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ABSTRACT

This paper attempts to extend the XCS research by an-
alyzing the impact of information exchange between XCS
agents on classifier performance. Two types of information
are exchanged and combined to improve classification per-
formance. The first uncovers information contained in the
signal patterns of collections of Homogeneous XCS classi-
fiers. This information is used to determine which subsets
of the state-space the XCS can be expected to be accurately
classified. The second combines the results of XCS agents
that are each tasked to solve different portions of the orig-
inal problem. Results on the multiplexer (6, 11) indicate
that given accurate problem domain assumptions, the Col-
lective Behavior (CB-HXCS) method shows promise. Re-
sults show - at least in simulated multiplexer environments
- that the HXCS is able to solve a well defined problem with
less data than an individual XCS. This approach seems very
promissing in real-world applications where data is incom-
plete, expensive or unreliable such as in financial or medical
domains.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning - concept learning,
knowledge adquisition.

General Terms

Algorithms, Experimentation.

Keywords

Multiplexer, Information exchange, XCS, CB-HXCS, Vot-
ing, Classifier, Collective Behavior.

1. INTRODUCTION

The objective of this paper is to extend XCS research by
analyzing the impact of information exchange on classifier
performance. It is proposed that by analyzing the collective
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behavior of the classifiers it is possible to improve upon per-
formance over individual classifiers. The two main collective
learning questions to be addressed are:

1. Is it possible, based only on their collective signal pat-
tern, for a set of homogeneous XCS agents to deter-
mine which portions of a problem space they are best
able to solve?

Can global XCS performance be improved by solving
and combining smaller sub-problems?

The idea behind XCS is that the end product of combining
accuracy and a niche GA results in a complete and accurate
mapping of X x A => P from inputs and actions to pay-
off predictions. XCS evolves maximally general classifiers
subject to an accuracy criterion, so that the mapping gains
representational efficiency [5]. Due to space limitations de-
scription of XCS has been omitted. Refer to [6] for a full
review.

The classic paper entitled ” A Critical Review of Classifier
Systems” [7] gives a good summary of the unsolved problems
and new challenges that LCS faced in the late 80s. Since
then, there have been great accomplishments in theoretical
aspects (mapping performance and generalization), of XCS
solving a variety of single-step environments such as the
Boolean multiplexer and sequential environments (multi-
step) like the woods-type of problems.

In many problem domains, including the multiplexer, the
maximum number of dimensions in which an optimal rule
sits is often less than the dimensions of the state-space. In
the case of the multiplexer-6 problem the rules are sitting
in three dimensional subspaces across all six dimensions of
the state-space. If the state-space was partitioned in smaller
subspaces equal to the size of the maximum rule length, then
it might be possible to find each of the rules sitting in each
partition.

To solve the global problem, the results of each of the
lower level problems need to be combined. This can be done
by creating a hierarchy of XCS agents where agents at the
next level learn from the signals emitted from the agents at
the lower level. However, since the low-level agents are only
able to solve a portion of the environmental states, there
needs to be some mechanism for the agents to indicate to
the higher level agent when to be confident of the signal
accuracy. In order not to bias the result, this confidence
measure should be made at each step without the use of the
true classification.
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Figure 1: CB-HXCS Framework

2. THE MODEL

The CB-HXCS process is shown graphically in figure 1.
The environment is first partitioned in to smaller subspaces.
A base level agent is then assigned to each data partition.
Each agent is comprised of a fixed set of XCS micro-agents.
These micro agents are passed the same environmental state
at each time step. Each micro agent emits a classification
(action) signal. The signals are each treated as a vote for a
specific classification. The signal that receives the majority
(or plurality, for when there are more than two options) of
votes is designated as the aggregate signal for the agent.

2.1 Voting

This approach is based on the assumption that the best
expectation of an agent’s future result is the average value
over all possible runs of the agent. The majority rule is a
simple voting method that enables the collection of homo-
geneous agents to present a single classification signal. Not
only does the use of a set of micro agents enable us to aver-
age the results of the XCS, but it also enables creation of a
measure of how certain the group is of its vote.

2.2 Confidence

Along with the majority signal, the aggregate agent is
able to emit information about the competitiveness of the
vote. If it is assumed that movement away from the average
is because of stochastic events, then we may conclude that
the greater the vote differential, the greater the confidence
in the winning signal. For example, given an environmental
state, the likelihood that 100 micro-agents would all signal
']’ given that the true probabilities are equal (0.5), should
be quite low. Of course this does not mean that a larger
vote differential implies a class distribution that is radically
different from uniform. It might be the case that even with
a distribution of 0.55 and 0.45, all agents would select the
class that occurred with a probability of 0.55.

