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ABSTRACT
The traditional GA theory is pillared on the Building Block
Hypothesis (BBH) which states that Genetic Algorithms
(GAs) work by discovering, emphasizing and recombining
low order schemata in high-quality strings, in a strongly
parallel manner. Historically, attempts to capture the topo-
logical fitness landscape features which exemplify this in-
tuitively straight-forward process, have been mostly unsuc-
cessful. Population-based recombinative methods had been
repeatedly outperformed on the special designed abstract
test suites, by different variants of mutation-based algo-
rithms. Departing from the BBH, in this paper we seek
to exemplify the utility of crossover from a different point
of view, emphasizing the creative potential of the crossover
operator. We design a special class of abstract test suites,
called Trident functions, which exploits the ability of mod-
ern GAs to mix good but significantly different solutions.
This approach has been so far neglected as it is widely be-
lieved that disruption caused by mating individuals that are
too dissimilar is harmful. We anticipate that hybridizing
different designs induces a complex neighborhood structure
unattainable by trajectory-based methods which can con-
ceal novel solutions. Empirical results confirm that the
proposed class of problems can be solved efficiently only
by population-based panmictic recombinative methods, em-
ploying diversity maintaining mechanisms.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]:
General
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1. INTRODUCTION
Evolutionary Algorithms (EAs) are inspired and closely

linked to Darwinian evolution. The complex schemes in-
volved in the transmission of biological information make
these methods suited for changing environments. Recent
results had shown that in dynamical environments induced
by exogenous noise, recombinative methods clearly outper-
form hill-climbers [5, 17]. However, as applications of EAs
consider mostly fixed fitness landscapes, a major criticism
of EAs is that biological metaphors may be unnecessarily
complex.

A major open problem regarding the fundamentals of GAs
is to characterize the topological features of static fitness
landscapes for which crossover is an efficient operator. These
landscapes would exemplify the utility of the nature inspired
algorithms by revealing the class of problems for which EAs
are most suited, outperforming other optimizers such as hill-
climbers. Despite the major work in this field, it is still
unclear how an EA explores a search space.

According to the intuition behind the BBH [7, 3], GAs
should perform well when they are able to discover above-
average-fitness low-order schemata and recombine them to
produce even more fit higher-order schemata in a recursive
manner. So far, attempts to design abstract test functions
suited for this hierarchical, straight-forward process have
been unsuccessful. Population-based recombinative meth-
ods had been repeatedly outperformed on the special de-
signed abstract test suites, by different variants of mutation-
based algorithms.

Recent developments [9] had shown that a certain hill-
climber operating over the building-block space is able to
solve problems even with epistatic and unfavorable genetic
linkage.

Test problems for GAs were usually developed under the
intuitions of the BBH. As it is believed that crossover should
produce successful offspring on average, test problems were
usually devised accordingly.

Leaving aside the suggestions of the BBH, the objective of
this paper is to develop test suites that exploit the generative
potential of the crossover operator.

The creative potential of the crossover operator had been
already conjectured many times [20, 1, 18]. A great asset
of EAs is the ability to simultaneously process and combine
many different designs. The promoting idea behind recom-
bination, as it was originally proposed [7], is to combine
different sub-solutions from varying individuals. Neverthe-
less, there is widely spread methodology which emphasize
another aspect of the recombination, namely that it pre-
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serves the similarity exhibited by the parents. This idea is
supported in classical approaches, where niching and speci-
ation methods restrict mating to individuals that are geno-
typically similar. The same view manifests in spatially dis-
tributed GAs [19] where breeding is promoted within local
populations. These approaches advocate the idea that par-
ents selected from two different fitness peaks are likely to
produce an offspring that lands in the “valley” between.

But what if valuable solutions lay between two differ-
ent fitness peaks? This may be the case in many design
problems, where hybridizing two prototypes can result in a
completely new, valuable solution. In these cases, though
crossover may not produce successful offspring on average,
it conceals a great generative ability, revealing novel designs
which would be unattainable otherwise.

