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ABSTRACT 
This paper formally presents the resident physician scheduling 
problem, which is one of the most important scheduling problems in 
hospital. The resident physician scheduling problem is characterized 
as satisfying the fair schedule constraint, the physician specification 
constraint and the safe schedule constraint simultaneously. To 
minimize the penalties from violating the constraints, this study 
adopts the evolutionary approach to propose a genetic algorithm for 
solving the problems. In addition the well-known genetic operators, 
this study proposed a new mutation operator called dynamic 
mutation for solving the resident physician scheduling problem. The 
experimental results show that the proposed algorithm performs 
well in searching optimal schedules. 

Categories and Subject Descriptors 
J.3 LIFE AND MEDICAL SCIENCES. - Medical information 
systems 

General Terms: 
Algorithms, Management, Performance. 

Keywords: Genetic Algorithm; Resident Physician Scheduling 
Problem 
1. INTRODUCTION 
The Resident Physician Scheduling Problem (RPSP) is a difficult 
task for hospitals. It concerns not only the duties of resident 
physicians but also the patients’ safety. The benefits of solving this 
problem well are to keep physicians in a healthy condition capable 
of taking care of patients. 

The goal of this study is to design an algorithm in searching the 
optimal rosters for the resident physicians. Because the attending 
physicians have their own shift duties, the resident physicians may 

have to rotate around different wards monthly. For the schedule 
designer who may be the attending or the chief resident physician, 
arranging a fair and reasonable schedule for every member is often 
a difficult task. A fair and reasonable schedule should ensure (1) All 
physicians can have nearly the same working hours. (2) The 
physicians can assign their off duty days. (3) No consecutive shifts 
exist.  

The nurse scheduling problems [2, 3] are similar with the resident 
physician scheduling problem. Although referring to the problem 
formalization and algorithms for solving the nurse scheduling 
problems are helpful in solving the resident physician scheduling 
problem, the two problems are not the same. The main difference 
between the two problems arises from the degree of the physicians’ 
and nurses’ decision-making power. Most nurses may have less 
power in specifying their duties in certain shifts, but most 
physicians like to have power to specify their duty in every shift. 
The duty specification during each shift of the physicians is a 
constraint for the resident physician scheduling problem. This 
constraint is not conscientiously considered in most nurse 
scheduling problems. 

The previous study in [7] focuses on solving the resident scheduling 
problem. Although the author in [7] presented the main constraints 
which are considered and proposed their method for solving the 
problem, they considered only some unrealistic problems and the 
formalization of RPSP is insufficient.  

This paper is organized as follows. We analyze the requirements of 
scheduling the monthly rosters for the resident physicians and then 
formally present the resident physician scheduling problem in 
Section 2. Algorithms for solving the resident physician scheduling 
problem are presented in Section 3. Experiments for testing the 
performance and solution quality of the proposed algorithm are 
presented in Section 4. The conclusion and future works is drawn in 
Section 5. 

2. RESIDENT PHYSICIAN SCHEDULING 
PRBLEM 
2.1. The Problem Descriptions 
Resident physicians have duty shifts except the regular daytime 
activities. Before 2003, there were few regulations or guidelines 
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about duty hours in America. The ACGME (Accreditation Council 
on Graduate Medical Education) approved the common duty hours 
standards for programs in all specialties in February 2003. This 
regulation restricts duty hours to 80 hours per week, averaged over a 
4-week period. In most other countries, there is still no formal 
regulation on residents’ duty shifts. 

 
Figure 1. The number of the physicians required for each shift 

in January 2007 

Figure 1 shows the number of the physicians required for each shift 
in January 2007. Figure 2 is an example of a monthly roster 
satisfying the request in Figure 1. In this schedule, the notation of 
“BE” in the second shift of January 1st means that the physicians B 
and E are scheduled to be on duty. This meets the number of the 
physicians required for the second shift of January 1st (see Figure 1). 
In this roster, 8 physicians, identified as A to H, are scheduled and 
each day has two shifts. 
The physician scheduling problem is not simple as it looks, because 
physicians have their demands for a good roster. The most often 
demands are listed as follows: 

1. This schedule should avoid consecutive shifts: For example, 
in Figure 2, the physician F has to be on duty for 24 hours 
on Jan. 14 and for 36 hours from Jan. 19 to. 20. This will 
make him exhausted and absent-mind and he may give 
incorrect instructions to his patients thereafter. The incorrect 
instructions may be irredeemable.  

