

Hill Climbing on Discrete HIFF: Exploring the role of DNA
Transposition in Long-term Artificial Evolution

Susan Khor
Concordia University, Canada H3G 2W1

slc_khor@cse.concordia.ca

ABSTRACT
We show how a random mutation hill climber that does multi-
level selection utilizes transposition to escape local optima on the
discrete Hierarchical-If-And-Only-If (HIFF) problem. Although
transposition is often deleterious to an individual, we outline two
population models where recently transposed individuals can
survive. In these models, transposed individuals survive selection
through cooperation with other individuals. In the multi-
population model, individuals were allowed a maturation stage to
realize their potential fitness. In the genetic algorithm model,
transposition helped maintain genetic diversity even within small
populations. However, the results for transposition on the discrete
Hierarchical-Exclusive-Or (HXOR) problem were less positive.
Unlike HIFF, HXOR does not benefit from random drift. This led
us to hypothesize that two conditions necessary for transposition
to enhance evolvability are (i) the presence of local optima and
(ii) susceptibility to random drift. This hypothesis is supported by
further experiments. The findings of this paper suggest that
epistasis and large mutations can sustain artificial evolution in the
long-term by providing a way for individuals and populations to
escape evolutionary dead ends. Paradoxically, epistasis creates
local optima and holds a key to its resolution, while deleterious
mutations such as transposition enhance evolvability. However,
not all large mutations are equal.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods
and Search

General Terms
Algorithms, Design

Keywords
hill climbing, crossing fitness saddles, hierarchical test problems,
evolvability

1. INTRODUCTION
A local optimum for a hill climber is an evolutionary cul-de-sac
brought on by a myopic view of the adaptive landscape and a
short-term gain mentality. In general, there are two ways to
handle dead-ends of any kind: avoidance and back-tracking. We
explore these strategies on the discrete Hierarchical-If-And-Only-
If (HIFF) problem [19] which has an exponential number of local

optima for hill climbers and is not trivial for genetic algorithms
either with population diversity being a critical factor [18].
 The interaction strength between variables in the HIFF
problem are such that lower level modules find their optimum
more quickly than higher level modules. This difference in
adaptation speed between levels makes HIFF nearly
decomposable [13]. Further, although there is no conflict between
optimal modules at different levels, assembling optimal modules
does not necessarily produce larger optimal modules. Hence the
poor performance of the random mutation hill climber (RMHC)
[5] on the HIFF problem [18].
 Reference [10] proposed an approach to solve the continuous
HIFF problem with an enhanced random mutation hill climber
called RMHC2. RMHC2 does multi level selection. That is,
instead of comparing aggregate fitness values, phenotypes are
created from the per-level fitness values of HIFF genotypes and
selection is by comparison of phenotypes. In the ideal case, this
comparison is done in top-down order so that priority is given to
adaptation of higher level modules. A strict top-down order is not
necessary and it is possible to find a global optimum while
evolving both genotypes and the order of comparison. These
results also apply to continuous Hierarchical-Exclusive-Or
(HXOR). Section 2.2 elaborates on the RMHC2 algorithm.
 However, we found that RMHC2 is not successful on discrete
HIFF because there are fewer stepping stones in discrete HIFF
(section 2.3). As such, discrete HIFF has wider fitness saddles for
RMHC2. In the extreme case, the fitness landscape for the highest
level of a discrete HIFF problem is two needles in a haystack.
 In this paper, we propose, RMHC2-T, a further enhancement
of RMHC2, to solve the discrete HIFF problem. RMHC2-T uses a
nature-inspired mechanism called transposition to perturb a
search from approaching a local maximum and thus avoid the
widest fitness saddles. The general idea is: during a transposition
event, a segment of a genotype, a transposon, is moved to another
location in the same genotype. Due to interaction between parts of
a genotype, the cut-and-paste action of a transposition triggers a
series of adaptive moves. Thus a genotype heading along a dead
ended evolutionary pathway is diverted toward a hopefully more
promising path. Section 3 explains our implementation of the
transposition operation and section 4 gives the algorithm for
RMHC2-T.
 Because transposition is a fairly large mutation, its effect is
most likely deleterious. But, as our experiments in section 5
confirm, due to the epistatic nature and modularity of the HIFF
problem, this temporary loss of actual fitness can be made up for
by a gain in potential fitness, that is the ability to reach a higher
fitness point than the one just descended from, after some number
of evolutionary steps. By no means is this a straightforward
process. The HIFF problem has two global optima. Descending
from one local peak can inadvertently nudge the genotype towards
the global optima that is before transposition much further away

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007…$5.00.

277

Hamming distance wise – in other words, in the wrong direction.
Further, there is the problem of evolutionary plausibility. Can a
transposed genotype survive in the competitive environment of a
population? To reap the benefits of a transposition, a genotype has
to survive long enough to realize its potential fitness. We address
this question in section 6.
 RMHC2-T allows its genotype to descend into the valley of
lower fitness points. However, this descent is not arbitrary. There
are other ways to permute a genotype, such as by random bit
shuffle or inversion [7], but they did not perform as well as
transposition in our experiments (section 5).
 RMHC2-T is less successful on the discrete HXOR problem.
Due to its more complicated string pattern, HXOR does not
benefit from random drift (section 7).
 The experiments with RMHC2-T lead us to the following
hypothesis: that transposition enhances evolvability on problem-
algorithm pairs with local optima and that can exploit random
drift. We test this notion on a broader range of formal problems in
section 8.
 From a computational standpoint (as opposed to a biological
one), Holland’s translocation operator [7] is similar to
conservative transposition in that both operators relocate parts of a
whole within the whole. However Holland proposed translocation
in the context of multi-chromosomal genotypes and segregation.
Translocation moves genes between chromosomes of a genotype.
The little experimentation on the utility of translocation in genetic
algorithms did not produce positive conclusive results [6, p.180].
 Epistasis and viability selection are often culprits of local
optima in individual and in population search. Large mutations in
individuals are often deleterious in the short term. However, the
findings in this paper suggest that when combined under the right
conditions, they can enhance evolvability in the long term and
produce objects with many interacting parts.

