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ABSTRACT
The phenomenon of particle bursts, a well-known feature of
PSO is investigated. Their origin is concluded to lie in mul-
tiplicative stochasticity, previously encountered in the study
of first order stochastic difference equations. The work here
demonstrates that bursts contribute to fattening of the tail
of the particle position distribution and that these tails are
well described by power laws. It is argued that recombinant
PSO, a competitive PSO variant without multiplicative ran-
domness, is burst-free.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search

General Terms
Algorithms

Keywords
Particle Swarm Optimisation, Theory

1. INTRODUCTION
The particles in a Particle Swarm Optimisation (PSO) [4]

simulation undergo a guided flight through a search space
of solutions. The aim is a successful optimisation of a given
objective function f . Each particle i in the swarm has dy-
namic variables position and velocity, ~xi and ~vi, and a mem-
ory ~pi of a past position visited. Furthermore, each particle
is embedded in a social, rather than spatial, neighbourhood
Ni of informers. The algorithm is made of two essential
steps: particle movement and memory update. Particles
guide each other by means of the accelerations that govern
position update. These accelerations are towards the best
memory(s) of informers within Ni. Interaction between the
particles is therefore mediated by the network, and not by
direct interaction between the particles themselves. Despite
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the simplicity of the scheme, the algorithm is effective over
the standard benchmark problems and has increasing num-
bers of real-world applications. However, little is known
about how a PSO achieves its results.

Algorithm 1 canonical PSO

0. initialise swarm
FOR EACH particle i

randomise ~vi, ~xi, set ~pi = ~xi

FOR EACH particle i
1. find neighbourhood best

~pg(i) = arg min(f(pj), j ∈ Ni)
FOR EACH dimension d

2. move particle
F (p) : xid ← xid

3. update memory
IF f(~xi) < f(~pi) THEN

~pi ← ~xi

END
END

PSO is summarised in Algorithm 1. The dynamic rule
F (p) for a single particle is:

�
vid(t + 1) = wvid(t) +�K

j=1 Φj(t)(pjd − xid(t))

xid(t + 1) = xid(t) + vid(t + 1)
(1)

The sum in Eq. 1 is over K informers pi and for each each
dimension d. In standard PSO [2], K = 2 and pi and pgi

are the personal and neighbourbood best positions and

Φ1,2 = φ1,2u1,2 (2)

where φ1,2 are ‘acceleration’ constants and u1,2 ∼ U(0, 1)
are random numbers drawn from the uniform distribution
on the unit interval. This ‘inertia weight’ (IW) formulation
of PSO [18] derives from the parameter w which imitates
inertia in the sense that it weights the tendency to move
in a straight line at constant speed (w = 1) to the ten-
dency to move erratically about the attractors Φ. Other
formulations of PSO include Kennedy and Mendes’ [8] fully
informed particle swarm (FIPS), wherein a particle is in-
fluenced by K > 2 neighbours, Φj = 1

K
φjuj and the ‘con-

stricted’ Clerc-Kennedy (CK) swarm [3] which is equivalent
to Eq. 1 with the identification χ = w, φ1,2 = χφCK

1,2

As mentioned, surprisingly little is known about how the
method actually achieves its results. The complete model

2613



is very difficult to analyse due to the stochasticity of the
particle dynamics, and the relationship between this dy-
namics, the social network, and the underlying objective
function. Progress can, however, be made with simplified
models. Two stages of approximation may be considered:
particle decoupling and the removal of stochasticity.

Particle decoupling renders the particles non-interacting,
so that no memory update happens at step 3 of the algo-
rithm. This state of affairs can effectively occur in the full
interacting PSO when the swarm reaches a ‘stagnant’ con-
figuration whereby further improvement of any pi is impos-
sible, or at least very unlikely. In this case the dynamics
simplify to d independent update rules, so only the one-
dimensional case needs to be considered. However, even the
decoupled system is difficult to study. This is due to the
stochastic nature of F (p).