2. This schedule should be fair: The physician B may complain 
that this schedule asks him to be on duty for 18 shifts and 9 
of them are during weekends. Meanwhile, the physician C 
has only 15 shifts and only 5 of them are in weekends.  

 
Figure 2.  A monthly roster example 

This requires the schedule designers to assign not only almost the 
same number of duty shifts to all physicians but also the same 
number of weekend shifts. It is a great challenge for the schedule 
designer. However, even if the schedule designers can overcome 
this challenge, it may be still unfair since the work load of each shift 
of the same day is not the same. For example, in most cases, the 
working load of a night shift is harder than that of a day shift. That 
is, the fairness cannot be measured only by the number of duty 
shifts. 

 
Figure 3. The weight point defined for each shift 

To treat this problem objectively, some scheduler assigns each shift 
weight points specifying for the working load of that shift. Figure 3 
shows an example of the weight point defined for the each shift in 
January 2007. Based on this weight point definition, we can achieve 
the true fair state for the physicians. 

3.  The schedule can be customized for each physician. 
According to the experiences of schedule designers, the 
physicians may wish to adjust the roster since they have 
preferences for certain days. In other words, the schedule 
designer should not be autocratic. He should allow the 
physicians to specify their unavailable shifts, and the 
schedule should meet the specifications from the physicians. 

For convenience, the first requirement is named as the Fair 
Schedule Constraint (FSC), the second requirement as the Physician 
Specifying Constraint (PSC) and the third one as the Safe Schedule 
Constraint (SSC). In Section 2.2 we will formally detail these 
notations and the above constraints.   

2.2. The Notations 
To facilitate the description of the Physicians Scheduling Problem, 
we define the following notations. 

D1. There are m physicians P1, …, Pm.  
D2. A schedule contains n shifts. 

D3. For each 1 ≤ i ≤ n, the shift Si is a binary sequence <Si(1), 
Si(2), …, Si(m)>, where Si(j) = 1 means the physician Pj 
should be on duty in the shift Si and Si(j) = 0 otherwise.  

D4. For each 1 ≤ i ≤ n, Di is the number of physicians which 
should be on duty in the ith shift Si. 

D5. For each 1 ≤ i ≤ n, Wi is a non-negative real number which 
specifies the point (working load) of the ith shift Si. 

D6. For each 1 ≤ i, j ≤ n and 1 ≤ j ≤ m, the schedule specification 
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of shift Si from the physician Pj is defined as Eij, where 
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2.3. Solution Format and Constraints 
Based on the definitions in Section 2.2, a schedule can be defined as 
a shift sequence <S1, S2, …, Sn> containing n shifts. Since Di is the 
number of physicians which should be on duty in the ith shift Si, the 
Physician Demand Constraint (PDC) can be formally stated as C1 
below.  

C1. For each 1 ≤ i ≤ n,  

( )∑
=

=
m

j
ii jSD
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According to the regulations regarding resident duty hours issued by 
the Accreditation Council on Graduate Medical education (ACGME) 
of America [1 and 7], the physicians should not be on duty for more 
then 30 hours. Therefore, each hospital should specify the number 
of maximal consecutive duty shifts to the schedule designers to 
ensure that the number of consecutive duty shifts of each physician 
will not exceed the number of maximal consecutive duty shifts.  
Since the time definitions of the shifts are not uniform, we define 
MCDS to be the number of maximal consecutive duty shift. Based 
on this definition, the Safe Schedule Constraint (SCC) can be 
formally stated as C2 below. 

C2. For each 1 ≤ i ≤ n – MCDS + 1 and 1 ≤ j ≤ m,  
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k
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Although the constraint C2 ensures that the each physician will not 
be on duty for more than or equal to MCDS, the physicians still 
wish to minimize the number of successive duty shifts. Therefore, 
the schedule designers should consider the soft constraint C3 below. 