2. BACKGROUND
2.1 Hierarchical Decomposable Problems
The HIFF and HXOR problems are instances of the class of
hierarchically decomposable problems introduced by Watson et
al. [19]. The HIFF problem in particular was used to distinguish
between gradual and compositional evolution and to demonstrate
the importance of modularity [18]. A number of approaches have
been proposed to solve the HIFF problem and variants of the
hierarchically decomposable problems [4, 11, 12, 14, 16].
However, beside RMHC2, we have not found one which is based
solely on random mutation of the genotype and selection.
 In this section, we describe HIFF genotypes. This description
also applies to HXOR genotypes unless stated otherwise. The
genotypes are bit strings of length N = 2n. A genotype has log2 N
levels, and N/2λ modules at level λ, with λ = 1…n. The algorithm
we use rewards one fitness point to each module that satisfies the
constraints of the problem. For a HIFF problem, the constraint is
similarity. For a HXOR problem, the constraint is dissimilarity.
Hence, by this algorithm, the aggregate fitness value of an optimal
genotype is N-1. An optimal HIFF genotype is one with all zeroes
or all ones. An optimal HXOR genotype is maximally dissimilar
at every level. For example, 1001 0110 and 0110 1001 are the
optimal genotypes for HXOR with 8 variables. Appendix A
(section 12) describes a procedure to produce optimal HXOR
genotypes.
 Reference [10] gives the algorithm to calculate continuous
HIFF. This algorithm is similar to the HIFF function defined in

[18] but is modified to calculate fitness by levels. Essentially,
fitness of a continuous HIFF module at a level is given by (p × q)
+ (1 – p) × (1 – q) where p is the proportion of one bits in the first
half of a module and q is the proportion of one bits in the second
half of a module (see Table 1C for an example). We present the
algorithm to calculate discrete HIFF level fitness in Figure 1. It
works by first “shrinking” the genotype to the right level and then
counting the number of non-null matches in the shrunken
genotype. To calculate HXOR-D level fitness, substitute the
condition (e1 is the same as e2) with (e1 is not the same as e2).

PROCEDURE: calculateHIFFDLevelFitness
INPUT: λ, genotype
OUTPUT: level_fitness
BEGIN
 g2 genotype
 FOR EACH level i from 1 to λ
 num_modules size of g2 / 2
 empty g1
 FOR EACH module j from 0 to num_modules – 1
 msp j * 2 // msp is module start position
 e1 element in g2 at msp
 e2 element in g2 at msp + 1
 IF (e1 is not null and e2 is not null and
 e1 is the same as e2)
 add e1 to g1
 ELSE
 add null to g1
 END FOR
 g2 g1
 END FOR
 len size of g2
 level_fitness 0.0
 FOR EACH i from 0 to len-1
 IF (element in g2 at i is not null)
 level_fitness level_fitness + 1.0
 END FOR
END

Figure. 1 Pseudo-code to calculate level λ discrete HIFF
fitness for a genotype

Tables 1A, 1B and 1C illustrate the calculation of discrete HIFF
(HIFF-D), discrete HXOR (HXOR-D) and continuous HIFF
(HIFF-C) per-level fitness and aggregate fitness values for
genotype number 193 or bit string 1100 0001, respectively. To
distinguish between fitness values and bits in these tables, real
numbers is the domain of fitness values for the discrete and the
continuous functions. The HIFF-D fitness of level 1 is 3.0 because
at each level, a 1 or 0 bit is given 1.0 fitness points and a null (-) is
worth 0.0 fitness points. Similarly for HXOR-D. The HIFF-C
fitness of level 1 is 1.0 + 1.0 + 1.0 + 0.0 = 3.0.