In [4], the author argues that successful ensemble classi-
fiers require that the component classifiers have error rates
below 0.5 and be uncorrelated with one another. This, how-
ever, assumes that the classification rate is consistent over
the underlying input data’s distribution. If an agent is able
to gain a reflective capability about its own accuracy rate
through the level of classification consensus, then it may be
able to signal to other agents when it believes that is able
to classify a case well.
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Such an indicator can be constructed by categorizing sig-
nals that win with a vote margin over a predetermined thresh-
old. Higher voter margins of victory should be less likely
when the conditional probability of a class, based on the
environmental state, is the same as naive class probability.
When the environmental subspace is solvable, then the mar-
gin of victory should tend to be very large.

2.3 Combining Heterogeneous Agents

The aggregation of signals from homogeneous micro agents
to reduce classification variance is one way in which agents
can communicate across the social group. It is possible to
envisage situations where it would be advantageous for each
of the aggregate agents to pool their learning to improve
global classification. One can then construct a network of
meta agents (see figure 1) that combine the signals from
the lower level agents into a final classification signal. The
approach is a form of ensemble learning. Work by [4], [8],
and [1] has looked into different methods (bagging, boosting,
and stacking) of combining classifiers to produce a final meta
classifier. As with [3], the method employed here uses an on
line learning procedure, the XCS. This eliminates the need
for the various re-sampling methods needed for Bagging and
the hold-out samples needed for Boosting - (Boosting con-
structs the set of classifiers in a step-wise fashion, the classi-
fiers are dependent on the results of the previous classifiers,
a potential over-fitting problem).

The meta agent is displayed at the top of figure 1. The
Meta Agent treats the set of majority signals and confidence
indicators as its search environment. As with the base level
agents, the meta agent is comprised of a collection of micro
agents - the only difference between the two types is that
the meta agent only searches over the output of the base
agents rather than the original environment. The complete
process CB-HXCS process is

1. Partition the environment space (independent variables)
into smaller subspaces.

Expose the micro agents to the initial environmental
state from the appropriate partition

Collect each micro agent’s classification signal for the
given state.

Calculate the winning vote and the margin of victory
for each set collection of micro agents

Expose the majority signal and confidence indicator to
each appropriate meta agent collection.

Emit the final classification signal from the top level
meta agent.

The XCS agents (both the micro and meta agents) all
receive the appropriate reward value for their action only
after every agent in the network has emitted its classifi-
cation signal. This ensures that information about future
rewards does not leak into the system, which could lead to
over-fitting. The entire chain can be run in an on-line envi-
ronment without the need for out-of-sample testing.

One question that arises from the above approach is that
even if the CB-HXCS is able to perform at the same level as
the Single XCS on the full data set, why bother? The an-
swer is that for some problem domains the CB-HXCS may



be able to solve the problem with less data than the full
XCS approach and at the same time lends itself to a more
distributed computing model as presented in [3]. For prob-
lem domains where the marginal cost of data is high relative
to computation time then the CB-HXCS approach may be
useful.

In order to compare the learning rates and overall accu-
racy of the CB-HXCS to the XCS with full data access, 6
and 11 bit multiplex problems were both used. In addition,
we will compare the result of the CB-HXCS to the aggre-
gated agent results for each of the data partitions. Superior
performance from each of the higher level agents would in-
dicate that it is possible for agents to share information via
emission and confidence signals. Finally, a network without
the confidence measure is evaluated in order to determine if
the confidence measure improves the network’s performance.

3. IMPLEMENTATION

The implementation of the XCS was based primarily on
Butz’s XCS implementation in Java, version 1.0. This code
was developed at the University of Illinois Genetic Algo-
rithm Lab [2]. While this code provides basic XCS func-
tionality, minor modifications and extensions were needed
for the CB-HXCS method.

1. The environmental data is passed sequentially to the
XCS, rather than randomly selecting the state. This
ensured that each XCS in the network was evaluating
the same environmental state with respect to the other
XCS processes in the group

. The system was also altered so that even when the
XCS was exploring, the signal passed along to the vot-
ing process was always the exploit signal. The XCS
still runs the normal explore method for its own inter-
nal process

. Unlike the standard XCS, the CB-HXCS is sensitive to
the explore/exploit rate. The results use a decreasing
explore rate (rate; = .999 * rate;—1) - unless otherwise
noted

. A threshold parameter used to set the confidence sig-
nal has also been added. Values range between 0%
and 100%, with higher values indicating greater vote
margins. For simplicity, this was set at a fixed 80% for
all of the agents in each model

. The standard XCS parameters were all set to the de-
fault levels as per Butz’s implementation - with the
number of micro-classifiers set to 800

A common test environment for the XCS is the multi-
plexer. The multiplexer is a problem in which the first k
bits encode which of the remaining n-k bits contain the solu-
tion. For example, for a multiplexer-6 the bit string 001101’
would have a solution of '1’ as the two left-most bits 00’ rep-
resent the first, or right most bit of the string.

