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ABSTRACT 
We show how a random mutation hill climber that does multi-
level selection utilizes transposition to escape local optima on the 
discrete Hierarchical-If-And-Only-If (HIFF) problem. Although 
transposition is often deleterious to an individual, we outline two 
population models where recently transposed individuals can 
survive. In these models, transposed individuals survive selection 
through cooperation with other individuals. In the multi-
population model, individuals were allowed a maturation stage to 
realize their potential fitness. In the genetic algorithm model, 
transposition helped maintain genetic diversity even within small 
populations. However, the results for transposition on the discrete 
Hierarchical-Exclusive-Or (HXOR) problem were less positive. 
Unlike HIFF, HXOR does not benefit from random drift. This led 
us to hypothesize that two conditions necessary for transposition 
to enhance evolvability are (i) the presence of local optima and 
(ii) susceptibility to random drift. This hypothesis is supported by 
further experiments. The findings of this paper suggest that 
epistasis and large mutations can sustain artificial evolution in the 
long-term by providing a way for individuals and populations to 
escape evolutionary dead ends. Paradoxically, epistasis creates 
local optima and holds a key to its resolution, while deleterious 
mutations such as transposition enhance evolvability. However, 
not all large mutations are equal.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search 

General Terms 
Algorithms, Design 

Keywords 
hill climbing, crossing fitness saddles, hierarchical test problems, 
evolvability 
 
1. INTRODUCTION 
A local optimum for a hill climber is an evolutionary cul-de-sac 
brought on by a myopic view of the adaptive landscape and a 
short-term gain mentality. In general, there are two ways to 
handle dead-ends of any kind: avoidance and back-tracking. We 
explore these strategies on the discrete Hierarchical-If-And-Only-
If (HIFF) problem [19] which has an exponential number of local 

optima for hill climbers and is not trivial for genetic algorithms 
either with population diversity being a critical factor [18]. 
 The interaction strength between variables in the HIFF 
problem are such that lower level modules find their optimum 
more quickly than higher level modules. This difference in 
adaptation speed between levels makes HIFF nearly 
decomposable [13]. Further, although there is no conflict between 
optimal modules at different levels, assembling optimal modules 
does not necessarily produce larger optimal modules. Hence the 
poor performance of the random mutation hill climber (RMHC) 
[5] on the HIFF problem [18]. 
 Reference [10] proposed an approach to solve the continuous 
HIFF problem with an enhanced random mutation hill climber 
called RMHC2. RMHC2 does multi level selection. That is, 
instead of comparing aggregate fitness values, phenotypes are 
created from the per-level fitness values of HIFF genotypes and 
selection is by comparison of phenotypes. In the ideal case, this 
comparison is done in top-down order so that priority is given to 
adaptation of higher level modules. A strict top-down order is not 
necessary and it is possible to find a global optimum while 
evolving both genotypes and the order of comparison. These 
results also apply to continuous Hierarchical-Exclusive-Or 
(HXOR). Section 2.2 elaborates on the RMHC2 algorithm.  
 However, we found that RMHC2 is not successful on discrete 
HIFF because there are fewer stepping stones in discrete HIFF 
(section 2.3). As such, discrete HIFF has wider fitness saddles for 
RMHC2. In the extreme case, the fitness landscape for the highest 
level of a discrete HIFF problem is two needles in a haystack.  
 In this paper, we propose, RMHC2-T, a further enhancement 
of RMHC2, to solve the discrete HIFF problem. RMHC2-T uses a 
nature-inspired mechanism called transposition to perturb a 
search from approaching a local maximum and thus avoid the 
widest fitness saddles. The general idea is: during a transposition 
event, a segment of a genotype, a transposon, is moved to another 
location in the same genotype. Due to interaction between parts of 
a genotype, the cut-and-paste action of a transposition triggers a 
series of adaptive moves. Thus a genotype heading along a dead 
ended evolutionary pathway is diverted toward a hopefully more 
promising path. Section 3 explains our implementation of the 
transposition operation and section 4 gives the algorithm for 
RMHC2-T. 
 Because transposition is a fairly large mutation, its effect is 
most likely deleterious. But, as our experiments in section 5 
confirm, due to the epistatic nature and modularity of the HIFF 
problem, this temporary loss of actual fitness can be made up for 
by a gain in potential fitness, that is the ability to reach a higher 
fitness point than the one just descended from, after some number 
of evolutionary steps. By no means is this a straightforward 
process. The HIFF problem has two global optima. Descending 
from one local peak can inadvertently nudge the genotype towards 
the global optima that is before transposition much further away 
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Hamming distance wise – in other words, in the wrong direction. 
Further, there is the problem of evolutionary plausibility. Can a 
transposed genotype survive in the competitive environment of a 
population? To reap the benefits of a transposition, a genotype has 
to survive long enough to realize its potential fitness. We address 
this question in section 6. 
 RMHC2-T allows its genotype to descend into the valley of 
lower fitness points. However, this descent is not arbitrary. There 
are other ways to permute a genotype, such as by random bit 
shuffle or inversion [7], but they did not perform as well as 
transposition in our experiments (section 5).   
 RMHC2-T is less successful on the discrete HXOR problem. 
Due to its more complicated string pattern, HXOR does not 
benefit from random drift (section 7).  
 The experiments with RMHC2-T lead us to the following 
hypothesis: that transposition enhances evolvability on problem-
algorithm pairs with local optima and that can exploit random 
drift. We test this notion on a broader range of formal problems in 
section 8.  
 From a computational standpoint (as opposed to a biological 
one), Holland’s translocation operator [7] is similar to 
conservative transposition in that both operators relocate parts of a 
whole within the whole. However Holland proposed translocation 
in the context of multi-chromosomal genotypes and segregation. 
Translocation moves genes between chromosomes of a genotype. 
The little experimentation on the utility of translocation in genetic 
algorithms did not produce positive conclusive results [6, p.180]. 
 Epistasis and viability selection are often culprits of local 
optima in individual and in population search. Large mutations in 
individuals are often deleterious in the short term. However, the 
findings in this paper suggest that when combined under the right 
conditions, they can enhance evolvability in the long term and 
produce objects with many interacting parts. 
 