Table 1A. Discrete HIFF fitness.
Genotype 193

Level
Number of
Modules 1 1 0 0 0 0 0 1

HIFF-D
Per level fitness

(lowest) 1 4 1 0 0 - 3.0
2 2 - - 0.0

(highest) 3 1 - 0.0
Phenotype 〈 0.0, 0.0, 3.0 〉

Aggregate fitness 3.0

278

Table 1B. Discrete HXOR fitness.
Genotype 193

Level
Number of
Modules 1 1 0 0 0 0 0 1

HXOR-D
Per level fitness

(lowest) 1 4 - - - 1 1.0
2 2 - - 0.0

(highest) 3 1 - 0.0
Phenotype 〈 0.0, 0.0, 1.0 〉

Aggregate fitness 1.0

Table 1C. Continuous HIFF fitness.
Genotype 193

Level
Number of
Modules 1 1 0 0 0 0 0 1

HIFF-C
Per level fitness

(lowest) 1 4 1.0 1.0 1.0 0.0 3.0
2 2 0.0 0.5 0.5

(highest) 3 1 0.5 0.5
Phenotype 〈 0.5, 0.5, 3.0 〉

Aggregate fitness 4.0

2.2 RMHC and RMHC2 algorithms
RMHC2 is derived from RMHC [5]. RMHC complements a fixed
number of k bits at a time and keeps an offspring if it is as fit as or
fitter than its parent. RMHC2 complements a variable number of k
bits at a time and has two additional components: (i) phenotypes
and (ii) a multi-level selection scheme. Table 1A in section 2.1
gives an example of a HIFF phenotype. The per level fitness
values of a genotype is sequenced to form the phenotype for the
genotype, with the highest level (λ = n) fitness value situated at
the leftmost position in a phenotype, followed by the second
highest (λ = n-1) level fitness value and so on. The optimal HIFF
phenotype for a problem with N = 2n variables is 〈20, 21, …, 2i,
2i+1, … 2n-1〉. The same applies for HXOR.
 RMHC2 uses a multi-level selection scheme to compare
phenotypes. This selection scheme has a sieve component which
defines the order in which the elements of a phenotype are
compared. In evolutionary terms, the elements of a phenotype can
be viewed as features and a sieve, as the relative importance of
each feature to the survival of a genotype. Different features are
prized in different environments and sieves reflect these
relationships. A sieve is represented as an array of positive
integers. In a problem with 3 levels, any 3-permutation of the set
{1, 2, 3} is a valid sieve. There are n! possible sieves for a
problem with n levels. Importance of a feature decreases from left
to right in a sieve. The adaptation of more important features are
prioritized over the adaptation of less important features.
 Suppose the sieve for a HIFF problem with size N = 8 is 〈2, 1,
3〉 and the two competing phenotypes are p1 = 〈a, b, c〉 and p2 = 〈x,
y, z〉. Then the first comparison is made between the second level
features b and y. This is followed by comparisons between c and
z, and between a and x. In a maximization problem, if (b > y) or (b
= y and c > z) or (b = y and c = z and a > x), then the genotype for
p1 is selected. Otherwise, the genotype for p2 is selected. If all
three per-level fitness values are pairwise equal, then the genotype
for p2 is selected by default. The “ideal” sieve is 〈n, n-1, n-2,…, 1〉
and does not allow any lower level feature to adapt at the expense
(devolution) of a higher level feature. Unless stated otherwise,
RMHC2 uses the “ideal” sieve in this paper. Table 2 compares the
RMHC and RMHC2 selection schemes on two pairs of genotypes.

2.3 Discrete versus Continuous HIFF
The discrete HIFF function differs from its continuous counterpart
in one significant way for RMHC2. The levels in discrete HIFF

Table 2. RMHC versus RMHC2 selection. By default,
RMHC2 uses the “ideal” sieve which is 〈3, 2, 1〉 when N=8.

HIFF-D Phenotype Selection
Genotype λ=3 λ=2 λ=1

Aggregate
Fitness RMHC RMHC2

245 (parent)
1111 0101 0 1 2 3

188
(offspring)
1011 1100

0 0 3 3
188 245

188 (parent)
1011 1100 0 0 3 3

245
(offspring)
1111 0101

0 1 2 3
245 245

are closed in the sense that a module at level λ is not privy to the
intermediate state of its two constituent modules at level λ-1. A
discrete HIFF module at level λ “knows” about the state of its two
constituent modules at level λ-1 only when they happen to form
an optimal level λ module. Prior to the formation of an optimal
module at level λ, the bits within the two nested modules at level
λ-1 are free to mutate according to the constraints at level λ -1 and
below. Hence, higher level modules in discrete HIFF cannot bias
the adaptation of lower level modules.
 On the other hand, a module at level λ in continuous HIFF
“knows” about the intermediate state of its two constituent
modules at level λ-1. In continuous HIFF, fitness of a module at a
level is given by (p × q) + (1 – p) × (1 – q) where p is the
proportion of one bits in the first half of a module and q is the
proportion of one bits in the second half of a module. So level
fitness in continuous HIFF is sensitive to changes in a genotype at
the bit level and higher level modules use this information in
RMHC2 to not only preserve progress but also direct adaptation
of lower level modules. Whether a level is higher or lower
depends on context, a level is higher to its lower levels and is
lower to its higher levels. In short, continuous HIFF has a higher
degree of top-down control than discrete HIFF.
 To see the significance of top-down control to evolution of
HIFF genotypes, consider a module at level λ with majority m.
The majority value, m, of a module is the number of the more
frequently occurring bit. For example, a module of length 4 with
majority 3 is any of the 8 modules with either 3 zero bits and 1
one bit or 3 one bits and 1 zero bit. Modules with the same
majority value need not have the same phenotype because the
arrangement of the zero and one bits is significant for HIFF. s/2 ≤
m ≤ s where s is module size. The HIFF problem is essentially the
problem of maximizing m for all modules in a genotype.
 In discrete HIFF, a level λ module will have a fitness value of
0 until m = s. While m < s, the sub-optimal nested modules at
level λ-1 will adapt to their optimality. In this process, m may
increase or decrease. When all modules at level λ-1 are optimal
and m < s, the only adaptive move for RMHC2 is the one that
increases m to s. Any other mutation will decrease the fitness at
level λ-1 without a corresponding increase in fitness at level λ or
above. Hence, there is no pressure on the modules at level λ-1 to
move away from their equilibrium state. Further, depending on
the size of the lower level modules and the size of the mutation
step, the move to m = s at level λ may not be possible. In
continuous HIFF, fitness of a module changes with changes in m.
What is important for reaching global optimality is that fitness of
a module at level λ or above increases (decreases) with an
increase (decrease) in m. Hence, while there are sequences of
genotypes with increasingly fit phenotypes in both discrete HIFF