We think that these functions may exemplify the utility
of EAs in static environments. The points from the complex
neighborhood structure defined by crossover on two valuable
but different solutions, are expected to be intractable by
trajectory methods, provided that these points do not have
a large basin of attraction. In this case the problem can
be solved only by employing the generative potential of the
recombination operator.

The remaining of the paper is organized as follows: in the
next section we review the history of the quest for “GA
friendly” test functions. In Section 3 the class of func-
tions which emphasize the creative potential of GAs (Tri-
dent functions) is introduced. Experimental setup and re-
sults on these test suites are presented in Section 4. Section
5 concludes.

2. HISTORICAL BACKGROUND
The Royal Road (RR) problems [2] were an early attempt

to capture the problem structure, which enables GAs to out-
perform other methods. The adopted strategy was to find a
set of features that are of particular relevance to GAs and
test the performance of these algorithms on landscapes con-
taining those features. It was recognized that major tenets
behind the BBH are the notion of problem decomposition
and the assembly of solutions from sub-solutions. Subse-
quently, a set of functions were constructed, which clearly
emphasized a gross-scale building-block structure with low-
order building-blocks that recombine to higher-order ones.
The functions were expected to lay out a “royal road” for
GAs and the intention was to exemplify the class of problems
that required the recombinative aspects of the GA. However,
a Random Mutation Hill-Climber (RMHC), which accepts
states with equal objective function value, greatly outper-
formed GAs on these test suites.

The RR functions can be solved by mutation-based hill-
climbers much faster than by GAs, because they exhibit
separable building-block structure with tight linkage and do
not contain any local optima. Even when deception is intro-
duced and each building-block corresponds to a deceptive
trap function, the Macro Mutation Hill-Climber (MMHC)
can outperform the GA, by benefiting from the tight link-
age and cluster mutating one sub-function at a time [10].

In order to break hill-climbers, problems with unfavorable
epistatic linkage and unfavorable genetic linkage were de-
vised. The former refers to building-block interdependency
(non-separability), while the latter corresponds to building-
blocks formed by non-adjacent alleles. Watson et al. [22]
introduced a class of hierarchically decomposable functions,

which presented strong non-linear hierarchical building-block
interdependency. In a later development, Pelikan et al. [15]
proposed the hierarchical trap function, where a basic de-
ceptive function is used on each level to make the problem
even harder.

On problems with poor genetic linkage, classical crossover
is not able to combine good building-blocks effectively. Thus,
considerable effort was invested at developing algorithms
that discover and represent the interdependency of alleles,
resulting in more intelligent crossover operators [6, 12, 11,
16, 14, 23]. As a result, competent methods [4] can address
problems which present both epistatic and unfavorable ge-
netic linkage. It was considered that this class of functions
exemplifies those problems for which GAs are well-suited.

Hill-climbing in building-block space was proposed and
shown to be more efficient than selectorecombinative GAs
on deterministic additively-separable problems of bounded
difficulty [17]. But a recent development [9] showed that a
certain hill-climber operating over the building-block space
can solve problems with epistatic and unfavorable genetic
linkage. The new Building Block Hill-Climber (BBHC) is
able to solve hierarchical problems with random linkages.
The method uses hill-climb search experience to learn the
problem structure. The neighborhood structure is adapted
whenever new knowledge about the underlaying BB struc-
ture is incorporated into the search. The BBHC holds a ma-
jor qualitative advantage, scaling as O(l·log(l)) compared to
O(l1.5 · log(l), which is at least required by population-based
recombinative methods [14].

The new result suggests that if a problem has a nice struc-
ture, even if “hidden” like the building-block space with
unfavorable genetic linkage, a proper hill-climber can out-
perform population-based recombinative methods, without
requiring extra domain knowledge.