The multiplexer problem is one that can be separated into
smaller sub problems. The multiplexer-6 can be thought of
as four sub-problems of length three and the multiplexer-
11 can be broken down into eight sub problems of length
four. Of course the partitioning of the original environment
into sub problems is in effect a bias -or information- that the
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researcher introduces into the solution. For real-world prob-
lems the determination of the maximal rule length and the
decision of how to partition will often be based on assump-
tions about the problem domain, and may not be correct.
Assumptions about the reduced complexity of a problem
domain is roughly analogous to the selection of fractional
factorial designs, where the interactions of only a subset of
variables are considered.

The multiplexer-6 problem was modeled with a 4-2-1 agent
hierarchy. The four base level agents pair up and report to
one of two second level meta agents. These meta agents in
turn report to the final agent. Based upon knowledge of the
problem, the data was partitioned into four subsets. Each
partition included the first two bits plus one of the remain-
ing four bits. For example, partitionl would cover bits one
through three, partion2 bits one, two, and four, etc. The
multiplexer-11 problem was set up analogously. The data
was partitioned into eight subsets with an 8-4-2-1 agent hi-
erarchy.

Each of the first level meta agents receives the winning
classification and confidence signal from two of the low level
base agents. The meta agents therefore cover a four dimen-
sional state-space. The classification and confidence signal
of the two pairs of first level meta agents are in turn pre-
sented to the two second level meta agent and so on. The
final agent presents the final classification.

For the multiplexer problem it is possible to know a priory
how to partition the data. In many cases this will not be
so clear. If only the maximal rule length is assumed, and
there is no other information to partition the data, then the
number of base level agents needed to span all possible rules
of that length grows to n!/(r!*(n-r)!), where r is the maximal
rule length and n is the number of original dimensions. For
the multiplexer-6 problem, given a maximum rule length of
3, then the number of base level agents needed to ensure
covering the all potential rules is 20.

In order to cover all possible rules of length four (without
making any additional assumptions about partitioning) in
the multiplexer-11 problem, there needs to be 11!/(4!*(11-
4)1)(330) base level agents. As the size of the environment
increases — and the closer the maximal rule length is to n/2
— the number of agents needed to cover all potential rules
increases.

One possible trick to reduce the agent quantity is to slightly
increase the size of each partition. For example, a six dimen-
sional partition includes 15,(6!/(4!*(6-4)!), four dimensional
sub spaces. Because each of the four dimensional subspace
will sit in more than one of the six dimensional partitions,
the 330 agents in the multiplexer-11 problem can not be
whittled down to just 22. To have at least one example of
each four dimensional combination, a minimum of 40 base
agents is required. To test if this approach has merit, a
40-8-2-1 model is constructed and run along with the other
tests.

4. RESULTS

The expectation that the voting signal patterns should
be different for ’learnable’ and ’unlearnable’ regions of the
search space appears to in fact be the case. The voting
patterns of the base level micro agents have been combined
and shown in figures 2 and 3. Figure 2 displays the frequency
of cases by vote percentage of classifying a case as a ’1’ in
the unlearnable regions of the space. Notice how the pattern
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tends to follow a normal distribution with the center at 50%
and with few cases out in the tails. This stands as a sharp
contrast to the voting patterns in the 'learnable’ regions as
seen in figure 3. Almost all of the cases are sitting out in
the tails with margins of victory at or above 80%. These
results suggest that cases with a classification consensus will
be more likely to fall into a region of space that the agent is
able to accurately classify.

Figure 4 displays the results for all 15 agents used by
the CB-HXCS in the multiplexer-11 problem. The graphic
shows that the agents of each higher level area are able to
learn from and outperform the agents under them in the
hierarchy.

The dotted lines at the bottom of the chart display the ac-
curacy rates of the base level agents. The expected accuracy
for these agents is 56.25%. This is because approximately
12.5% of the cases should always be accurately classified
by each of the agents, with the remaining 87.5% correctly
assigned 50% of the time. The four series above the base
agents are the results of the first level meta agents. Each
meta agent using only data emitted from two of the base
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Figure 4: Multiplexer-11: CB-HXCS All Agents

level agents, is able to improve the accuracy results to ap-
proximately 62%. The two agents at the penultimate level
are able to achieve close to 75% accuracy. The agent at the
top of the hierarchy reaches 99% accuracy after only 2,500
observations and 100% accuracy after 4,000 observations.