However, an even simpler model, a ‘bare bones’ appprox-
imation to the decoupled system can be employed [6]. This
replaces F (p) by x(t + 1) = N(p, x(t)) where N is a given
probability distribution, for example, a Gaussian, or a Levy.
Indeed, a bare bones, velocity-free, formulation can be con-
sidered as an effective PSO in its own right: comparable
performance to canonical PSO over a standard suite of func-
tions has been demonstrated for the Levy distribution [16].
A recent theoretical analysis of bare bones PSO has been
given in [17].

Another approximation after decoupling, but retaining ve-
locity, can be considered by the replacement of the random
numbers uj by fixed constants u. This removes stochastic-
ity and renders the rule F (p) amenable to stability analysis
using established techniques for deterministic equations. In
fact this is the chief theoretical result on PSO dynamics to
date.

A summary of stability conditions for various formula-
tions of PSO under the fixed-u approximation is presented
in the following section. These results are important for
the subsequent analysis developed in this paper. Section 3
presents a series of experiments which reveal power law tails
of particle position in decoupled PSO. Section 4 introduces
multiplicative stochasticity and power law tails in first or-
der processes. These results are generalised to second order
SDEs and applied to PSO. Section 5 discovers that recom-
binant PSO will not be subject to bursting since it only has
additive stochasticity. This is intriguing because PSO-DR
is remarkably competitive.

2. ANALYSIS OF NON-STOCHASTIC PSO
After decoupling, we only need to consider a single particle

in one dimension, so particle labels i will be dropped. By
virtue of v(t) = x(t)− x(t− 1), Eq. 1 can be rewritten as a
stochastic second order difference equation (DE):

x(t + 1) + a(t)x(t) + bx(t− 1) = c(t) (3)

with �
��
��
a(t) = �

j
Φj(t)− w − 1

b = w

c(t) = �
j
Φj(t)pj

(4)

where the parameters a and c are stochastic variables be-
cause of the presence of random numbers in Eq. 2. (However
they are not independent because the same random numbers
u1 and u2 appear in a and c).

First order stochastic difference equations (SDEs) and
constant parameter first and second order DE’s have been
studied by many authors in a number of domains. A con-
stant parameter second order difference equation, a(t) = a,
c(t) = a, Φ(t) = Φ is obtained by replacing the random
variables u1,2 by a constant u. Stability conditions can then
be found by substituting the trial solution x = λt into Eq.
3 and considering roots of the resulting characteristic equa-
tion λ2 + aλ + b = c (see for example, [5]). Stability then
requires |λ| < 1. Complex, and therefore oscillatory, solu-
tions are found if

�
0 < b < 1

a2 < 4b
(5)

and stable real solutions for�
|a| < 1 + b

a2 ≥ 4b
(6)

The stability conditions can be combined:

�
|b| < 1

|a| < 1 + b
(7)

In terms of PSO parameters w and Φ (assumed constant)
this gives

�
|w| < 1

0 < �
j
Φj < 2(1 + w)

(8)

In order to relate these stability conditions to the sto-
chastic model Eqs 3 and 4, a number of authors have sug-
gested replacing the random variable u1,2 by its maximum,
i.e. u = 1 [11], [22] [3]. Certainly this should ensure that a
sequence of large ui’s would not constitute temporary insta-
bility, although it cannot guarantee very large fluctuations
(see below). An alternative approach due to Poli [14] is to
replace u1,2 by the expected value, < u >= 1

2
, and consider

expectations of first and second moments, leading to a sta-
bility relation for the mean and variance of x. The upper
bound for u = 1

2
on the acceleration parameters φ is twice

the u = 1 bound.
Standard PSO is implemented with equal acceleration pa-

rameters and K = 2 so that φ1 = φ2. Defining φ1 + φ2 = φ,
the dynamics for the inertia weight (IW) and Clerc-Kennedy
(CK) formulations is

IW : v(t + 1) = wv(t) +
φIW

2
[u1(pi − x(t)) + u2(p2 − x(t))]

(9)

CK : v(t + 1) = χv(t) + χ
φCK

2
[u1(pi− x(t) + u2(p2 − x(t))]

(10)
Eq. 8 gives, at u = 1,

0 < φ
IW

< 2(1 + w) (11)

0 < φ
CK

<
2(1 + χ)