We suspect that the idea of a GA marching on a fitness
landscape is maybe a little bit romantic; a suitable hill-
climber is almost certainly quicker if there is a nice structure
of the problem to be exploited. Maybe we should look for
hard problems, which can be solved somewhat slothfully by
GAs, but are intractable using other methods.

In the next chapter such a function is introduced, for
which we hope GAs are well-fitted.

3. HYBRIDIZATION OF DIFFERENCES
The reason why hill-climbers outperform population-based

recombinative methods on the test suites proposed so far,
may be their non-deceptive nature at some level. Deception
may manifest in more then one form [8], but the general
idea is that “a deceptive function is one in which low-order
schema fitness averages favor a particular local optimum,
but the global optimum is located at that optimums comple-
ment” [3]. The RR function does not contain any local op-
tima; hierarchical problems are fully deceptive in the Ham-
ming space but are fully non-deceptive in the building-block
or crossover space. Recent local-search literature authors
have emphasized the importance of using a good neighbor-
hood operator [21]. Thus, it is not that surprising that a
certain hill-climber employing a good neighborhood opera-
tor (which engenders a building-block-wise search in the case
of hierarchical functions), can outperform methods which
operate via populations.

We reason that in order to defeat hill-climbers, problems
must contain a degree of deception, which can not be over-
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come by a neighborhood operator induced by one point in
the search space. This of course will hinder GAs perfor-
mance also, as the mutation works in the neighborhood of
one individual and short-term selection may favor deceptive
search paths. However, EAs posses a great asset by having
a more complex neighborhood structure generated by the
recombination operator, which takes into account at least
two individuals. This may help the methods to escape the
local optima and overcome deceptiveness.

The problem representation together with the neighbor-
hood structure defines the search landscape. We argue that
there are problems where only search landscapes transformed
by crossover may be efficiently exploitable. In the followings
we give an example for such a class of problems called the
Trident functions (TF).

3.1 The Trident Function
TF accepts bitstrings of the length 2k where k ≥ 2 and

uses a function of unitation (which depends on the number of
ones in a bitstring, and not on their positions) as underlaying
structure:

base(x) = ‖2 · u(x) − |x|‖ (1)

where u(x) is the unitary of x (the number of ones) and |x|
is the length of x.

The base function has its minimum in 0 which is generated
by strings with an equal number of 1’s and 0’s: u(x) =
|x| − u(x). The maximum is attained by strings formed by
all 1’s or all 0’s with a corresponding value of |x|.

The next component of the TF is a contribution function
which rewards certain configurations of strings that have an
equal number of 1’s and 0’s. Let L = x1, x2, . . . , x n

2
be

the first half of the binary string x of length n and R =
x n

2 +1, x n
2 +2, . . . , xn the second one. Then, we define the

contribution function for this paper based on the exclusive
OR (XOR) relation:

contribution(x) =

{
2 · |x| , if L = R̄;
0 , otherwise.

(2)

where R̄ stands for the bitwise negation of R.
Please note that the contribution function does not have

a basin of attraction; it rewards fully an input or it does
not reward it at all. Finding the maxima of such a func-
tion is equivalent to the needle in the haystack problem. As
there are no better search methods for this class of function
than the random-search, these function are also resistant to
biased mutation-based search.

The TF is defined as the sum of the base and the contri-
bution function:

trident(x) = base(x) + contribution(x) (3)

Figure 1 presents the graphical interpretation of the Trident
function.

TF has its maximum in the points rewarded by the con-
tribution function. Here it takes the value 2 · |x| as the base
function in these points attends the minimum 0.

TF is very hard for mutation-based algorithms because
the base function leads away the search from the region
where global optima lay. Even if a random state is gener-
ated with equal number of 1’s and 0’s, it is very unlikely for
large problem instances that the contribution function will
reward that string. If the algorithm does a biased search, it
will be immediately drawn away from the minimum of the

base function, towards regions with higher base function fit-
ness.