279

and continuous HIFF for RMHC2, the Hamming distance
between consecutive genotypes in a continuous HIFF sequence is
shorter.
 The above exposition tells us that there is more uncertainty
associated with increasing the majority value of a module in
discrete HIFF than continuous HIFF, for RMHC2. More
uncertainty means that RMHC2 on discrete HIFF is likely to take
longer than RMHC2 on continuous HIFF. But this is not the only
consequence. Direction by higher levels is useful in the HIFF
problem because it provides the broader view or context of the
problem that lower levels lack. Without a broader view, a HIFF
module is prone to adapt to a local maximum and the
phenomenon of fitness saddles witnessed for RMHC on the HIFF
problem [18] resurfaces for RMHC2 on the discrete HIFF
problem. Fitness saddle problems cannot be solved by increasing
the number of evaluations or time allowed for the search. A
different search strategy is required.
 The following example illustrates the actualization of a fitness
saddle. The width of a fitness saddle can be measured by the
Hamming distance between a point at its sub-optimal peak and its
nearest equally high or higher (EHH) point. The RMHC2 uses 1-
bit flip mutation and the current genotype is genotype 241 or 1111
0001. Table 3 enumerates the fitness values for genotypes under
discussion. On HIFF-D, RMHC2 can move to genotype 243 or
240. There is only one EHH point between 243 and the optimum
(255). That point is 252. But 252 is 4 Hamming distance units
away from 243, and therefore unreachable by 1-bit mutation.
RMHC2 is unable to cross this fitness saddle. On HIFF-C,
RMHC2 cannot move to 240 but can take several routes to 255.
Suppose it also moves to 243. There are two EHH points, 247 and
251, both within reach, and 255 is reachable from either of these
two points.

Table 3. Fitness saddle example.
HIFF-D Fitness HIFF-C Fitness

gnum Genotype 3 2 1 A 3 2 1 A
0 0000 0000 1 2 4 7

195 1100 0011 0 0 4 4
203 1100 1011 0 0 3 3
221 1101 1011 0 0 2 2
240 1111 0000 0 2 4 6 0.0 2.0 4.0 6.0
241 1111 0001 0 1 3 4 0.25 1.5 3.0 4.75
242 1111 0010 0 1 3 4 0.25 1.5 3.0 4.75
243 1111 0011 0 1 4 5 0.5 1.0 4.0 5.5
244 1111 0100 0 1 3 4 0.25 1.5 3.0 4.75
245 1111 0101 0 1 2 3 0.5 1.5 2.0 4.0
246 1111 0110 0 1 2 3 0.5 1.5 2.0 4.0
247 1111 0111 0 1 3 4 0.75 1.5 3.0 5.25
248 1111 1000 0 1 3 4 0.25 1.5 3.0 4.75
249 1111 1001 0 1 2 3 0.5 1.5 2.0 4.0
250 1111 1010 0 1 2 3 0.5 1.5 2.0 4.0
251 1111 1011 0 1 3 4 0.75 1.5 3.0 5.25
252 1111 1100 0 1 4 5 0.5 1.0 4.0 5.5
253 1111 1101 0 1 3 4 0.75 1.5 3.0 5.25
254 1111 1110 0 1 3 4 0.75 1.5 3.0 5.25
255 1111 1111 1 2 4 7 1.0 2.0 4.0 7.0

Table 4 compares the Fitness Distance Correlation (FDC) [8]
statistic for discrete (D) and continuous (C) HIFF1. In this table,
the FDC statistic measures the correlation between fitness values

1 FDC may not be a completely reliable measure for level search
difficulty. We have found a counter example where per-level FDC values
approach 0 at higher levels, but the problem is easily solved by “ideal”
RMHC2. Further investigation is underway.

at a level and hamming distances to the closest global optimum.
FDC values closer to 0 indicate increased search difficulty while
FDC values closer to -1 indicate decreased search difficulty. For
HIFF-C, search is easier at higher levels. In contrast, the FDC
values for HIFF-D (N > 4) first move away from 0 then come
back towards 0.

Table 4. FDC values
HIFF-D HIFF-C Level N=8 N=16 N=8 N=16

4 - -0.0287 - -0.6770
3 -0.2877 -0.2463 -0.6972 -0.4787
2 -0.5403 -0.3789 -0.4930 -0.3385
1 -0.3486 -0.2394 -0.3486 -0.2394

Aggregate -0.4690 -0.3281 -0.5712 -0.4199

3. DNA TRANSPOSITION
The structure and content of the natural genome is not fixed and is
not altered solely by nucleotide substitution during recombination
and mutation. The genome is plastic, to allow an assortment of
gene expression mechanisms. In this paper, we focus on the
structural aspect of genome plasticity, that is the physical
rearrangement of genes in a genotype without increasing or
decreasing the number of genes in the genotype. In nature, one
such mechanism is conservative DNA-only transposition [1].
 There are two broad types of transposition: retro-transposition
and DNA only transposition. In retro-transposition a stretch of
DNA undergoing transposition, the transposon, is copied and the
copy is inserted back into the DNA at another location. DNA only
transposition may be conservative or replicative but we only
consider the conservative case in this paper. Conservative DNA
only transposition is a cut and paste operation: a transposable
element is removed from the DNA and inserted back into the
DNA at another location. A conservative DNA only transposition
does not change the composition of a genotype, that is the number
of copies of genes in a genotype is not altered. The target site for
a transposon is less specific than its donor site. At the donor site,
the boundaries of a DNA only transposon is bracketed by a pair of
DNA sequences called inverted repeats which indicates to the
transposase enzyme where to cut and rejoin the DNA. The exact
purpose of transposition is not known although it is recognized as
an important source of genetic diversity and it plays an important
role in the immune system.
 Figure 2 illustrates our implementation of the transposition
mechanism. The start position denotes the starting position of a
transposon in a genotype. The length specifies the size of a
transposon. The start and length variables are integers randomly

1. Before transposition. The
transposon, segment between start
(2) and start+length (2+2) is
shaded.

1 1 1 1 0 0 1 1

2. After the transposon is cut from
the genotype and the remaining
pieces of the genotype are joined.

1 1 0 0 1 1

3. After transposition. The
transposon is inserted back into
the genotype at a random location.

1 1 0 1 1 0 1 1

4. The shaded segment is the
transposon if transposition were to
occur immediately after step 3.

1 1 0 1 1 0 1 1

Figure 2. Steps 1 to 3 illustrate a transposition.