C3. For each 1 < h ≤ MCDS, 1 ≤ i ≤ n – h + 1 and 1 ≤ j ≤ m,  
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The regulation proposed by the ACGME also mentioned that the 
physicians should rest for sufficient time after their duty shift. 
Although this is not a hard constraint, the schedule designer should 
take this into consideration. Since the time definitions of the shifts 
are not uniform, therefore, we define MRS to be the number of 
minimal rest shifts. Based on this definition, the schedule designers 
should consider the soft constraint C4 below. 

C4. For each 1 ≤ i ≤ n – MRS and 1 ≤ j ≤ m, Si(j) =1 implies  

( )∑
=

+ =
MRS

k
ki jS

1
0 . 

In all the cases we learned, the Fair Schedule Constraint (FSC) is a 
soft constraint. Given the point of each shift, the FSC can be 
formally stated as C5 below. 
C5. For every two physicians Pi and Pj,  

( ) ( )∑∑
==
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k
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n

k
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The final constraint considered in this study is the Physician 
Specifying Constraint (PSC). In real cases, the schedule designers 
cannot ensure that they can find a feasible solution which meets the 
specifications from all the physicians. Therefore, the schedule 
designers treat the PSC as a soft constraint. In most cases the 
physicians accept the result which dissatisfies few of their 
specifications. Given the schedule specification, the PSC and be 
formally stated as C6 below. 

C6. ( )∑∑
= =

=⊗
n

i

m

j
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1 1
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According to the definitions of D3 and D6, Eij = 1 and Si(j) = 0 
implies that the physician Pj would like to be on duty in the shift Si 
but the schedule dissatisfies this specification. Similarly, Eij = -1 and 
Si(j) = 1 implies that the physician Pj would not like to be on duty in 
the shift Si but the schedule dissatisfies this specification. Therefore, 
Eij ⊗ Si(j) = 1 if and only if the schedule dissatisfies the 
specification of shift Si from the physician Pj.  

2.4. Resident Physician Scheduling Problem 
In Section 2.3 we formally propose two hard constraints C1 and C2, 
and four soft constraints C3 – C6 for the Resident Physician 
Scheduling Problem. Since there may not exist a feasible solution 
satisfying the six constraints, the Resident Physician Scheduling 
Problem only requests the schedule designers to search for the 
optimal feasible schedules which satisfies the hard constraints C1 
and C2 while minimizing the penalties of violating the soft 
constraints C3 – C6.  

The penalty of violating the soft constraint C5 definitely increases 
with the variance of the work loads of all the physicians, therefore, 
we apply the cost CFSC defined by equation (1) to be the penalty of 
violating the soft constraint C5. 

( ) ( )∑ ∑ ∑∑
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Since Eij ⊗ Si(j) = 1 if and only if the schedule dissatisfies the 
specification of shift Si from the physician Pj, we define the penalty 
of violating the soft constraint C6 to be the cost CPSC in equation (2) 
below. 
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m

j
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The penalty of violating the soft constraint C4 should be strictly 
decreasing with the number of rest shifts between two successive 
duty shifts. To formally state the penalty between two duty shifts, 
for each two shifts Si and Sj satisfying i < j and for each physician 
Pk, we define the shift penalty function SPF(i, j, k) as follow. 

D7. ( ) ( ) ( ) ( )
⎩
⎨
⎧ ≤+−+××

=
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,                                             0
 if ,1,,
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Based on this definition, the cost CSSC defined in equation (3) not 
only increases with the penalty of violating the soft constraint C4 
but also increases with the penalty of violating the soft constraint 
C3. Therefore, we employ the cost CSSC in equation (3) as the 
penalty of violating the soft constraint C3 and C4 of the Safe 
Schedule Constraint. 
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According to the definitions D1 – D7 and the definitions of the cost 
CSSC, CFSC and CPSC above, we propose the Resident Physician 
Scheduling Problem as follow. 
Minimize  

CFSC，CPSC and CSSC                          (4) 

Subject to  
∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ m, Si(j) ∈ {0, 1}  (5) 

∀1 ≤ i ≤ n, ( )∑
=

=
m

j
ii jSD

1

  (6) 