2. BACKGROUND 
2.1 Hierarchical Decomposable Problems 
The HIFF and HXOR problems are instances of the class of 
hierarchically decomposable problems introduced by Watson et 
al. [19]. The HIFF problem in particular was used to distinguish 
between gradual and compositional evolution and to demonstrate 
the importance of modularity [18]. A number of approaches have 
been proposed to solve the HIFF problem and variants of the 
hierarchically decomposable problems [4, 11, 12, 14, 16]. 
However, beside RMHC2, we have not found one which is based 
solely on random mutation of the genotype and selection.  
 In this section, we describe HIFF genotypes. This description 
also applies to HXOR genotypes unless stated otherwise. The 
genotypes are bit strings of length N = 2n. A genotype has log2 N 
levels, and N/2λ modules at level λ, with λ = 1…n. The algorithm 
we use rewards one fitness point to each module that satisfies the 
constraints of the problem. For a HIFF problem, the constraint is 
similarity. For a HXOR problem, the constraint is dissimilarity. 
Hence, by this algorithm, the aggregate fitness value of an optimal 
genotype is N-1. An optimal HIFF genotype is one with all zeroes 
or all ones. An optimal HXOR genotype is maximally dissimilar 
at every level. For example, 1001 0110 and 0110 1001 are the 
optimal genotypes for HXOR with 8 variables. Appendix A 
(section 12) describes a procedure to produce optimal HXOR 
genotypes.  
 Reference [10] gives the algorithm to calculate continuous 
HIFF. This algorithm is similar to the HIFF function defined in 

[18] but is modified to calculate fitness by levels. Essentially, 
fitness of  a continuous HIFF module at a level is given by (p × q) 
+ (1 – p) × (1 – q) where p is the proportion of one bits in the first 
half of a module and q is the proportion of one bits in the second 
half of a module (see Table 1C for an example). We present the  
algorithm to calculate discrete HIFF level fitness in Figure 1. It 
works by first “shrinking” the genotype to the right level and then 
counting the number of non-null matches in the shrunken 
genotype. To calculate HXOR-D level fitness, substitute the 
condition (e1 is the same as e2) with (e1 is not the same as e2).  
 
PROCEDURE: calculateHIFFDLevelFitness 
INPUT: λ, genotype 
OUTPUT: level_fitness 
BEGIN 
 g2  genotype 
 FOR EACH level i from 1 to λ 
  num_modules  size of g2 / 2 
  empty g1  
  FOR EACH module j from 0 to num_modules – 1 
   msp  j * 2  // msp is module start position 
   e1  element in g2 at msp 
   e2  element in g2 at msp + 1 
   IF (e1 is not null and e2 is not null and  
           e1 is the same as e2) 
    add e1 to g1 
   ELSE  
    add null to g1   
  END FOR 
  g2  g1      
 END FOR 
 len  size of g2 
 level_fitness  0.0 
 FOR EACH i from 0 to len-1   
  IF (element in g2 at i is not null)  
   level_fitness  level_fitness + 1.0  
 END FOR 
END 

Figure. 1 Pseudo-code to calculate level λ discrete HIFF 
fitness for a genotype 

 
Tables 1A, 1B and 1C illustrate the calculation of discrete HIFF 
(HIFF-D), discrete HXOR (HXOR-D) and continuous HIFF 
(HIFF-C) per-level fitness and aggregate fitness values for 
genotype number 193 or bit string 1100 0001, respectively. To 
distinguish between fitness values and bits in these tables, real 
numbers is the domain of fitness values for the discrete and the 
continuous functions. The HIFF-D fitness of level 1 is 3.0 because 
at each level, a 1 or 0 bit is given 1.0 fitness points and a null (-) is 
worth 0.0 fitness points. Similarly for HXOR-D. The HIFF-C 
fitness of level 1 is 1.0 + 1.0 + 1.0 + 0.0 = 3.0. 
 