The TF can defeat macromutation hill-climbers also, as
local and global optima are very distant in the Hamming
space. The chance of jumping from local optima to a global
one is minimal as n

2
bits must be changed simultaneously.

Also, there are no “hidden” structures which could be eas-
ily exploited. The “building-blocks” L and R are rewarded
if and only if their context i.e. the counterpart half of the
string is compatible. As TFs have 2

n
2 global solutions, the

probability of this happening for randomly generated strings

is Phit = 2
n
2

2n = 1

2
n
2

.

What about GAs? Global optima can be found quite
easily if the GA is mixing good but different solutions. Let
us take the example where n = 8 and we have two strings
at each local optimum: s1 = 00000000 and s2 = 11111111.
The one-point crossover between s1 and s2 will produce the
optimal strings s3 = 00001111 and s4 = 11110000 with the
probability P = 1

n−1
= 1

7
. When using two-point crossover,

we have n
2
− 1 = 3 favorable cases. The favorable crossing

points pairs are {(1, 7), (2, 6), (3, 5)}. Optimal strings may
not result only from the breeding of individuals located at
local optima. For example, the one-point crossover between
s5 = 00100001 and s6 = 11111101 between loci 4 and 5
will also produce an optimal solution s7 = 00101101. The
important aspect is to combine different candidate solutions.

The TF is the abstracted form of problems where several
highly different good solutions exist, and hybridizing these
solutions may result in a completely new, valuable design.
Even if crossover does not produce above average individuals
on a regular basis, it may create occasionally an exceptional
organism. Thus, crossover has a generative potential which
we believe should not be neglected by restricting the recom-
bination to genotypically similar individuals.

3.2 Natural Metaphor
Hybridization between related species is a common occur-

rence in nature and it plays an important role in the evo-
lution of some species. Hybrids may have a beneficial com-
bination of traits, allowing them to succeed in a marginal
habitat where the two parent species are disadvantaged. If
the hybrid is successful, new species may emerge within a
relatively small number of generations. This leads to the hy-
pothesis that life is a genetic continuum rather than a series
of self-contained species.

Unlike mutation, which affects only one gene, hybridiza-
tion simultaneously affects multiple variations across genes
or gene combinations. This translates to big jumps on the
fitness landscape. However, these jumps are not random
as in the case of the macromutation. Crossover may mix
certain well established features which may not be that im-
portant for the parents, but their combination is spectacular
and it is highly rewarded in the resulting hybrid. Hybrids
in nature are often stronger than either parent variety. This
phenomenon is known as hybrid vigor or heterosis.

In the next section we analyze how different variants of
hill-climbers and GAs perform on the proposed class of func-
tions.

4. RESULTS
We tested the RMHC, the MMHC, the Simple Genetic

Algorithm (SGA) and a special genetic algorithm which em-
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Figure 1: The Trident Function, where u is the uni-
tary of the input string. The base function is decep-
tive, leading away the search from the area which
contains global optima. The contribution function
has no basin of attraction so its maximum is very
hard to detect. Note that the contribution function
does not reward all strings with u = n

2
; only special

configurations are rated.

ploys diversity maintenance, called Deterministic Crowding
(DC) on the 16, 32, 64 respectively 128-bit versions of the
TF. A number of 100 independent runs were averaged. The
algorithms ran until they found a global optimum or 106

function evaluations were exceeded.
The difficulty of the TF grows exponentially with the

problem size. The 16-bit version of the problem is utterly
easy as global optimum occupies 1

256
-th of the search space.

A simple random sampling of the search space will yield
an optimal solution in 256 steps on average. Anyhow, in-
creasing the problem size to 64-bit will drop the probability
of randomly hitting an optimal solution to less then 1 to
4.e+9. We were especially interested how the methods can
handle the exponential explosion and how the reduction of
the fraction occupied by global optima in report with the
search space size, will affect their scalability.