280

chosen from [0, half of the genome length] and remain fixed for
the life of a genotype and is inherited un-mutated by the progeny
of a genotype. Having identified the transposon, this mobile
segment is removed from the genotype and the remaining two
segments of the genotype are joined. A random position in the
now smaller genotype is chosen and the transposon is inserted
into that position, expanding the genotype to its original size.

4. THE RMHC2-T ALGORITHM
RMHC2-T is RMHC2 with transposition. The RMHC2-T
algorithm is:
1. Start with a fully specified (every loci has a value of either 1

or 0) genotype.
2. Initialize start and length variables per section 3.
3. If a T event is triggered, perform T on the genotype, calculate

the new phenotype, and go to step 7. Otherwise go to step 4.
A T event is triggered when the random integer selected from
[1, Pt] matches a pre-defined integer within the range. Pt is a
parameter of the RMHC2-T algorithm.

4. Make a copy of the genotype. Generate k and complement k
random bits in the clone genotype. k is a random integer from
[1, Pm × N]. Pm is a real number from (0, 1] and a parameter
of the RMHC2-T algorithm.

5. Compare original and clone phenotypes using the multi-level
selection scheme. Except for the multi-population model
(section 6.1), RMHC2-T always uses the “ideal” sieve
(section 2.2) in this paper.

6. If the clone phenotype is fitter, replace the original genotype
with the clone genotype. Otherwise, discard the clone
genotype.

7. If an optimal genotype has not been found and the pre-
determined number of function evaluations has not been
performed, go to step 3. Otherwise return the current genotype
as the solution.

Note that in RMHC2-T, transposition is performed directly on the
original genotype and circumvents the multi-level selection step.
Transposed genotypes are exposed to the sifting mechanism of
selection in populations (section 6).
 To see the effect of transposition on RMHC2, we refer back
to the fitness saddle problem in section 2.3 (Table 3). To progress
from genotype 243 towards 255, an effective transposition would
be one that splits the pair of zeroes since only 1-bit mutation
moves are possible. RMHC2 does not allow 243 to move directly
to 251. Neither would RMHC since the aggregate fitness of 251 is
lower than 243. Suppose 243 is transposed to 221. The genotype
suffers a fitness loss from this transposition. However, now it is
possible for RMHC2 to move to 251 and from there to 255. This
is what we mean by losing actual fitness but gaining potential
fitness. However, it is also possible that once at 221, RMHC2
moves to 203 and then to 195. Now there are just as many zeroes
as ones in the genotype and the search has moved further away
from 255. The multi-level selection scheme of RMHC2 helps
control this waffling but does not eliminate it. Transposition and
RMHC2 is more efficient than transposition and RMHC1 (section
5). RMHC1 is RMHC2 without the multi-level selection scheme.

5. EXPERIMENTS
Hypotheses for the experiments in this section are:
(i) That transposition helps RMHC2 solve the discrete HIFF
problem.

(ii) That RMHC2-T is more efficient than RMHC1-T. RMHC1-T
is RMHC2-T without multi-level selection, that is aggregate
fitness values are compared instead of phenotypes.
(iii) That transposition is a distinct kind of permutation. We
compare transposition with random bit shuffling and with bit
inversion.
 Preliminary tests confirm that increasing mutation rate, using
macro-mutation where the bits to mutate are consecutively
located, using RMHC2 but with a selection scheme that only
accepts mutations that do not decrease the fitness value of any
level, and combinations thereof are not solutions. Table 5 lists the
parameter values used in the experiments.

Table 5. RMHC2-T experiments.
Parameter Value
Problem size, N 64 128
Number of runs 30 30
Maximum evaluations 500,000 1,500,000
Mutation rate (Pm) 0.0625 0.03125
Transposition (Pt) 1000 1000

Table 6 summarizes the results of the experiments. On the 64-
variable problem, RMHC2 did not find a global optimum in any
run while RMHC2-T found a global optimum in all 30 runs. This
confirms the first hypothesis: that transposition helps RMHC2
solve the discrete HIFF problem.
 RMHC1-T was just as successful at finding a global optimum
as RMHC2-T on the 64 variable discrete HIFF problem.
However, RMHC1-T took significantly more evaluations than
RMHC2-T. The probability that there is no difference between the
average number of evaluations for RMHC2-T and for RMHC1-T
using a 1-tailed T-test is less than 6% with 58 degrees of freedom.
This confirms the second hypothesis.