Table 1A. Discrete HIFF fitness. 
Genotype 193 

Level 
Number of 
Modules 1 1 0 0 0 0 0 1

HIFF-D 
Per level fitness

(lowest) 1 4 1 0 0 - 3.0 
2 2 - - 0.0 

(highest) 3 1 - 0.0 
Phenotype 〈 0.0, 0.0, 3.0 〉 

Aggregate fitness 3.0 
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Table 1B. Discrete HXOR fitness. 
Genotype 193 

Level 
Number of 
Modules 1 1 0 0 0 0 0 1 

HXOR-D 
Per level fitness

(lowest) 1 4 - - - 1 1.0 
2 2 - - 0.0 

(highest) 3 1 - 0.0 
Phenotype 〈 0.0, 0.0, 1.0 〉 

Aggregate fitness 1.0 
 

Table 1C. Continuous HIFF fitness. 
Genotype 193 

Level 
Number of  
Modules 1 1 0 0 0 0 0 1 

HIFF-C  
Per level fitness

(lowest) 1 4 1.0 1.0 1.0 0.0 3.0 
2 2 0.0 0.5 0.5 

(highest) 3 1 0.5 0.5 
Phenotype 〈 0.5, 0.5, 3.0 〉 

Aggregate fitness 4.0 

 
2.2 RMHC and RMHC2 algorithms 
RMHC2 is derived from RMHC [5]. RMHC complements a fixed 
number of k bits at a time and keeps an offspring if it is as fit as or  
fitter than its parent. RMHC2 complements a variable number of k 
bits at a time and has two additional components: (i) phenotypes 
and (ii) a multi-level selection scheme. Table 1A in section 2.1 
gives an example of a HIFF phenotype. The per level fitness 
values of a genotype is sequenced to form the phenotype for the 
genotype, with the highest level (λ = n) fitness value situated at 
the leftmost position in a phenotype, followed by the second 
highest (λ = n-1) level fitness value and so on. The optimal HIFF 
phenotype for a problem with N = 2n variables is 〈20, 21, …, 2i, 
2i+1, … 2n-1〉. The same applies for HXOR. 
 RMHC2 uses a multi-level selection scheme to compare 
phenotypes. This selection scheme has a sieve component which 
defines the order in which the elements of a phenotype are 
compared. In evolutionary terms, the elements of a phenotype can 
be viewed as features and a sieve, as the relative importance of 
each feature to the survival of a genotype. Different features are 
prized in different environments and sieves reflect these 
relationships. A sieve is represented as an array of positive 
integers. In a problem with 3 levels, any 3-permutation of the set 
{1, 2, 3} is a valid sieve. There are n! possible sieves for a 
problem with n levels. Importance of a feature decreases from left 
to right in a sieve. The adaptation of more important features are 
prioritized over the adaptation of less important features. 
 Suppose the sieve for a HIFF problem with size N = 8 is 〈2, 1, 
3〉 and the two competing phenotypes are p1 = 〈a, b, c〉 and p2 = 〈x, 
y, z〉. Then the first comparison is made between the second level 
features b and y. This is followed by comparisons between c and 
z, and between a and x. In a maximization problem, if (b > y) or (b 
= y and c > z) or (b = y and c = z and a > x), then the genotype for 
p1  is selected. Otherwise, the genotype for p2 is selected. If all 
three per-level fitness values are pairwise equal, then the genotype 
for p2 is selected by default. The “ideal” sieve is 〈n, n-1, n-2,…, 1〉 
and does not allow any lower level feature to adapt at the expense 
(devolution) of a higher level feature. Unless stated otherwise, 
RMHC2 uses the “ideal” sieve in this paper. Table 2 compares the 
RMHC and RMHC2 selection schemes on two pairs of genotypes.  
 
2.3 Discrete versus Continuous HIFF  
The discrete HIFF function differs from its continuous counterpart 
in one significant way for RMHC2. The levels in discrete HIFF 

Table 2. RMHC versus RMHC2 selection. By default, 
RMHC2 uses the “ideal” sieve which is 〈3, 2, 1〉 when N=8. 