∀ 1 ≤ i ≤ n – MCDS + 1 and ∀ 1 ≤ j ≤ m, 

 ( )∏
−

=
+ =

1

0

0
MCDS

k
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3. THE PROPOSED GENETIC 
ALGORITHM 

Figure 4 shows the proposed genetic algorithm for solving the 
Resident Physician Scheduling Problem. In Figure 4, the proposed 
algorithm first generates the initial population, and each 
chromosome in the initial population has a fitness value (See section 
2.3, 2.4 and 3.2). The higher fitness value means the worse 
chromosome, because of getting more values for violating 
constraints. The algorithm then applies the proposed reproduction 
method to generate an intermediate set of selected chromosomes 
called H1 which contains the same number of chromosomes as the 
initial population. The proposed genetic algorithm then applies the 
proposed crossover operator to generate two new chromosomes into 
the intermediate set H2. When the H2 contains the same number of 
chromosomes as the initial population, the algorithm then applies 
the proposed mutation operator to generate the chromosomes of the 
next generation. At this stage, if the termination criteria are satisfied, 
then the algorithm shows the recommended solutions and then 
terminates its process. If the termination criteria are not satisfied, 
then algorithm continues the procedure until the termination criteria 
are satisfied.  

In the proposed algorithm, the termination criteria first test whether 
the number of generations exceeds the user-defined value. If the 
number of generations does not exceed the user-defined value, the 
termination criteria then test whether there are any feasible 
chromosomes whose penalties are 0.  

 
Figure 4. The proposed genetic algorithm  

 

3.1 The Chromosome and Initial Population  
According to the definition of schedule in Section 2.3 and the 
definition D3 in Section 2.2, a chromosome is a binary sequence  
<Si(j)> = <S1(1), …, S1(m), S2(1), …, S2(m), …, Sn(1), …, Sn(m)> 
where Si(j) ∈ {0, 1} for all i and j.  

The Resident Physician Scheduling Problem has two hard 
constraints. To ensure that the chromosomes do not violate the hard 
constraint C1 in Section 2.3, we employ the Algorithm I below to 
generate the chromosomes in the Initial Population. The 
chromosomes generated by Algorithm I automatically satisfy the 
hard constraint C1. 

Algorithm I:  

Step 1: Let i = 1 

Step 2: Randomly select πi ⊆ {1, …, m} containing Di integers. 

Step 3: Let Si(j) = 1 if j ∈ πi and let Si(j) = 0 otherwise. 

Step 4: If i = n, terminate this algorithm. Otherwise, let i = i + 1 and 
then go to Step 2. 

3.2 The Fitness Function 
Figure 5 shows the cost distributions of CFSC, CPSC and CSSC from 
30,000 chromosomes of the Problem 1 in Section 4.1. All of the 
30000 chromosomes are randomly generated by Algorithm I. Their 
mean values are 16.249, 59.997and 134.32, and their standard 
deviation are 5.0729, 2.9176 and 28.522. This figure shows that the 
variance of distributions of the three costs is huge. To avoid the 
nature of the cost distributions prejudicing the optimization 
algorithms against the costs CPSC and CSSC, the fitness function 
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Figure 5. The cost distributions. 

in this study first normalized the three costs before calculating the 
fitness of each chromosome. Specifically, the fitness function in this 
study is defined as H1Z(CFSC) + H2Z(CPSC) + H3Z(CSSC), where Hi 
positive constants for each i means the weight (importance) of the 
corresponding cost and  

( ) dyexZ
x y

∫ ∞−

−= 2
2

2
1
π  

3.3 The Reproduction Methods 
The proposed genetic algorithm employs two well-known 
reproduction methods to generate the intermediate set H1. The first 
one is the Roulette Wheel [5] method and the second one combine 
the Elitism [5] and Tournament [6] reproduction methods. The 
proposed algorithm allows the user to choose any one of them.  
If the user chooses the combination of Elitism and Tournament, he 
has to specify two parameters e and t. The parameter e ∈ [0, 1] 
specifies that the reproduction method to select the best e*L 
chromosomes from the current population, where L is the 
population size. The parameter t is a positive integer which specifies 
the reproduction method to randomly select t chromosomes from 
the current population and then choose the best one of them in each 
reproduction. 