χ
(12)
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The CK condition for complex eigenvalues and oscillation,
a2 < 4b becomes, a = χφ, b = χ, becomes

�
|χ| < 1

1 + 1
χ
− 2

√
χ

< φCK < 1 + 1
χ
− 2

√
χ

(13)

In order to simplify the choice of χ and φCK , Clerc and
Kennedy suggest a single relation φCK = φCK(χ),

φ
CK =

1

χ
+ χ + 2 (14)

which can be easily seen to satisfy Eq. 13. This relation
is usually inverted in the literature,

χ
CK =

2

φ− 2 + �φ2 − 4φ
, φ > 4 (15)

and a common choice is φCK = 4.1, χ ≈ 0.73. As φCK →
4, χ → 1 and the system becomes unstable, and as φCK

grows from 4, χ decreases from 1 and the system is increas-
ingly damped. In terms of the inertia weight formulation,
these parameters correspond to w ≈ 0.73 and φIW ≈ 3.0.

Many trials of PSO have found that best performance
over a suite of test functions is attained at φ close to u = 1
instability. The reason behind this can be elucidated by
considering the statistical distribution of x(t). This is the
subject of the next section.

3. PARTICLE DISTRIBUTION
It is known that decoupled PSO exhibits bursts of out-

liers [7]. These are temporary excursions of the particle to
large distances from the attractors. A burst will typically
grow to a maximum and then return through a number of
damped oscillations to the region of the attractors. Figure
1 shows the development of a spectacular burst for the IW
system defined by Eq. 9 at w = 0.75, φ = 3.0. (Henceforth,
unless specified otherwise, only the IW formulation will be
considered, and the suffix IW will be dropped.) The par-
ticle is close to the u = 1 instability condition since, from
Eq. 11, φmax = 3.5. In this simulation and for all others
described in this section, x(1) and x(2) are random starting
positions between the two fixed attractors, p1 = −0.5 and
p2 = 0.5. Figure 1 shows a burst of two orders of magnitude,
as measured in units of the intrinsic scale |p1 − p2|.

Figure 2 shows the frequency N of particle distance r = |x|
for the same system as Fig. 1 for a run of 106 iterations.
A logarithmic scale (all logs in this paper are to base 10)
has been used for the y-axis so that the infrequent but large
bursts are visible on the plot. For this single run, the mean
distance was 0.747 (standard deviation 1.05) and all dis-
tances are in the interval [1.01 × 10−6, 105]. Many updates
are therefore over very small distances from the origin, which
is the fixed point <c>

1+<a>+b
of the constant parameter DE.

Although the standard deviation is of the order of the at-
tractor separation, r can range over 8 orders of magnitude.

Bursts would be expected to fatten the tail of the par-
ticle distance distribution p(r) when compared to distrib-
utions with exponential fall-offs such as a Gaussian. Evi-
dence for possible power law fattening of the distribution
tail, p(r) ∼ r−α, where p(r)dr is the probability of a par-
ticle at distance r would be revealed in a plot of the loga-
rithm of the cumulative distribution function, P (r), where

0 50 100 150 200 250 300 350 400 450 500

−100

−50

0
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100

w = 0.75, φ = 3.0
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Figure 1: A burst of outliers in decoupled PSO
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Figure 2: Frequency N of particle distances r from

the origin for 106 iterations of decoupled PSO

−8 −6 −4 −2 0 2 4
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(r)

lo
g(

P
(r

))

w = 0.75, φ = 3.0

Figure 3: Cumulative probability distribution P ver-

sus particle distance r from the origin. The plot
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Figure 4: Cumulative probability distribution of

particle distances r for various values of acceleration

parameter φ

P (R) = prob(r > R). A cumulative plot (also known as
a rank/frequency plot [23]) reduces sampling errors in the
tail of the plot, even with logarithmic binning [9]. A relation
p(r) ∼ r−α corresponds to P (R) ∼ r1−α and a plot of log(P )
against log(r) would show a straight line with gradient 1−α.

Figure 3 shows such cumulative distributions for 50 runs
of 105 iterations, once more for the decoupled PSO defined
by w = 0.75, φ = 3.0, p1,2 = ±0.5, x(1), x(2) = U(p1, p2).
All runs have been plotted on this figure to give an idea of
the deviations between runs. The straight portion in Fig. 3
is evidence for a power law.