Table 6. Results for HIFF-D.
N=64 N=128

 RMHC2 RMHC2-T RMHC1-T RMHC2-T
Times found 0/30 30/30 30/30 30/30
Avg. evaluations
(std. dev.) - 105,590

(91,398)
148,589

(117,574)
510,772

(416,920)
Median evals - 65,353 89,156 389,593

We ran RMHC2-T with inversion and random bit shuffling in
place of transposition. That is, in step 3 of RMHC2-T (section 4),
instead of performing a transposition at T, an inversion or a
random bit shuffle is performed. Inversion inverts the bits
between start and start + length. For example, 1011 1011 with the
middle 4 bits inverted is 1001 1111. A random bit shuffle
rearranges the entire genotype. The inversion runs failed on the
64-variable problem, but the random shuffle runs succeeded. So,
we tested random shuffle on the 128-variable problem. On this
larger problem, random shuffle was not successful while
RMHC2-T has a 100% success rate. Thus the hypothesis that
transposition is a distinct kind of permutation is confirmed on
sufficiently large problems, based on search performance.
 However, even on the 64 variable HIFF problem, difference
between the quality of random bit shuffle and of transposition
permutation is evident. Figure 3A shows the zig-zag pattern that a
sample RMHC2-T run makes as it progresses through its search.
A sample RMHC2-S run also makes a zig-zag pattern (Figure
3B), but the magnitude of its fluctuations are larger than those in
RMHC2-T. Further, there is a discernable leaning to the right
(higher fitness) in RMHC2-T. There is little to no zig-zag pattern
for RMHC2 (Figure 3A) and RMHC2-I (Figure 3B). Their

281

evolution come to a stand-still. Transposition performs better
because although it permutes the genotype it also preserves the
physical linkage between bits in a transposon. Random shuffling
is disruptive and too permissive of waffling. Inversion is not
disruptive enough.

HIFF-D, N=64

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70

(T
ho

us
an

ds
)

Aggregate Fitness

E
va

lu
at

io
ns

RMHC2-T
RMHC2

Figure 3A. RMHC2 and RMHC2-T sample runs.

HIFF-D, N=64

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

(T
ho

us
an

ds
)

Aggregate Fitness

E
va

lu
at

io
ns

RMHC2-S RMHC2-I

Figure 3B. RMHC2-S and RMHC2-I sample runs.

6. TRANSPOSITION IN A POPULATION
In section 1, we mentioned that with continuous HIFF and
RMHC2, it was possible to evolve both genotypes and the sieve
simultaneously and find a global optimum. Does this apply to
discrete HIFF and RMHC2-T? Further, how would a recently
transposed genotype survive selection in a population? In this
section, we outline two population models to answer these
questions. The first model is a multi-population model [2] and
addresses both questions. This model is similar to the one used for
continuous HIFF and RMHC2 [10] but the criterion for
comparing demes is changed and the transposition operation is
added. The second model is a transposition and crossover-only
genetic algorithm with fitness-proportionate selection and
generational replacement (CGA-T). CGA-T addresses the second
question.

6.1 The multi-population model
In this model, subpopulations of genotypes are placed in a two-
dimensional grid with periodic boundaries. Genotypes within a
subpopulation do not interact with each other and subpopulations

have minimal interaction with each other. There is no exchange of
genetic material between genotypes. Each genotype has its own
start and length values. Each cell in the grid has its own sieve,
randomly generated at first. Genotypes evolve using RMHC2-T
with the current sieve in their respective cells. After some number
of generations, subpopulations compare their fitness with that of
their neighbours. The fitness of a subpopulation is the average
aggregate fitness of its genotypes. The most fit subpopulation
replaces the least fit subpopulation in a Moore neighbourhood.
During this synchronous extinction-recolonization event, the
genotypes and their start and length values, and a variant of the
sieve of the colonizer cell replaces those in the colonized cell. A
sieve is varied by swapping two randomly chosen elements.
 Table 7 lists the parameter values for our multi-population
experiment. The balance between transposition rate and number
of generations is important. After a transposition, a genotype
needs time to realize its potential fitness. If this maturation time is
too short or transposition occurs too frequently, the genotype will
most likely pull the average fitness of its deme down and be in
danger of extinction.

Table 7. Parameter values
Parameter Multi-population CGA
Maximum evaluations 3,000,000 500,000
Number of runs 30 30
Problem size, N 128 128
Population size - 128
Population size per deme 3 -
Number of demes 4 x 4 -
Mutation rate (Pm) 0.03125 -
Crossover rate (Px) - 1.0
Transposition (Pt) 500 2
Number of generations 500 -

The multi-population model found a global optimum 28 out of 30
times (93%) and used an average of 1,648,875 with a standard
deviation of 451,230 and a median of 1,608,231 evaluations.

6.2 The CGA model
CGA is a single-point crossover-only genetic algorithm with
fitness-proportionate selection and generational replacement.
Selection in CGA is base on aggregate fitness. Each crossover
event produces two offspring for the next generation. In CGA-T,
separate T events may be triggered for either or both offspring, in
which case the target offspring genotype is transposed. T is
triggered in the same manner as in RMHC2-T (section 4).
 Table 7 lists the parameter values for our CGA experiments
on discrete HIFF. CGA-T was 100% successful and used an
average of 29,237 evaluations with standard deviation 12,515 and
median 25,072 while none of the CGA runs were successful. The
variances of CGA populations quickly decreased to zero, while
those of CGA-T remained above zero. Maintaining population
diversity is one of the key components of a successful genetic
algorithm application. Previous techniques used on the HIFF
problem such as deterministic crowding required large
populations in the order of thousands to succeed [15]. The
population size for CGA-T is small in comparison.

From the experiments in this section, the answer to the first
question is yes. The answer to the second question is cooperation.
In the multi-population model, individuals in a deme help each
other to survive a replacement event but do not exchange genetic
material with one another. In the genetic algorithm model,

282

individuals cooperate by exchanging their genetic material via
single-point crossover.