3.4 The Crossover Operators 
In this study, the proposed genetic algorithm takes the one-point [4] 
and two-point crossover [4] operator into consideration with 
crossover rate RC ∈ [0, 1]. Given two chromosomes <Si(j)>, <Ti(j)> 
and a real value z∈[0, 1], if z< RC, the one-point crossover operator 
first chooses an integer 1 ≤ x ≤ n randomly and then generates two 
new chromosomes <Ai(j)> and <Bi(j)> whose definitions are stated 
below. 
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Given two chromosomes <Si(j)>, <Ti(j)> and a real value z∈[0, 1], 
if z< RC, the two-point crossover operator randomly chooses two 
integer 1 ≤ x ≤ y ≤ n and then generates two new chromosomes 
<Ai(j)> and <Bi(j)> whose definitions are stated below.  
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In this study, the proposed genetic algorithm applies the roulette 
wheel selection method to choose the chromosome <Si(j)> and 
chooses the chromosome <Ti(j)> randomly at this stage. 

3.5 The Mutation Operators 
Given the mutation rate RM ∈ [0, 1], we employ the Algorithm II 
below to perform the Bit Mutation [4] operation to ensure that the 
chromosomes in the next generation do not violate the hard 
constraint C1 in Section 2.3. 
Algorithm II:  
Step 1: Let i = 1 
Step 2: Randomly select a real value x ∈ [0, 1]. 
Step 3: If x < RM, then go to Step 5 to perform the mutation 

operation 
Step 4: If i = n, terminate this algorithm. Otherwise, let i = i + 1 and 

then go to Step 2. 
Step 5: Randomly choose two distinct integers j and k from the set 

{1, …, m} 
Step 6: Exchange the value of Si(j) and Si(k), and then go to step 4. 

Here we may reduce the mutation rate for the shifts which possess 
low probability to violate the PSC, if the physician meets the PSC. 
Based on this idea, we propose a new mutation operator called the 
dynamic mutation operator for the resident physician scheduling 
problem. Given the mutation rate RM ∈ [0, 1] and the restraint r ∈ 
[0, 1], we employ the Algorithm III below to perform the dynamic 
mutation operation. 

Algorithm III:  
Step 1: Let i = 1 
Step 2: Randomly select an integer j from the set {1, …, m} 
Step 3: If Eij ⊗ Si(j) = 0, go to Step 9 
Step 4: Randomly select a real value x ∈ [0, 1]. 
Step 5: If x < RM, then go to Step 7 to perform the mutation 

operation. 
Step 6: If i = n, terminate this algorithm. Otherwise, let i = i + 1 and 

then go to Step 2. 
Step 7: Randomly choose a different integers h from j between the 

set {1, …, m} 
Step 8: Exchange the value of Si(j) and Si(h), and then go to step 6. 
Step 9: Randomly select a real value x ∈ [0, 1]. If x < r×RM, then 

go to Step 7 to perform the mutation operation. Otherwise, 
go to Step 6. 

4. EXPERIMENTAL RESULTS AND 
COMPARISONS 
To solve the resident physician scheduling problem, this study 
considers two crossover operators, two mutation operators and a 
selection method with two parameters. In this section, two 
benchmark problems are introduced to test the performance and 
solution quality of each combination. All experiments in this study 
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are performed on IBM PC with 2.0 GHz CPU and 2GB RAM 
running the Windows XP operating system. The values of the 
parameters H1, H2 and H3 in the fitness function are all set as 1. 

4.1. The Benchmark Problems 
Problem 1 
The first benchmark problem and its optimal solution for this study 
are proposed by [7]. The specifications for this problem are 
presented below. 

 There are 7 physicians. (m = 7) 
 There are 70 days and each day has one shift. (n = 70) 
 ∀ 1≤ i≤ 70, Di =1 and Wi = 1.0 
 ∀ 1≤ i≤ 70 and ∀ 1≤ j≤ 7, Eij = 1 if 7 | (i – j) and Eij = 0 

otherwise 
 MCDS = 4. 
 MRS = 3. 

 
Figure 6. The best roster for Problem 1 

Figure 6 shows the only solution whose penalty is zero for this 
problem. In this problem, we recompute the average and standard 
deviation of CPSC each generation, and we employ it to test the 
performance (generations for searching this solution) of each 
combination of the operators and parameters. The best combination 
will be applied in searching the optimization solution for the second 
benchmark problem. 