HIFF-D Phenotype Selection 
Genotype λ=3 λ=2 λ=1 

Aggregate 
Fitness RMHC RMHC2 

245 (parent) 
1111 0101 0 1 2 3 

188 
(offspring) 
1011 1100 

0 0 3 3 
188 245 

188 (parent) 
1011 1100 0 0 3 3 

245 
(offspring) 
1111 0101 

0 1 2 3 
245 245 

 
are closed in the sense that a module at level λ is not privy to the 
intermediate state of its two constituent modules at level λ-1. A 
discrete HIFF module at level λ “knows” about the state of its two 
constituent modules at level λ-1 only when they happen to form 
an optimal level λ module. Prior to the formation of an optimal 
module at level λ, the bits within the two nested modules at level 
λ-1 are free to mutate according to the constraints at level λ -1 and 
below. Hence, higher level modules in discrete HIFF cannot bias 
the adaptation of lower level modules. 
 On the other hand, a module at level λ in continuous HIFF 
“knows” about the intermediate state of its two constituent 
modules at level λ-1. In continuous HIFF, fitness of  a module at a 
level is given by (p × q) + (1 – p) × (1 – q) where p is the 
proportion of one bits in the first half of a module and q is the 
proportion of one bits in the second half of a module. So level 
fitness in continuous HIFF is sensitive to changes in a genotype at 
the bit level and higher level modules use this information in 
RMHC2 to not only preserve progress but also direct adaptation 
of lower level modules. Whether a level is higher or lower 
depends on context, a level is higher to its lower levels and is 
lower to its higher levels.  In short, continuous HIFF has a higher 
degree of top-down control than discrete HIFF.  
 To see the significance of top-down control to evolution of 
HIFF genotypes, consider a module at level λ with majority m. 
The majority value, m, of a module is the number of the more 
frequently occurring bit. For example, a module of length 4 with 
majority 3 is any of the 8 modules with either 3 zero bits and 1 
one bit or 3 one bits and 1 zero bit. Modules with the same 
majority value need not have the same phenotype because the 
arrangement of the zero and one bits is significant for HIFF. s/2 ≤ 
m ≤ s where s is module size. The HIFF problem is essentially the 
problem of maximizing m for all modules in a genotype. 
  In discrete HIFF, a level λ module will have a fitness value of 
0 until m = s. While m < s, the sub-optimal nested modules at 
level λ-1 will adapt to their optimality. In this process, m may 
increase or decrease. When all modules at level λ-1 are optimal 
and m < s, the only adaptive move for RMHC2 is the one that 
increases m to s. Any other mutation will decrease the fitness at 
level λ-1 without a corresponding increase in fitness at level λ or 
above. Hence, there is no pressure on the modules at level λ-1 to 
move away from their equilibrium state. Further, depending on 
the size of the lower level modules and the size of the mutation 
step, the move to  m = s at level λ may not be possible. In 
continuous HIFF, fitness of a module changes with changes in m. 
What is important for reaching global optimality is that fitness of 
a module at level λ or above increases (decreases) with an 
increase (decrease) in m. Hence, while there are sequences of 
genotypes with increasingly fit phenotypes in both discrete HIFF 
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and continuous HIFF for RMHC2, the Hamming distance 
between consecutive genotypes in a continuous HIFF sequence is 
shorter. 
 The above exposition tells us that there is more uncertainty 
associated with increasing the majority value of a module in 
discrete HIFF than continuous HIFF, for RMHC2. More 
uncertainty means that RMHC2 on discrete HIFF is likely to take 
longer than RMHC2 on continuous HIFF. But this is not the only 
consequence. Direction by higher levels is useful in the HIFF 
problem because it provides the broader view or context of the 
problem that lower levels lack. Without a broader view, a HIFF 
module is prone to adapt to a local maximum and the 
phenomenon of fitness saddles witnessed for RMHC on the HIFF 
problem [18] resurfaces for RMHC2 on the discrete HIFF 
problem. Fitness saddle problems cannot be solved by increasing 
the number of evaluations or time allowed for the search. A 
different search strategy is required. 
 The following example illustrates the actualization of a fitness 
saddle. The width of a fitness saddle can be measured by the 
Hamming distance between a point at its sub-optimal peak and its 
nearest equally high or higher (EHH) point. The RMHC2 uses 1-
bit flip mutation and the current genotype is genotype 241 or 1111 
0001. Table 3 enumerates the fitness values for genotypes under 
discussion. On HIFF-D, RMHC2 can move to genotype 243 or 
240. There is only one EHH point between 243 and the optimum 
(255). That point is 252. But 252 is 4 Hamming distance units 
away from 243, and therefore unreachable by 1-bit mutation. 
RMHC2 is unable to cross this fitness saddle. On HIFF-C, 
RMHC2 cannot move to 240 but can take several routes to 255. 
Suppose it also moves to 243. There are two EHH points, 247 and 
251, both within reach, and 255 is reachable from either of these 
two points. 

Table 3. Fitness saddle example. 
HIFF-D Fitness HIFF-C Fitness 

gnum Genotype 3 2 1 A 3 2 1 A 
0 0000 0000 1 2 4 7     

195 1100 0011 0 0 4 4     
203 1100 1011 0 0 3 3     
221 1101 1011 0 0 2 2     
240 1111 0000 0 2 4 6 0.0 2.0 4.0 6.0 
241 1111 0001 0 1 3 4 0.25 1.5 3.0 4.75 
242 1111 0010 0 1 3 4 0.25 1.5 3.0 4.75 
243 1111 0011 0 1 4 5 0.5 1.0 4.0 5.5 
244 1111 0100 0 1 3 4 0.25 1.5 3.0 4.75 
245 1111 0101 0 1 2 3 0.5 1.5 2.0 4.0 
246 1111 0110 0 1 2 3 0.5 1.5 2.0 4.0 
247 1111 0111 0 1 3 4 0.75 1.5 3.0 5.25 
248 1111 1000 0 1 3 4 0.25 1.5 3.0 4.75 
249 1111 1001 0 1 2 3 0.5 1.5 2.0 4.0 
250 1111 1010 0 1 2 3 0.5 1.5 2.0 4.0 
251 1111 1011 0 1 3 4 0.75 1.5 3.0 5.25 
252 1111 1100 0 1 4 5 0.5 1.0 4.0 5.5 
253 1111 1101 0 1 3 4 0.75 1.5 3.0 5.25 
254 1111 1110 0 1 3 4 0.75 1.5 3.0 5.25 
255 1111 1111 1 2 4 7 1.0 2.0 4.0 7.0 

  
Table 4 compares the Fitness Distance Correlation (FDC) [8] 
statistic for discrete (D) and continuous (C) HIFF1. In this table, 
the FDC statistic measures the correlation between fitness values 
                                                 
1 FDC may not be a completely reliable measure for level search 
difficulty. We have found a counter example where per-level FDC values 
approach 0 at higher levels, but the problem is easily solved by “ideal” 
RMHC2. Further investigation is underway. 

at a level and hamming distances to the closest global optimum. 
FDC values closer to 0 indicate increased search difficulty while 
FDC values closer to -1 indicate decreased search difficulty.  For 
HIFF-C, search is easier at higher levels. In contrast, the FDC 
values for HIFF-D (N > 4) first move away from 0 then come 
back towards 0. 