Figure 4 shows cumulative probability distribution plots
for four values of φ. This data is collected over 50 runs
of 106 iterations for each value of φ. Each line shows a
straight central part. The lines curve inwards towards the
end of the sample where probabilities are small (< 10−5)
and there are just a few events. Once more a large part of
the distribution is concentrated in the region between the
attractors, r < 1. The power laws become established by
r ≈ 1.0, the separation of the attractors. At φ = 4.0 the
power law is evident for some 4 orders of magnitude.

Putative power laws as revealed by log-log plots are hardly
distinguished from log-normal laws p(x) ∼ exp(−ln(x −
µ)2) over four or less orders of magnitude [9]. These plots
therefore only show that the tails might be modelled by a
power-law distribution. The underlying distribution could
be power-law or another distribution, such as the log-normal,
whose tail can be approximated by a power law over some
range.

Figure 5 plots the same data as Fig. 4 but over the inter-
val 10−4 < P (r) < 10−1 where the power laws are becoming
established. For clarity, every 1000th r in this range has
been plotted. The gradients and correlation coefficients of
the four lines are -3.94(-0.987), -3.74(-0.998), -1.08(-0.999)
and -0.73(-0.999) for φ = 2.5, 3.0, 3.5, 4.0 respectively. (A
correlation coefficient of -1.0 indicates perfect negative cor-
relation.) At the edge of u = 1 instability, φ = 3.5 and
p ∼ r−2.08. Interestingly, this is very close to the condition
for a finite mean: � ∞

rmin
rp(r)dr is finite only for α > 2,

where p(r) is power-law, p(r) ∼ r−α for r > rmin. This
indicates the u = 1 stability condition corresponds to a
well-defined mean particle displacement. Lower values of
u, and hence higher values of φ, lead to systems whose em-

−1 0 1 2 3 4 5 6 7
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−3

−2.5

−2

−1.5
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−0.5

log(r)

lo
g(

P
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))

w = 0.75, φ = 2.5 − 4.0

φ = 2.5
φ = 3.0
φ = 3.5
φ = 4.0

Figure 5: Power law tails at various values of accel-

eration parameter φ

pirical mean over a finite number of iterations will be finite
but will nevertheless vary enormously, sometimes taking on
large values, in order to respect the formal divergence of the
mathematical mean.

From the condition P (r) = 0.1, Figure 5 shows that 10 per
cent of the particle positions are at distances greater than
0.21, 0.32, 0.92 and 56.8 from the origin for φ = 2.5, 3.0,
3.5 and 4.0 respectively. This indicates that good coverage
of the region p1 < r < p2 is attained for φ = 2.5, 3.0 and
3.5. On the other hand, there is no coverage outside this
interval for φ = 2.5, showing that this PSO concentrates all
its search between the attractors. At φ = 3.0, particles will
move outside this region, enhancing exploration away from
the fixed points in the interactive model (where p − 1 and
p − 2 can be updated). At φ = 3.5, 4.0 the frequent bursts
often take r far from the attractors. These large bursts
cannot help with convergence, but they might help diversify
the fully interacting system.

An analysis of the data for the 50 runs at φ = 4.5, w = 0.75
found a probability of 10 per cent for positions of at least
1040. φ = 4.5 is between the u = 1 and u = 0.5 insta-
bility conditions (3.5 and 7.0 respectively). Although none
of these runs exploded, bursts of extremely high amplitude
were common. The inference from these experiments is that
the u = 1 stability condition corresponds to power law tails
with bounded mean. Moving φ beyond the u = 1 condition
leads to unbounded mean displacements and little explo-
ration of the region between the attractors.

4. MULTIPLICATIVE STOCHASTICITY
The previous section presented evidence that non-interact-

ing PSO shows power-law behaviour when close to instabil-
ity. However outlier particles are not isolated; rather, large
excursions exist in bursts, or sequences of increasing and
then decreasing amplitudes away from the origin. This is in
contrast to a bare bones formulations which replace velocity
with sampling from a probability distribution N . N might
itself have fat tails but outliers would not be correlated. The
bursts are a peculiar feature of the PSO dynamics.

