00 ± 0.00 49.00 ± 0.01 47.50 ± 0.04 44.44 ± 0.39

(b) fitness performance

Table 2: Comparison of performance with various control structures for corridor following (each data shows
the average fitness and standard deviation over 10 evaluations, bold: best performance)

control systems have difficulty in finding the exit directly
and repeat moving around inside the room as shown in Fig-
ure 5(b). This behavior tends to be sensitive to noise. In
some cases they easily find the exit by accident and in oth-
ers they stagger around the room for a long time. They
normally get a low score for visiting energy tanks within a
limited time amount, because they spend much time in the
room and cannot cover other areas. Memory-based systems
with at least two states follow walls closely and so efficiently
find the exit. Figure 5(c) shows their different behaviors.
In two state controllers, for instance, state information is
used to sequentialize two kinds of motor actions: move for-
ward quickly, and move forward in the right direction when
there is no sensation. This helps speedy movement in a
narrow corridor. Internal memory plays different roles in
wall following and corridor following behaviours. The mem-
ory analysis in Figure 6 shows the difference in performance
efficiency rather than the outcome of whether robots can
succeed in following corridors without collision; for wall fol-
lowing behavior, internal memory is used to achieve the task
in open areas.

Figure 5(d) shows the corridor following behaviour with
neural network control with two sensors. When the neural
network recognizes the sensation that the robot is very close
to a wall, it produces motor actions for moving backward in
the left direction until the right sensor is free of sensation.
Then it continues to follow corridors. This kind of behav-

ior has often been observed with two binary sensors and
memory states. It seems that neural networks can process
a continuous range of sensor readings and effectively use a
quantitative information over sensors.

3.2.2 Testing Controllers
For the generalization performance of corridor following

behaviour, various control structures were tested in several
environments. The best controllers were obtained via the
evolutionary process with N-K sample method and then
they were evaluated over four environments given in Figure
7. Each controller chromosome was evaluated 10 times. Two
sensors and four sensors were tested with states ranging from
one to three, respectively. Also, feedforward neural networks
were evaluated with two and four sensors. The best evolved
behaviours with minimal collisions and the best fitness are
shown in Table 2.

The arena in Figure 7(a) was used for evolving controllers.
The environment, called env0, has 30 random starting posi-
tions. Various controller structures were evolved to find the
best fitness in the environment. The same arena, but with
100 new random positions, which is named env1, will be
tested to see how correctly evolved controllers work in the
given environment. Another two environments in addition
to env0 and env1 are used for test environment with 100
random positions. For the environments env0 and env1, 51
energy tanks are distributed and for the environments env2
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and env3, 55 and 60 energy tanks are placed at blank spaces
(one space is assumed as a 10 cm by 10 cm square space).
The optimal fitness for env0, env1, env2 and env3 is 49,
49, 45 and 40, respectively.

We can consider a Pareto distribution of the two objec-
tives, fitness performance and collision rate in Table 2. It
will help find the best control architectures for the corri-
dor following. For state machines, multiple states with four
sensors have better generalization performance than purely
reactive systems or FSMs with two sensors. Specifically,
adding two more sensors in front remarkably reduced the
number of collisions for every state machine, while it did
not improve the fitness performance to a large degree. More
sensors means more information about the surrounding en-
vironment and thus the number of sensors can significantly
influence the design of more adaptable controllers for the
corridor following behaviour (we note that memoryless sys-
tems with four sensors are better in test environments than
memory-based systems with two sensors in terms of collision
and fitness performance). In addition, multiple states much
improved the fitness performance of purely reactive systems
for every environment. Internal states link two different mo-
tor actions to speed up robot movements and thus increase
the fitness performance.

Neural networks with only two sensors have good fitness
performance and rare collisions. They have a finer scale
of sensor readings than binary sensor modeling and it is
presumed that they easily adapt themselves to find local
features for sensors. Even in neural networks, four sensors
improved the performance of collision and fitness.

From Table 2, the best control structure for corridor fol-
lowing is the neural network controller with four sensors
(c15) or two state machines with four sensors (c8). Although
the state machines with binary sensors cannot be directly
compared with neural network controllers with continuous
sensor ranges, it is notable that controllers with a few states
and binary sensors do almost as well as feedforward neural
network controllers.

4. CONCLUSION
In this paper we presented the effect of internal memory on

robotic behaviours in noisy environment and how to quantify
internal states required for desirable robot behaviors. The
evolutionary multiobjective optimization (EMO) approach
was applied for memory analysis. The EMO approach can
produce significance statistics on the performance difference
of variable state machines in noisy environments. Accord-
ing to the memory analysis, wall following behavior and cor-
ridor following behavior require internal states to improve
performance. Memory can be served as connectives of de-
composable tasks or a series of actions, or plays a role of
remembering the past perceptions.

In the experiments, evolved controllers were tested in new
environments to see how the behaviour can be generalized
with variation of environments. Two criteria, the collision
factor and fitness factor, have been considered to choose
the best controllers among the various control architectures.
From the experiments, finite state machines with varying dy-
namic elements were sufficient to achieve desirable robotic
behaviors. With neural network controllers, it is inferred
that the performance of purely reactive systems can be in-
fluenced by their sensor range and variety of motor actions.
It is notable that controllers with a few states and binary

sensors do almost as well as or better than feedforward
neural network controllers with continuous sensor ranges.
More complex type of state control structures with variable
thresholds [11] or multi-thresholds can be studied over a va-
riety of robotic tasks for the future work.
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