7. RANDOM DRIFT

In sections 5 and 6 we have observed the beneficial effects of
transposition on the discrete HIFF problem in individual and
population base search. Does transposition also benefit the
discrete HXOR problem? The experiments in this section are
designed to answer this question.
 We ran RMHC2-T with the parameter configuration in Table
6 (section 5) on discrete HXOR with 64 variables. None of these
runs were successful. Figure 4 depicts one sample run. Some
progress is made towards higher fitness values early in the run but
further along, there is no discernable tilt to the right in Figure 4,
unlike Figure 3A.

HXOR-D, N=64

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500

10 20 30 40 50 60 70

(T
ho

us
an

ds
)

Aggregate Fitness

E
va

lu
at

io
ns

RMHC2-T

RMHC2

cc

Figure 4. RMHC2 and RMHC2-T sample runs.

Results for CGA-T on discrete HXOR using the configuration in
Table 7 were also dismal. Like HIFF, transposition helped a CGA
population maintain diversity. But unlike HIFF, population
diversity did not result in an optimal genotype being found.
 We attribute these failures to the inability of HXOR to exploit
random drift. In the HIFF problem, the arbitrary accumulation of
ones (zeroes), will eventually lead to a global optimum. In the
HXOR problem, it is not enough to accumulate equal number of
ones and zeroes, which is easily done, but the ones and zeroes
need to be placed in a non-trivial order to form a global optimum.
The asymmetry between HIFF and HXOR due to difference in
their optimal genotype strings has been witnessed elsewhere [17].
Appendix A gives an algorithm to produce optimal HXOR
genotypes. This description is not as simple as append ones or
zeroes to create optimal HIFF genotypes, and gives some inkling
that genotypes satisfying the constraints of the HXOR problem
are more complex than optimal HIFF genotypes.

8. A HYPOTHESIS
The experiments so far suggest the following hypothesis: that
transposition is beneficial on problem-algorithm pairs with local
optima and random drift. In sections 8.1 and 8.2, we test
transposition on problem-algorithm pairs with random drift but
with little to no local optima. In section 8.3, the hypothesis is
tested on non-hierarchical decomposable problems.

8.1 RMHC2-T and HIFF-C
RMHC2 performs well on HIFF-C (Table 8) indicating an
absence of problematic local optima for RMHC2 on HIFF-C.
However, increasing the frequency of transposition slows down
RMHC2, as predicted by our hypothesis. The probability that
RMHC2-T with a Pt value of 50 is just as efficient as RMHC2 is
less than 8% using the 1-tailed T-test with 58 degrees of freedom.
The mutation rate used in this experiment is 0.0625, N =128 and
the maximum number of evaluations is 10,000.

Table 8. Results of RMHC2 and RMHC2-T on HIFF-C.
 RMHC2 RMHC2-T(Pt=500) RMHC2-T(Pt=50)
Times found 30/30 30/30 30/30
Avg. evaluations
(std. dev.)

3096
(1148)

3326
(1226)

3532
(1206)

8.2 GIGA and HIFF-D
The Gene-Invariant Genetic Algorithm (GIGA) [3] preserves the
initial distribution of bits throughout a run. So there is no loss of
genetic diversity. In our GIGA, crossover is two-point, population
size is 64, maximum evaluations is 100,000, the population is kept
sorted and parent selection is by rotating through the population
from fittest to least fit with the least fit end connected to the fittest
end and mating every consecutive pair of genotypes. Each
crossover produces a pair of offspring. Each offspring may be
transposed. An offspring pair replaces their parents if the fitter
offspring is fitter than the fitter parent (elitism).

Table 9. Results of GIGA and GIGA-T on HIFF-D, N=128.
 GIGA

GIGA-T
(Pt=50)

GIGA-T
(Pt=5)

Times found 30/30 (100%) 28/30 (93%) 10/30 (33 %)
Avg. evaluations
(std. dev.) when found

59,602
(12,532)

66,140
(16,669)

73,981
(16,507)

From the results in Table 9, there are no problematic local optima
for our GIGA on HIFF-D. When transposition is added,
performance of GIGA deteriorates, as predicted by our
hypothesis. This is because if only one offspring in a pair is
transposed and the offspring pair is fitter than the parent pair, the
initial distribution of bits will be disturbed. Hence the GA is not
Gene-Invariant anymore and problem with diversity maintenance
creeps in.

8.3 Other Test Problems
We performed other experiments similar to the ones in this paper
on two Royal Road functions and on the One-Max problem. The
Royal Road functions are R1 [5] where no bonus is given for
combination of schema, and RX where we substitute the all-ones
optimal string with a HXOR optimal string. There is no epistasis
and no random drift effect in RX individuals. Unlike HIFF and
HXOR, transposition does not change the actual or potential
fitness of a One-Max genotype. But transposition most likely
reduces the actual fitness of a Royal Road genotype. This
reduction means that more bits are free to mutate in any direction.
Thus transposition also reduces potential Royal Road genotype
fitness.
 As expected, transposition was not beneficial to RMHC on
the Royal Road functions. Transposition was beneficial to CGA
on R1, but not on RX. Also as expected, transposition helped CGA
on One-Max. However, transposition did not impair the
performance of RMHC on One-Max. Thus it is possible for

283

Table 10. When does transposition help an evolutionary algorithm? Summary of findings.

Problem Random drift
Local Optima
for RMHC* RMHC*

Local Optima
for CGA CGA

Local Optima
For GIGA GIGA

HIFF-D Yes Yes Yes Yes Yes No No
HXOR-D No Yes No Yes No - -
HIFF-C Yes No No - - - -
Royal-Road (R1) Yes No No Yes Yes - -
Royal-Road (RX) No No No Yes No - -
One-Max Yes No Neutral Yes Yes - -

transposition to have a neutral effect. In general, the hypothesis is
supported by these additional experiments.