Power law tails are found in many natural systems. Well
known examples include the distribution of earthquake mag-
nitudes, frequency of words in a language, wealth of the rich-
est people and physical quantities close to a phase transition.
Although power-laws have been regarded as an indicator of

2616



self-organisation (e.g. [12]), this explanation is not necessary
for power law behaviour [9], [20].

Another explanation for PSO bursts might lie in reso-
nance. Certainly Eq. 3 has a driving term c(t) and a
spring-like term Φ(t)(pi − x(t)), Eq. 1, and might be ex-
pected to resonate. The system does not though have a well
defined resonant frequency because the spring constants Φ
are themselves random. Other explanations might lie in in-
termittency, which is a property of some chaotic systems.
Intermittent systems show periods of constant amplitude
punctuated by erratic bursts [10]. However, decoupled PSO
is not chaotic in the stable regime. Another explanation for
power laws can be found in the theory of random multiplica-
tive processes [19].

4.1 First order SDE
Considering the first order SDE

x(t + 1) = −a(t)x(t), (16)

then x(t) = (−)ta(t − 1)a(t − 2)...a(0)x(0). The distri-
bution of x is therefore given by the distribution of prod-
ucts of random numbers. The logarithm of x(t) is there-
fore equal to a sum of log of random numbers, and by the
central limit theorem, the distribution of log(x) will be nor-
mal. The distribution of x(t) is therefore log-normal, and
log-normal laws are well approximated by power laws over
intervals of four or less orders of magnitude [9]. This simple
argument shows that fat, power-law tails can emerge from
multiplicative processes. However, Eq. 16 is a very poor
approximation to PSO. The second order SE of Eq. 3 re-
duces to first order for b = 0, c(t) = 0, corresponding to a
PSO with w = 0 and � Φipi = 0. This implies u1 = u2 and
p1 + p2 = 0 giving a PSO,

x(t + 1) = x(t) +
φ

2
[(p1 − u3x(t)) + (p2 − u3x(t))]r (17)

where u3 is a random value. Eq. 17 was tested over a suite
of 14 objective functions, duplicating the test conditions of
[2], with very poor results.

The first order SDE with additive noise,

x(t + 1) + a(t)x(t) = c(t) (18)

has been studied by Sornette and other workers (see, for
example [19] for a(t) < 0). This system contains both mul-
tiplicative - a(t) - and additive - c(t) - stochasticity. Decou-
pled PSO reduces to Eq. 18 if the inertia weight is set to
zero, w = 0,

x(t + 1) = x(t) +
φ

2
[u1(p1 − x(t)) + u2(p2 − x(t))] (19)

Once more, performance of the fully coupled version of
Eq. 19 is very poor. Without velocity, these PSO’s can-
not move through the search space and are doomed to local
exploration around the initial swarm configuration.

Eq 18 exhibits a regime of power law behaviour. With
c(t) = 0 we recover model Eq. 16 which is log-normal in
its central part [15]. For c finite, iterating Eq. 17 gives the
solution of Eq. 17 as

x(n) = (

n−1�

l=0

a(l))x(0)+(

n−2�

l=0

c(l)

n−1�

m=l+1

a(m))+c(n−1) (20)

which shows that the fate of x is determined by the mul-
tiplications over a. The surprising feature is that Eq. 19 ex-
hibits interesting behaviour in the stable regime 〈a〉 < 1 [19].
This behaviour, namely intermittent bursts and power law
tails to the distribution of x is contingent on max(a(t)) > 1
so that amplification is possible, and upon the injection of
noise, c 6= 0 so that convergence to the fixed point is pre-
vented.

Rewriting the w = 0 PSO as

x(t + 1) + [
φ

2
(u1 + u2)− 1]x(t) =

φ

2
(u1p1 + u2p2) (21)

facilitates comparison to Eq. 18. The fixed-u stability
condition is 0 < φu < 2. Without loss of generality we
can place p1 = 1.0, p2 = 0 so that c(t) = φ

2
u1. From

the u = 1 stability condition, φ < 2 so c(t) ∼ U(0, cmax),
cmax < 1. Furthermore, a(t) ∈ [−1, φ], although the distrib-
ution within this interval is triangular rather than uniform.
This means that the w = 0 PSO differs from Eq. 18 in
two respects: a(t) can become positive and c and a are not
independent. Indeed, a(t) = [c(t) + φ

2
u2 − 1].