The methods and the settings used for each algorithm are
briefly described as follows.

4.1 Random Mutation Hill-Climber
RMHC [2] chooses at each iteration a locus at random to

mutate. If the mutation leads to an equal or higher fitness,
then the new state is accepted.

The power of the RMHC lays in its ability to travel on
fitness neutral regions of the search space, explaining its
success on the RR functions. Big plateaus with equal fitness
are not a characteristics of the TFs, therefore RMHC will
behave similarly to the Next Ascent Hill-Climber.

A random restart was applied in our test, if the RMHC
could not improve for 104 consecutive evaluations.

DC

1. Initialize the population randomly;

2. Pick two parents, p1 and p2 at random from the

population;

3. Do crossover and mutation to produce a pair of

offsprings c1 and c2;

4. Pair-up each offspring with one parrent

according to the pairing rule below;

5. For each parent-offspring pair, if the

offspring is better than the parent then

replace the parent with the offspring;

6. If termination condition not met goto 2 ;

Pairing rule:

if H(p1, c1) + H(p2, c2) < H(p1, c2) + H(p2, c1) then

pair p1 with c1, and p2 with c2, otherwise pair p1

with c2, and p2 with c1, where H gives the

genotypic Hamming distance between two

individuals.

Figure 2: Deterministic Crowding as used in the
experiments.

4.2 Macro Mutation Hill-Climber
MMHC had been shown to be a very powerful hill-climbing

method, which can outperform GAs even on problems where
each building-block corresponds to a deceptive trap func-
tion, provided that the problem has a tight linkage [10].

In the mutation operator of the MMHC, the genome is
viewed as a string. Two distinct points on the ring are
randomly selected and the loci in the smaller section are set
to random alleles.

In our tests, if the MMHC could not improve for 105

epochs, it was restarted from a random state, in the limit of
the 106 function evaluations.

4.3 Simple Genetic Algorithm
The SGA [7, 3] is a GA that uses fitness-proportionate

selection, one-point crossover, and point mutation to evolve
a single population of bit strings, with each generation com-
pletely replacing the previous one. The population size was
set to pop size = 500, the mutation rate to pmut = 0.005
and the crossover rate was c = 0.8.

4.4 Deterministic Crowding
Deterministic Crowding operates on the premise of re-

stricted competition rather than restricted mating. The
population is panmictic so genotypically different individ-
uals may be recombined. This accommodates well the view
on the importance of hybridization. Diversity in maintained
by restricting the competition to parents and their own off-
spring. In this way, subpopulations that are occupying dif-
ferent niches do not need to outperform each other in order
to propagate. The outline of the DC is presented in Figure
2. For a description in detail of the method, see [13].

For the DC we used the same parameter settings as for
the SGA.
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Table 1: Performance of the Random Mutation Hill-Climber (RMHC), Macro Mutation Hill-Climber
(MMHC), Simple Genetic Algorithm (SGA) and the Deterministic Crowding (DC) on the TFs. Column
“Succ. rate” contains the number of successful runs where the methods find global optima. Column “Avg.
nr.” contains the number of average function evaluations needed to find the optima and “Max. nr.” the
maximum number of evaluations needed when all runs were successful. In the case of the population-based
methods, column “Nr. opt.” contains the average number of different optima within the correctly converged
population.

TF size 16 32

Succ. rate Avg. nr. Max. nr Nr. opt. Succ. rate Avg. nr. Max. nr. Nr. opt.

RMHC 85% 400020 - / 3% 337136 - /
MMHC 100% 4213 33528 / 37% 471018 - /
SGA 100% 241 1390 1.46 25% 8435 - 1.56
DC 100% 250 2111 23.94 100% 15771 23883 6.69

TF size 64 128

Succ. rate Avg. nr. Max. nr Nr. opt. Succ. rate Avg. nr. Max. nr. Nr. opt.