9. CONCLUSION
Using an operation found in the natural genome, we have shown
how a hill climber (RMHC2-T) and a genetic algorithm (CGA-T)
can escape evolutionary dead ends. Table 10 summarizes the
results of our experiments. Transposition had a positive effect on
both individual and population base search techniques in the
presence of random drift and epistasis. Epistasis creates local
optima for RMHC individuals. The concept of epistasis can be
extended to interaction between individuals, as is done in the
NKC model [9]. Although the epistatic relationship between
individuals in CGA is transient, local optima for a population can
be created through inter-individual interactions of selection,
recombination and replacement. These results support the notion
that epistasis and genome plasticity have long-term evolutionary
benefits under the right conditions.

10. ACKNOWLEDGEMENTS
This work is supported by the Faculty of Engineering and
Computer Science, Concordia University and NSERC. Thanks to
Peter Grogono and the anonymous reviewers for their comments.

11. REFERENCES
1 Alberts, B. (Editor) Molecular Biology of the Cell. Fourth

edition, 2002. Garland Press. Available online at NCBI.
2 Altenberg, L. Evolvability suppression to stabilize far-sighted

adaptations. Artificial Life, vol. 11, 2005, pages 427- 443. The
MIT Press.

3 Culberson, J. C. Mutation-crossover isomorphisms and the
construction of discriminating functions. Evolutionary
Computation vol. 2, 1994, pages 279-311.

4 de Jong, E. D., Thierens, D. and Watson, R. A. Hierarchical
genetic algorithms. In X. Yao, et al. (Editors) Parallel
Problem Solving from Nature (PPSN) vol. VIII, 2004, pages
232 – 241, Springer, Berlin.

5 Forrest, S. and Mitchell, M. Relative building-block fitness
and the building block hypothesis. In D. Whitley (editor)
Foundations of Genetic Algorithms (FOGA) vol. 2, 1993,
Morgan Kaufmann.

6 Goldberg, D. E. Genetic Algorithms in Search, Optimization
and Machine Learning. 1989, Addison-Wesley.

7 Holland, J. H. Adaptation in Natural and Artificial Systems.
MIT Press edition, 1992.

8 Jones, T. and Forrest, S. Fitness distance correlation as a
measure of problem difficulty for genetic algorithms. In L.
Eshelman (Editor), 6th International Conference on Genetic
Algorithms (ICGA), 1995, pp. 184 – 192, Morgan Kaufmann.

9 Kauffman, S. A. The Origins of Order. Oxford University
Press, 1993.

10 Khor, S. Rethinking the adaptive capability of accretive

evolution on hierarchically consistent problems. IEEE
Symposium on Artificial Life, 2007.

11 Knowles, J. D., Watson, R. A. and Corne, D. W. Reducing
local optima in single-objective problems by multi-
objectivization. In Conference on Evolutionary Multi-
criterion Optimization, 2001, Lawrence Erlbaum Associates.

12 Pelikan, M. and Goldberg, D. E. Escaping hierarchical traps
with competent genetic algorithms. In L.E Spector, et al.
(editors), Genetic and Evolutionary Computation Conference,
2001, pages 511 – 518, Morgan Kaufmann.

13 Simon, H. A. The Sciences of the Artificial. 1969, The MIT
Press.

14 Walker, J. A. and Miller, J. F. Embedded Cartesian Genetic
Programming and the Lawnmover and Hierarchical-if-and-
only-if problems. In M. Keijzer et al. (Editors) Genetic and
Evolutionary Computation Conference, 2006.

15 Watson, R. A. Analysis of recombinative algorithms on a
non-separable building-block problem. In W. N. Martin and
W. M. Spears (Editors) Foundations of Genetic Algorithms
(FOGA), vol. 6, 2001, pages 69-90. Morgan Kaufman.

16 Watson, R. A. and Pollack, J. B. A computational model of
symbiotic composition in evolutionary transitions.
BioSystems, vol. 69, 2003, pages 187 – 209, Elsevier.

17 Watson, R. A. and Pollack, J. B. Hierarchically consistent test
problems for genetic algorithms. In P. J. Angeline, et al.
(Editors), Congress on Evolutionary Computation (CEC),
1999, pages 1406-1413. IEEE Press.

18 Watson, R. A. Compositional Evolution – The impact of sex,
symbiosis and modularity on the gradualist framework of
evolution. MIT Press, 2006.

19 Watson, R. A., Hornby, G. S. and Pollack, J. B.. Modeling
building-block interdependency. In A.E. Eiben, et al.
(Editors) Parallel Problem Solving from Nature (PPSN)
1998, vol. V, pages 97-106, Springer, Berlin.

12. APPENDIX A
An optimal HXOR genotype of length N = 2n , n > 0, can be
produced with the algorithm in Figure 5. A start_bit of 0 and
num_levels of 2 produces optimal_genotype 1001.

PROCEDURE: createHXOROptimum
INPUT: num_levels, sb //sb is start_bit, can be either 0 or 1
OUTPUT: optimal_genotype
BEGIN
 to empty optimal_genotype, append sb, then append (1-sb)
 FOR EACH i from 1 to num_levels-1
 FOR EACH element e in optimal_genotype
 IF (e is 0) insert 1 to optimal_genotype before e
 ELSE insert 0 to optimal_genotype before e
 END FOR
 END FOR
END

Figure 5. Pseudo-code to create optimal HXOR genotypes.

284