To see how the CB-HXCS compares to the single XCS
approach, The multiplexer 6 and 11 problems are run with
both methods. The CB-HXCS is able to solve the multiplexer-
6 problem after around 2,500 observations (see figure 5).
The Full XCS model reaches 100% accuracy after only 300
observations. It is not surprising that the simple XCS out-
performs the more complicated CB-HXCS model in small
problem domains.

To determine if the confidence measure improved perfor-
mance, a model was included that only emitted the majority
signal to the agents in the next level of the network. The
performance of this model on the multiplexer-6 problem was
quite poor. The average accuracy for the final 5,000 obser-
vations was only 64% with a standard deviation of just over
5%. This result supports the hypothesis that the inclusion
of the confidence signal significantly improves the overall
results of the network.

In the larger multiplexer-11 problem the CB-HXCS is able
to outperform the full XCS model. Both the CB-HXCS and
the full XCS are shown in figure 6. The single XCS reaches
full accuracy at 9,000 observations compared to only 4,000
for the CB-HXCS model.

In addition to the models with expert guided partitions,
two additional models were constructed that make no as-
sumptions of how to subset the data -the full combinatorial
and the reduced combinatorial partitions. The results of
the full combinatorial CB-HXCS model in the multiplexer-6
problem are shown in figure 5. Given only that the length of
the largest needed rule is three, the full combinatorial CB-
HXCS is able to solve the multiplexer-6 problem using only
slightly more data observations then the expert partitioned
CB-HXCS model.

The reduced combinatorial partitioning was applied to the
multiplexer-11 problem. The results, shown in Figure 6, are
mixed. The model is unable to consistently solve the multi-
plexer with 100% accuracy, even though it does on occasion
reach 100%. It does, however, reach an average of over 98%
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accuracy. In addition, it reaches 90% in only 2,500 observa-
tions, compared to only 80% at that step for the full XCS
(due to the greater complexity of this model, the exploit rate
parameter was decreased to (rate; = .9997 * rate;—1)).

5. CONCLUSIONS AND FUTURE WORK

The application of the CB-HXCS to the multiplexer data
generated the following conclusions:

1. Voting margins can be predictive of accuracy rates for
the XCS over different partitions of the problem space

. It is possible for the CB-HXCS method to solve clas-
sification problems to a similar degree of accuracy as
an XCS with full access to the environmental data

. In certain situations, the CB-HXCS uses data more
efficiently, solving classification problems with far less
data

Voting patterns of homogeneous learning classifiers can
provide information about the ability of the classifier to ac-
curately classify a given state. This reflexive capability has
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also been shown to improve agent communication by en-
abling the XCS agent to signal to the network when it be-
lieves that it is able to make sound classifications. The hier-
archical network provides a method to reassemble the results
of the sub problems in order to solve the global problem.
The improved agent signaling allows for efficient communi-
cation with in the network.

Both of the multiplexer problems were solved by the CB-
HXCS. Not surprisingly, at the larger task, the CB-HXCS
outperformed the full XCS method, if performance is mea-
sured in the quantity of data consumed. As the relative size
of the original environment increases with respect to the
partitions, it is expected that the CB-HXCS will improve
its relative performance.

There are drawbacks of the CB-HXCS method:

1. It requires that the problem can be separated into
smaller subproblems. For problems with rules that
require the use of all of the dimensions to classify, the
CB-HXCS is likely not to be appropriate.

Another practical problem is that while it is possible
to solve the global problem by adding the results from
smaller subspaces, the total number of agents needed
balloons as the original dimension increases. If only
the maximal rule length is assumed and there is no
other information to partition the data, then the num-
ber of base level agents required grows to n!/(r!*(n-r)!),
where r is the maximal rule length and n is the num-
ber of original dimensions. In situations were data
acquisition is relatively expensive it may be appropri-
ate to solve the problem using the full combinatorial
approach. A possible way around the full combinato-
rial approach is to trade off a ’small’ increase in parti-
tion size so that fewer agents are required to span all
possible rules of a given length. Our early results are
promising but still need further investigation. How-
ever, even the 8-4-2-1 network for the multiplexer-11
problem required the use of 3,015 (15*%201) individual
XCS processes.

. The interpretation of the learned rules is not as clear
as in a standard XCS. Not only are the rules based on
the network hierarchy, but there are many classifiers
per agent (one set per micro agent).

Future work will focus on larger and more diverse problem
domains, the interplay between the various XCS parameters,
and the possible application of the to multi-class problems.
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