DC 100% 46816 61366 6.02 100 112557 157890 4.32

4.5 Numerical Results
The numerical results of the experiments are summarized

in Table 1. On the 64 and 128-bit versions of the TF, only
the results of the DC are reported as the hill-climbers and
the SGA failed in all runs on these suites.

As expected, the worst behavior on the TFs was shown by
the RMHC. Even for the very easy 16-bit version of the prob-
lem, the success rate is only 85%. Similar to the other hill-
climber, the MMHC, solutions are found at very high cost
and only due to the random restart mechanism. The number
of function evaluations required to identify optima, exceeded
by orders of magnitude the amount that would be required
by random-search. As the problem size increases, becoming
unaddressable by random sampling, the hill-climbers fail in
all runs due the deceptive nature of the TF.

When SGA succeeds, its performance is the fastest, being
much better then it would be required by random-search.
This shows that even simple recombinative algorithms have
the potential to exploit the features of the TF landscape.
However, as the problem size increases, the SGA fails to find
optima due to lack of improper initial sampling. Without
the proper identification of the valuable regions from the
search space, the population is quickly shifted towards the
basin of attraction of a single local optimum. A significant
increase of the population size could address this problem
but then success would come at high costs.

The only competent algorithm on the TFs was the DC. It
succeeded in absolutely all runs, being able to identify global
optima within a maximum of 16% of the allowed function
evaluations. In all cases, several optimum points were de-
tected. The success of the algorithm derives from its diver-
sity maintaining mechanism combined with the panmictic
population.

We once again emphasize the importance of the capabil-
ity to mix different designs; only then recombination can
become creative. An algorithm with diversity maintaining
mechanism, but with crossover restricted to similar individ-
uals, would also fail on the TFs.

5. CONCLUSIONS
This paper has examined some questions concerning the

fundamentals of EAs. The shortcomings of existing building-
block style test functions were surveyed and a view which
promotes and emphasizes the generative potential of EAs
was presented. According to this conception, the great as-
set of EAs lays in their capability to concomitantly evolve
and hybridize different designs.

In the light of this concept, a new class of test problems,
called Trident functions (TFs) was introduced. The TFs
are dominated by a fully deceptive base function as global
optima coincide with the minima of this function. The dis-
crete optimal solutions are defined by a contribution func-
tion which rewards points from the search space where cer-
tain different genotypical features appear concomitantly. As
the contribution function does not have an attractor basin,
the deceptiveness of the base function can not be overcome
using only simple neighborhood structures.

Ancient people believed that the gods blew on creative
people, who would then inhale the god’s breath and have
a brilliant idea. At a first sight TF seems so hard that
one would think that there is a need for “divine inspira-
tion” in order to efficiently locate its optima. However,
the TF is only the abstracted form of certain design prob-
lems where several good, locally optimal drafts are easy
to find, dominating the search space (deception) and the
real good designs result from the hybridization of different
drafts. Furthermore, the complex layouts defining the best
solution only emerge in “reactive regions” where the correct
particular features appear simultaneously; there is no se-
quence of improving designs to these solutions (needle in the
haystack). Nevertheless, crossover possesses the creative po-
tential i.e the more complex neighborhood structure, which
enables it to identify these solutions by mixing features from
different drafts, until the correct configuration is detected.

The experimental results confirm that the proposed class
of functions contains topological features, which can be ef-
ficiently exploited only by recombinative methods mixing
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different good solutions. It seems that if the population of
a GA is allowed to genotypically converge, its behavior be-
comes less distinct from the workings of trajectory-based
methods.

Similarly to the development of other test problems, the
main purpose of this work has been to reveal and provide
a better understanding of the essential mechanisms in EAs.
The results presented suggest that population-based recom-
binative methods provide fundamentally different advantages
compared to non-recombinative algorithms. Hill-climbers
may very quickly find good solutions on relatively simple
landscapes while population-based recombinative methods
can tackle more complex problems, where global optima only
arise from combination of different features.
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