Table 4. FDC values 
HIFF-D HIFF-C Level N=8 N=16 N=8 N=16 

4 - -0.0287 - -0.6770 
3 -0.2877 -0.2463 -0.6972 -0.4787 
2 -0.5403 -0.3789 -0.4930 -0.3385 
1 -0.3486 -0.2394 -0.3486 -0.2394 

Aggregate -0.4690 -0.3281 -0.5712 -0.4199 
 
3. DNA TRANSPOSITION  
The structure and content of the natural genome is not fixed and is 
not altered solely by nucleotide substitution during recombination 
and mutation. The genome is plastic, to allow an assortment of 
gene expression mechanisms. In this paper,  we focus on the 
structural aspect of genome plasticity, that is the physical 
rearrangement of genes in a genotype without increasing or 
decreasing the number of genes in the genotype. In nature, one 
such mechanism is conservative DNA-only transposition [1]. 
 There are two broad types of transposition: retro-transposition 
and DNA only transposition. In retro-transposition a stretch of 
DNA undergoing transposition, the transposon, is copied and the 
copy is inserted back into the DNA at another location. DNA only 
transposition may be conservative or replicative but we only 
consider the conservative case in this paper. Conservative DNA 
only transposition is a cut and paste operation: a transposable 
element is removed from the DNA and inserted back into the 
DNA at another location. A conservative DNA only transposition 
does not change the composition of a genotype, that is the number 
of copies of genes in a genotype is not altered.  The target site for 
a transposon is less specific than its donor site. At the donor site, 
the boundaries of a DNA only transposon is bracketed by a pair of 
DNA sequences called inverted repeats which indicates to the 
transposase enzyme where to cut and rejoin the DNA. The exact 
purpose of transposition is not known although it is recognized as 
an important source of genetic diversity and it plays an important 
role in the immune system. 
 Figure 2 illustrates our implementation of the transposition 
mechanism. The start position denotes the starting position of a 
transposon in a genotype. The length specifies the size of a 
transposon. The start and length variables are integers randomly 
  

1. Before transposition. The 
transposon, segment between start 
(2) and start+length (2+2) is 
shaded. 

1 1 1 1 0 0 1 1  

2. After the transposon is cut from 
the genotype and the remaining 
pieces of the genotype are joined. 

1 1 0 0 1 1  

3. After transposition. The 
transposon is inserted back into 
the genotype at a random location. 

1 1 0 1 1 0 1 1  

4. The shaded segment is the 
transposon if transposition were to 
occur immediately after step 3.  

1 1 0 1 1 0 1 1  

Figure 2. Steps 1 to 3 illustrate a transposition. 
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chosen from [0, half of the genome length] and remain fixed for 
the life of a genotype and is inherited un-mutated by the progeny 
of a genotype. Having identified the transposon, this mobile 
segment is removed from the genotype and the remaining two 
segments of the genotype are joined. A random position in the 
now smaller genotype is chosen and the transposon is inserted 
into that position, expanding the genotype to its original size. 
 
4. THE RMHC2-T ALGORITHM 
RMHC2-T is RMHC2 with transposition. The RMHC2-T 
algorithm is: 
1. Start with a fully specified (every loci has a value of either 1 

or 0) genotype.  
2. Initialize start and length variables per section 3.  
3. If a T event is triggered, perform T on the genotype, calculate 

the new phenotype, and go to step 7. Otherwise go to step 4. 
A T event is triggered when the random integer selected from 
[1, Pt] matches a pre-defined integer within the range. Pt is a 
parameter of the RMHC2-T algorithm. 

4. Make a copy of the genotype. Generate k and complement k 
random bits in the clone genotype. k is  a random integer from 
[1, Pm × N]. Pm is a real number from (0, 1] and a parameter 
of the RMHC2-T algorithm. 

5. Compare original and clone phenotypes using the multi-level 
selection scheme. Except for the multi-population model 
(section 6.1), RMHC2-T always uses the “ideal” sieve 
(section 2.2) in this paper.  

6. If the clone phenotype is fitter, replace the original genotype 
with the clone genotype. Otherwise, discard the clone 
genotype. 

7. If an optimal genotype has not been found and the pre-
determined number of function evaluations has not been 
performed, go to step 3. Otherwise return the current genotype 
as the solution. 

Note that in RMHC2-T, transposition is performed directly on the 
original genotype and circumvents the multi-level selection step. 
Transposed genotypes are exposed to the sifting mechanism of 
selection in populations (section 6).  
 To see the effect of transposition on RMHC2, we refer back 
to the fitness saddle problem in section 2.3 (Table 3). To progress 
from genotype 243 towards 255, an effective transposition would 
be one that splits the pair of zeroes since only 1-bit mutation 
moves are possible. RMHC2 does not allow 243 to move directly 
to 251. Neither would RMHC since the aggregate fitness of 251 is 
lower than 243. Suppose 243 is transposed to 221. The genotype 
suffers a fitness loss from this transposition. However, now it is 
possible for RMHC2 to move to 251 and from there to 255. This 
is what we mean by losing actual fitness but gaining potential 
fitness. However, it is also possible that once at 221, RMHC2 
moves to 203 and then to 195. Now there are just as many zeroes 
as ones in the genotype and the search has moved further away 
from 255. The multi-level selection scheme of RMHC2 helps 
control this waffling but does not eliminate it. Transposition and 
RMHC2 is more efficient than transposition and RMHC1 (section 
5). RMHC1 is RMHC2 without the multi-level selection scheme. 
 