These changes were investigated by trials on Eq. 17 with
a ∼ U(amin, amax) and c(t) ∼ U(0, 1). The results are
shown in Figure 6. The plots depict average distances r =
|x| from the origin over 50 runs of 106 iterations and show re-
sults for four uniform distributions of a, each with |〈a〉| < 1.0
and max(|a| > 1). Line (ii) a ∼ U(−1.48,−0.48) corre-
sponds to the system previously studied by Sornette and
Cont [21]. Line (i) a ∼ U(0.48, 1.48) is the Sornette-Cont
system but with a negative multiplicative term x(t + 1) =
−|a|x(t) + c(t). a ∼ U(−1.5, 1.5) is a symmetrical distribu-
tion, and a ∼ U(−1.75, 1.25) has 〈a〉 = −0.25.

The results indicate that burst amplitudes and frequency
are reduced in the Sornette-Cont system if the sign of a
is reversed. This is possibly because the additive injection
term c(t) and the multiplicative term are then of opposite
signs, and c(t) will reduce the amplitude of positions x < 0.
The two distributions that straddle a = 0 show markedly
quenched bursts, once more because the fluctuating sign of
a(t) will lead to reductions in r when a is opposite in sign
to x. Burst quenching is more prominent when 〈a〉 = 0;
displaced distributions will give larger bursts. All four lines
in Fig. 4.1 show power law regimes for some r.

4.2 Second order SDE
The second order stochastic system with uniform distrib-

utions

x(t + 1) + U(al, au)x(t) + bx(t− 1) = U(cl, cu) (22)

has not, to our knowledge, been studied in the burst
regime max(|a|) > 1. Eq. 22 is closely related to the decou-
pled PSO with p1 = 1, p2 = 0:

x(t+1)+ [
φ

2
(u1 +u2)−w− 1]x(t)+wx(t− 1) =

φ

2
u1 (23)

Replacing u1 +u2 and u1 with uniform distributions leads
to
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Figure 6: Investigation of stochastic first order equa-

tion for various ranges of random variables a(t)
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Figure 7: Investigation of a stochastic second order

equation

x(t+1)+U(−w−1, φ−w−1)x(t)+wx(t−1) = U(0,
φ

2
) (24)

and in particular, for the φ = 3.0, w = 0.75 system,

x(t+1)+U(−1.75, 1.25)x(t)+0.75x(t−1) = U(0, 1.5) (25)

Figure 7 shows the cumulative distribution r = |x| for
Eq. 25 for 50 runs of 106 iterations. The frequent and large
bursts are apparently not well modeled by a power law over
the entire tail, although the portion 3 < log(r) < 6 might
be modelled by a straight line.

Formally we can derive a solution for x(t) as a sum over
products of random variables. Rewriting Eq. 3 as

xn = an−1xn−1 + bn−2xn−2 + cn−1 ≡ a + b + c (26)

where for convenience the sign of the random variables
a(t) and b(t) have been reversed, an = −a(t), bn = −b(t)
and the symbol a+b+c has been introduced as a shorthand
for an−1xn−1 + bn−2xn−2 + cn−1. Iterating back in time,

xn = a(a + b + c) + b(a + b + c) + c (27)

with the understanding aa ≡ an−1an−2xn−2,
ab ≡ an−1bn−3xn−3, ba ≡ bn−2an−3xn−3, bb ≡ bn−2bn−4xn−4.

Hence, after m iterations,

xn = (a + b)m + (

m−1�

j=0

(a + b)j)c (28)

where the symbol am−1c ≡ an−1an−2...an−m+1cn−m etc.
and (a + b)0 ≡ 1. Eq. 28 reduces to the solution of the first
order difference equation, Eq. 20, for m = n, b = 0.