5. EXPERIMENTS  
Hypotheses for the experiments in this section are: 
(i) That transposition helps RMHC2 solve the discrete HIFF 
problem.  

(ii) That RMHC2-T is more efficient than RMHC1-T. RMHC1-T 
is RMHC2-T without multi-level selection, that is aggregate 
fitness values are compared instead of phenotypes.  
(iii) That transposition is a distinct kind of permutation. We 
compare transposition with random bit shuffling and with bit 
inversion.  
 Preliminary tests confirm that increasing mutation rate, using 
macro-mutation where the bits to mutate are consecutively 
located, using RMHC2 but with a selection scheme that only 
accepts mutations that do not decrease the fitness value of any 
level, and combinations thereof are not solutions. Table 5 lists the 
parameter values used in the experiments. 
 

Table 5. RMHC2-T experiments. 
Parameter Value 
Problem size, N 64 128 
Number of runs 30 30 
Maximum evaluations 500,000 1,500,000 
Mutation rate (Pm)  0.0625 0.03125 
Transposition (Pt)  1000 1000 

 
Table 6 summarizes the results of the experiments. On the 64-
variable problem, RMHC2 did not find a global optimum in any 
run while RMHC2-T found a global optimum in all 30 runs. This 
confirms the first hypothesis: that transposition helps RMHC2 
solve the discrete HIFF problem.    
 RMHC1-T was just as successful at finding a global optimum 
as RMHC2-T on the 64 variable discrete HIFF problem. 
However, RMHC1-T took significantly more evaluations than 
RMHC2-T. The probability that there is no difference between the 
average number of evaluations for RMHC2-T and for RMHC1-T 
using a 1-tailed T-test is less than 6% with 58 degrees of freedom. 
This confirms the second hypothesis. 
 

Table 6. Results for HIFF-D. 
N=64 N=128 

 RMHC2 RMHC2-T RMHC1-T RMHC2-T 
Times found 0/30 30/30 30/30 30/30 
Avg. evaluations 
(std. dev.) - 105,590 

(91,398) 
148,589 

(117,574) 
510,772 

(416,920) 
Median evals - 65,353 89,156 389,593 

 
We ran RMHC2-T with inversion and random bit shuffling in 
place of transposition. That is, in step 3 of RMHC2-T (section 4), 
instead of performing a transposition at T, an inversion or a 
random bit shuffle is performed. Inversion inverts the bits 
between start and start + length. For example, 1011 1011 with the 
middle 4 bits inverted is 1001 1111. A random bit shuffle 
rearranges the entire genotype. The inversion runs failed on the 
64-variable problem, but the random shuffle runs succeeded. So, 
we tested random shuffle on the 128-variable problem. On this 
larger problem, random shuffle was not successful while 
RMHC2-T has a 100% success rate. Thus the hypothesis that 
transposition is a distinct kind of permutation is confirmed on 
sufficiently large problems, based on search performance.  
 However, even on the 64 variable HIFF problem, difference 
between the quality of random bit shuffle and of transposition 
permutation is evident. Figure 3A shows the zig-zag pattern that a 
sample RMHC2-T run makes as it progresses through its search. 
A sample RMHC2-S run also makes a zig-zag pattern (Figure 
3B), but the magnitude of its fluctuations are larger than those in 
RMHC2-T. Further, there is a discernable leaning to the right 
(higher fitness) in RMHC2-T. There is little to no zig-zag pattern 
for RMHC2 (Figure 3A) and RMHC2-I (Figure 3B). Their 
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evolution come to a stand-still. Transposition performs better 
because although it permutes the genotype it also preserves the 
physical linkage between bits in a transposon. Random shuffling 
is disruptive and too permissive of waffling. Inversion is not  
disruptive enough.  
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Figure 3A. RMHC2 and RMHC2-T sample runs. 
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Figure 3B. RMHC2-S and RMHC2-I sample runs. 

 
6. TRANSPOSITION IN A POPULATION 
In section 1, we mentioned that with continuous HIFF and 
RMHC2, it was possible to evolve both genotypes and the sieve 
simultaneously and find a global optimum. Does this apply to 
discrete HIFF and RMHC2-T? Further, how would a recently 
transposed genotype survive selection in a population? In this 
section, we outline two population models to answer these 
questions. The first model is a multi-population model [2] and 
addresses both questions. This model is similar to the one used for 
continuous HIFF and RMHC2 [10] but the criterion for 
comparing demes is changed and the transposition operation is 
added. The second model is a transposition and crossover-only 
genetic algorithm with fitness-proportionate selection and 
generational replacement (CGA-T). CGA-T addresses the second 
question. 
 
6.1 The multi-population model  
In this model, subpopulations of genotypes are placed in a two-
dimensional grid with periodic boundaries. Genotypes within a 
subpopulation do not interact with each other and subpopulations 

have minimal interaction with each other. There is no exchange of 
genetic material between genotypes. Each genotype has its own 
start and length values. Each cell in the grid has its own sieve, 
randomly generated at first. Genotypes evolve using RMHC2-T 
with the current sieve in their respective cells. After some number 
of generations, subpopulations compare their fitness with that of 
their neighbours. The fitness of a subpopulation is the average 
aggregate fitness of its genotypes. The most fit subpopulation 
replaces the least fit subpopulation in a Moore neighbourhood. 
During this synchronous extinction-recolonization event, the 
genotypes and their start and length values, and a variant of the 
sieve of the colonizer cell replaces those in the colonized cell. A 
sieve is varied by swapping two randomly chosen elements. 
 Table 7 lists the parameter values for our multi-population 
experiment. The balance between transposition rate and number 
of generations is important. After a transposition, a genotype 
needs time to realize its potential fitness. If this maturation time is 
too short or transposition occurs too frequently, the genotype will 
most likely pull the average fitness of its deme down and be in 
danger of extinction.  
 

Table 7. Parameter values  
Parameter Multi-population CGA 
Maximum evaluations 3,000,000 500,000 
Number of runs 30 30 
Problem size, N 128 128 
Population size - 128 
Population size per deme 3 - 
Number of demes 4 x 4 - 
Mutation rate (Pm)  0.03125 - 
Crossover rate (Px) - 1.0 
Transposition (Pt)  500 2 
Number of generations 500 - 

 
The multi-population model found a global optimum 28 out of 30 
times (93%) and used an average of 1,648,875 with a standard 
deviation of 451,230 and a median of 1,608,231 evaluations.  
 
6.2 The CGA model 
CGA is a single-point crossover-only genetic algorithm with 
fitness-proportionate selection and generational replacement. 
Selection in CGA is base on aggregate fitness. Each crossover 
event produces two offspring for the next generation. In CGA-T, 
separate T events may be triggered for either or both offspring, in 
which case the target offspring genotype is transposed. T is 
triggered in the same manner as in RMHC2-T (section 4). 
 Table 7 lists the parameter values for our CGA experiments 
on discrete HIFF. CGA-T was 100% successful and used an 
average of 29,237 evaluations with standard deviation 12,515 and 
median 25,072 while none of the CGA runs were successful. The  
variances of CGA populations quickly decreased to zero, while 
those of CGA-T remained above zero. Maintaining population 
diversity is one of the key components of a successful genetic 
algorithm application. Previous techniques used on the HIFF 
problem such as deterministic crowding required large 
populations in the order of thousands to succeed [15]. The 
population size for CGA-T is small in comparison.  
  
From the experiments in this section, the answer to the first 
question is yes. The answer to the second question is cooperation. 
In the multi-population model, individuals in a deme help each 
other to survive a replacement event but do not exchange genetic 
material with one another. In the genetic algorithm model, 
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individuals cooperate by exchanging their genetic material via 
single-point crossover.  
 
7. RANDOM DRIFT 

In sections 5 and 6 we have observed the beneficial effects of 
transposition on the discrete HIFF problem in individual and 
population base search. Does transposition also benefit the 
discrete HXOR problem? The experiments in this section are 
designed to answer this question. 
 We ran RMHC2-T with the parameter configuration in Table 
6 (section 5) on discrete HXOR with 64 variables. None of these 
runs were successful. Figure 4 depicts one sample run. Some 
progress is made towards higher fitness values early in the run but 
further along, there is no discernable tilt to the right in Figure 4, 
unlike Figure 3A.  
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Figure 4. RMHC2 and RMHC2-T sample runs. 

  
Results for CGA-T on discrete HXOR using the configuration in 
Table 7 were also dismal. Like HIFF, transposition helped a CGA 
population maintain diversity. But unlike HIFF, population 
diversity did not result in an optimal genotype being found. 
 We attribute these failures to the inability of HXOR to exploit 
random drift. In the HIFF problem, the arbitrary accumulation of 
ones (zeroes), will eventually lead to a global optimum. In the 
HXOR problem, it is not enough to accumulate equal number of 
ones and zeroes, which is easily done, but the ones and zeroes 
need to be placed in a non-trivial order to form a global optimum. 
The asymmetry between HIFF and HXOR due to difference in 
their optimal genotype strings has been witnessed elsewhere [17]. 
Appendix A gives an algorithm to produce optimal HXOR 
genotypes. This description is not as simple as append ones or 
zeroes to create optimal HIFF genotypes, and gives some inkling 
that genotypes satisfying the constraints of the HXOR problem 
are more complex than optimal HIFF genotypes. 
 
8. A HYPOTHESIS 
The experiments so far suggest the following hypothesis: that 
transposition is beneficial on problem-algorithm pairs with local 
optima and random drift. In sections 8.1 and 8.2, we test 
transposition on problem-algorithm pairs with random drift but 
with little to no local optima. In section 8.3, the hypothesis is 
tested on non-hierarchical decomposable problems. 