We take the order of expansion, m to the edge of the burst.
The definition of a burst is arbitrary; when x is not being
amplified, the particle will move close to the fixed point at

<c>
1−<a>−b

. During this normal, non-bursting activity, all xi’s
appearing in Eq. 28 can be replaced by their non-burst av-
erage, 〈x〉noburst. We also note that the role of cn is to repel
x away from the fixed point during normal activity. Dur-
ing a burst, c will be small in comparison with x and plays
no part in the amplification. During bursting, we therefore
replace cn by its average value, < c >.

The aim of the following analysis is to use Eq. 28 to
investigate the mean size of a burst of length m iterations.
This can be achieved by replacing each term in the expansion
of (a + b)m with the m’th moment < apbm−p >=< ap >

bm−p. From 〈ap〉 = 1
au−al

� au

al
apda =

ap+1
u −a

p+1

l

(p+1)(au−al)
where u

and l denote the upper and lower limits of the distribution,

< a
p
b
m−p

>=
ap+1

u − a
p+1
l

(p + 1)(au − al)
b
m−p (29)

and

< (a + b)m
>=

m�

p=0

�
m

p � < a
p
b
m−p

> (30)

From Eq. 28, the position < xm >burst at the end of a
burst of length m is given by

< xm >burst≈< x >noburst

m�

p=0

�
m

p � < a
p
b
m−p

> (31)

+ < c >

m−1�

j=0

j�

p=0

�
j

p� < a
p
b
j−p

>

The final term (p = m) in the expression for < (a+b)m >

in Eq. 30, < ap >, is the moment due to the first order
process xn+1 = anxn + c. The remaining terms in Eq. 30
give the contributions due to finite b, i.e. for the second
order process xn+1 = anxn + bxn−1 + c. These other terms,
which alternate in sign for a < 0, grow in size compared to
〈ap〉 for larger m and contribute significantly to the overall
sum. Figure 8 depicts the rise in 〈(a+b)m〉 compared to the
b = 0 first order process 〈am〉 for m between 0 and 10 for the
system described by Eq. 25. This Figure demonstrates that
the addition of a second order term considerably increases
burst amplitude.

Figure 9 charts, for the same PSO, rburst = | < xm >burst

|, using Eq. 31 where 〈a〉 = 0.25, 〈c〉 = 0.75 and the fixed
point x? = 0.5 ≈< x >noburst. The approximations leading
to expression 31 are only valid after a burst has become
established and xm >> 〈x〉noburst which is true for this data
for m ≥ 10. According to the Figure, bursts of length 10
and above grow exponentially in size, rburst ∼ e0.65m. This
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provides an explanation for the extremely high amplitude
bursts found in the second order SDE Eq. 22.

This analysis motivates the conclusion that the tail of the
second order SDE with max|a| > 1) is built from a sum
of multiplicative processes. Each multiplicative processes
will provide a log-normal distribution, as described in the
previous section. The distribution of positions in the full
2nd order SDE is therefore a sum of log-normals, each of
which is approximated by a power law over some part of its
range.

5. ADDITIVE STOCHASTICITY
If distribution tails in SDEs are caused solely by multi-

plicative stochasticity, a second order SDE with only addi-
tive stochasticity i.e. a, b = const, c = c(t) should be tail-
free. Recently a novel PSO variant, recombinant PSO (DR)
has been proposed with only additive stochasticity [13]. Re-
cent work tests PSO-DR for various neighbourhoods and pa-
rameter choices with impressiveley competitive results over
a suite of 15 common benchmarks [1]. PSO-DR is similar to
the PSO-IW, Eq. 9, except that one of the informers is re-
placed by a discrete recombination of a particle’s immediate
neighbours in a ring topology,

DR : v(t+1) = wv(t)+
φDR

2
[(p1−x(t))+(p2−x(t))] (32)
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Figure 10: Plot of cumulative probability r for PSO-

DR

where p2 = ηpl +(1− η)pr, η = U{0, 1} and pl and pr are
left and right neighbours and p1 is either the personal best
position of particle i, or the best position in i’s neighbour-
hood, depending on the particular formulation of PSO-DR.
The stability condition from Eq. 11 is 0 < φDR < 2(1 + w).

Figure 10 reports on the cumulative distribution of parti-
cle separation r for Eq. 32. The distributions for w = 0.5
and various φ up to the maximum stable value of φ = 3.0
were collected for 50 runs of 106 iterations with x(1), x(2) ∼
U(−0.5, 0.5), p1 = −0.5, pl = 0.5, pr = 1.0.

The cumulative distributions are flat for small r, and then
drop vertically at a cut-off r− c, suggesting p(0 ≥ r ≥ rc) =
U(0, rc) (although the log-log plot is not sensitive enough to
show variations from uniformity). The non critical systems
φ ≤ 2.9 place the majority of the positions between the at-
tractors. At sub-criticality, φ = 2.99, the system is inclined
to explore beyond the attractors, rc > 1. At instability, rc

is between 50 and 100. A vertical drop off beyond rc would
be evidence that additive-SDE does not develop tails, and
this is confirmed by these plots, except perhaps for φ = 2.99
which appears to have a finite, but very large slope.

In fact PSO models such as Eq. 32 might produce tails
from a resonance effect. This is because the spring constants
are fixed and the system has a defined natural frequency.
For the case of PSO-DR, setting p3 = p1+p2

2
gives a simple

oscillator with force law F = φ(p3−x) and natural frequency

ω = �(φ). The periodic time, T = 2π
ω

for φ = 1 (this
is empirically a good value for interacting PSO-DR [1]) is
therefore about 6 with the implication that an oscillating
p3 on the timescale of 6 iterations could drive the oscillator
and amplify x. This could happen from a shifting neighbour
best position p1, or from an oscillation between pl and pr in
the p2 term, or by a combination of the two.

6. CONCLUSIONS
This paper has investigated the position distribution of

de-coupled PSO. Particular attention has been paid to the
tail of this distribution, a regime dominated by power laws.
The origin of these tails lies with the phenomenon of erratic
particle bursts. In order to study how these bursts might
develop, de-coupled PSO has been formulated as a second
order stochastic difference equation. A series of approxi-
mations has demonstrated that fat distribution tails, well
modelled by power laws, arise from multiplicative stochas-
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ticity, a phenomenon previously encountered in first order
SDEs.

This conclusion is valid for first or second order SDE’s,
and for either sign of the parameters, as long as one of more
of these parameters is capable of amplification i.e. can ex-
ceed unity. These trials are supported by a theoretical analy-
sis: bursting in a second order SDE is built from a sum
of multiplicative stochastic processes. Each multiplicative
processes will provide a log-normal distribution, approxi-
mated by a power law over some part of its range. This
result explains the observation that the particle distribution
shifts as more iterations are collected. The distribution is
dominated by large but rare events that are only manifest
after many iterations.

A stability condition for the PSO parameters w and φ can
be achieved by replacing the random variables in the differ-
ence equation by a constant, u. The inference from a set
of experiments is that the u = 1 stability condition leads
to power law tails with bounded mean. Moving φ beyond
this condition leads to unbounded mean displacements. The
popular φ = 3.0, w = 0.75 PSO is within the stable region
and has weak power law tails, which enhance exploration,
yet also has good coverage of the region close to the attrac-
tors, enabling convergence.

There is a tantalising possibility that the removal of stoch-
asticity from the dynamics might render PSO amenable to
further theoretical analysis. A recombinant PSO, which is
demonstrably competitive to standard PSO, almost achieves
this miracle. The acceleration parameters are constant in
PSO-DR, but randomness, and hence diversity regeneration,
is manifest in a jiggling of the attractor components. This
jiggling will persist even at times of stagnation. PSO-DR,
replete with just additive stochasticity of this sort, does not,
according to the theoretical and empirical arguments sup-
plied here, enjoy bursting activity.

PSO bursts differ from the outliers generated by bare
bones swarms in two respects: the outliers occur in sequence,
and they are 1-dimensional. Bursting will therefore produce
periods of rectilinear motion where the particle will have a
large velocity parallel to a coordinate axis. Whether bursts
are generally beneficial, or a hindrance, to a fully interac-
tive PSO, and under what circumstances, is the subject of
ongoing research [1].
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