8.1 RMHC2-T and HIFF-C 
RMHC2 performs well on HIFF-C (Table 8) indicating an 
absence of problematic local optima for RMHC2 on HIFF-C. 
However, increasing the frequency of transposition slows down 
RMHC2, as predicted by our hypothesis. The probability that 
RMHC2-T with a Pt value of 50 is just as efficient as RMHC2 is 
less than 8% using the 1-tailed T-test with 58 degrees of freedom. 
The mutation rate used in this experiment is 0.0625, N =128 and 
the maximum number of evaluations is 10,000. 
 

Table 8. Results of RMHC2 and RMHC2-T on HIFF-C. 
 RMHC2 RMHC2-T(Pt=500) RMHC2-T(Pt=50)
Times found 30/30 30/30 30/30 
Avg. evaluations 
(std. dev.) 

3096 
(1148) 

3326 
(1226) 

3532 
(1206) 

 
8.2 GIGA and HIFF-D  
The Gene-Invariant Genetic Algorithm (GIGA) [3] preserves the 
initial distribution of bits throughout a run. So there is no loss of 
genetic diversity. In our GIGA, crossover is two-point, population 
size is 64, maximum evaluations is 100,000, the population is kept 
sorted and parent selection is by rotating through the population 
from fittest to least fit with the least fit end connected to the fittest 
end and mating every consecutive pair of genotypes. Each 
crossover produces a pair of offspring. Each offspring may be 
transposed. An offspring pair replaces their parents if the fitter 
offspring is fitter than the fitter parent (elitism).  
 

Table 9. Results of GIGA and GIGA-T on HIFF-D, N=128. 
 GIGA 

GIGA-T 
(Pt=50) 

GIGA-T 
(Pt=5) 

Times found 30/30 (100%) 28/30 (93%) 10/30 (33 %)
Avg. evaluations 
(std. dev.) when found

59,602 
(12,532) 

66,140 
(16,669) 

73,981 
(16,507) 

  
From the results in Table 9, there are no problematic local optima 
for our GIGA on HIFF-D. When transposition is added, 
performance of GIGA deteriorates, as predicted by our 
hypothesis. This is because if only one offspring in a pair is 
transposed and the offspring pair is fitter than the parent pair, the 
initial distribution of bits will be disturbed. Hence the GA is not 
Gene-Invariant anymore and problem with diversity maintenance 
creeps in. 
 
8.3 Other Test Problems 
We performed other experiments similar to the ones in this paper 
on two Royal Road functions and on the One-Max problem. The 
Royal Road functions are R1 [5] where no bonus is given for 
combination of schema, and RX where we substitute the all-ones 
optimal string with a HXOR optimal string. There is no epistasis 
and no random drift effect in RX individuals. Unlike HIFF and 
HXOR, transposition does not change the actual or potential 
fitness of a One-Max genotype. But transposition most likely 
reduces the actual fitness of a Royal Road genotype. This 
reduction means that more bits are free to mutate in any direction. 
Thus transposition also reduces potential Royal Road genotype 
fitness. 
 As expected, transposition was not beneficial to RMHC on 
the Royal Road functions. Transposition was beneficial to CGA 
on R1, but not on RX. Also as expected, transposition helped CGA 
on One-Max. However, transposition did not impair the 
performance of RMHC on One-Max. Thus it is possible for  

283



 

Table 10. When does transposition help an evolutionary algorithm? Summary of findings. 

Problem Random drift 
Local Optima 
for RMHC* RMHC* 

Local Optima 
for CGA CGA 

Local Optima 
For GIGA GIGA 

HIFF-D Yes Yes Yes Yes Yes No No 
HXOR-D No Yes No Yes No - - 
HIFF-C Yes No No - - - - 
Royal-Road (R1) Yes No No Yes Yes - - 
Royal-Road (RX) No No No Yes No - - 
One-Max Yes No Neutral Yes Yes - - 

 
transposition to have a neutral effect. In general, the hypothesis is 
supported by these additional experiments. 
 
9. CONCLUSION  
Using an operation found in the natural genome, we have shown 
how a hill climber (RMHC2-T) and a genetic algorithm (CGA-T) 
can escape evolutionary dead ends. Table 10 summarizes the 
results of our experiments. Transposition had a positive effect on   
both individual and population base search techniques in the 
presence of random drift and epistasis. Epistasis creates local 
optima for RMHC individuals. The concept of epistasis can be 
extended to interaction between individuals, as is done in the 
NKC model [9]. Although the epistatic relationship between 
individuals in CGA is transient, local optima for a population can 
be created through inter-individual interactions of selection, 
recombination and replacement. These results support the notion 
that epistasis and genome plasticity have long-term evolutionary 
benefits under the right conditions. 
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12. APPENDIX A 
An optimal HXOR genotype of length N = 2n , n > 0, can be 
produced with the algorithm in Figure 5. A start_bit of 0 and 
num_levels of 2 produces optimal_genotype 1001. 
 
PROCEDURE: createHXOROptimum 
INPUT: num_levels, sb   //sb is start_bit, can be either 0 or 1 
OUTPUT: optimal_genotype 
BEGIN 
 to empty optimal_genotype, append sb, then append (1-sb) 
 FOR EACH i from 1 to num_levels-1 
  FOR EACH element e in optimal_genotype 
   IF (e is 0)  insert 1 to optimal_genotype before e 
   ELSE  insert 0 to optimal_genotype before e 
  END FOR 
 END FOR 
END 

Figure 5. Pseudo-code to create optimal HXOR genotypes. 
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