Problem 2 
The specifications for this problem are presented below. 

 There are 8 physicians. (m = 8) 
 There are 31 days and each day has two shifts. (n = 62) 
 The physician demands are specified in Figure 1. 
 The shift points are specified in Figure 3 
 ∀ i ∈ {1, 3, 5, 7, 9, 11}, Ei1 = 1 and Ei2 = -1 

∀ i ∈ {2, 4, 6, 8, 10, 12}, Ei2 = 1 and Ei1 = -1 
∀ i ∈ {13, 15, 17, 19, 21, 23, 25}, Ei3 = 1 and Ei4 = -1 
∀ i ∈ {14, 16, 18, 20, 22, 24, 26}, Ei4 = 1 and Ei3 = -1 
∀ i ∈ {27, 29, 31, 33, 35, 37, 39}, Ei5 = 1 and Ei6 = -1 
∀ i ∈ {28, 30, 32, 34, 36, 38, 40}, Ei6 = 1 and Ei5 = -1 
∀ i ∈ {41, 43, 45, 47, 49, 51, 53}, Ei7 = 1 and Ei8 = -1 
∀ i ∈ {42, 44, 46, 48, 50, 52, 54}, Ei8 = 1 and Ei7 = -1 
Eij = 0 otherwise 

 MCDS = 4. 
 MRS = 3. 

At current stage, we haven’t found the optimal solution for this 
problem. In this study, we propose this problem to test the solution 
quality (fitness) of each combination of the crossover and mutation 
operators. The parameters of the selection method for minimizing 

the cost of this problem are determined according to the best 
combinations in searching the optimal solution for Problem 1. 

4.2. The Experimental Results and 
Comparisons 

 
Figure 7. The experimental results for Problem 1 

Figure 7 shows the experimental results which indicate the 
performance of each combination of crossover and mutation 
operators over difference parameters for the selection methods. The 
performance in this section means the average number of 
generations for finding the optimal solution in Figure 6. In Figure 7, 
RW in the x-axis means the selection method for the proposed 
algorithm is roulette wheel. E(e)+T(t) in the x-axis means the 
selection method for the proposed algorithm is a combination of 
elitism and tournament where the elitism parameter for the selection 
method is e and the tournament parameter for the selection method 
is t. The average value of each point is estimated from 30 samples. 

In this experiment, the crossover rate is set as 1 for both the 
single-point and two-point crossover, and the mutation rate RM is set 
as 0.005 for both the bit mutation and dynamic mutation operation. 
The restraint r for the dynamic mutation is set as 0.1, and 200 
chromosomes in a generation.  

Figure 7 supports the following conclusions. First, the performance 
of applying the combinations of elitism and tournament is much 
better than applying the roulette wheel for this problem. Second, the 
combination “two-point crossover + dynamic mutation” performs 
better than other combinations in most cases. Third, the best 
performance appears in the combination “two-point crossover + 
dynamic mutation” with the selection method E(0.3) + T(3). Based 
on this conclusion, the second experiment applies the selection 
method E(0.3) + T(3) to compare the solution quality of the four 
combinations of the crossover and mutation operators while keeping 
all other parameters the same. 

Figure 8 – Figure 10 show the distribution of the costs CFSC, CPSC 
and CSSC of the four combinations for problem 2 in the difference 
generations. Figure 8 shows that the combination “single-point 
crossover + dynamic mutation” performs better than others in 
minimizing the cost CFSC. Figure 9 shows that all of the four 
combinations bring the same quality in minimizing the cost CPSC 
after 100 generations, and Figure 10 shows that the combination 
“two-point crossover + dynamic mutation” performs better than 
others in minimizing the cost CSSC. The three figures show that the 
costs convergent with no further improvement after 500 
generations. 
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Figure 8. The distributions of the cost CFSC for Problem 2 

 
Figure 9. The distributions of the cost CPSC for Problem 2 

 
Figure 10. The distributions of the cost CSSC for Problem 2 

 
Figure 11. The best solution of single point crossover and bit 

mutation for Problem 2 

 
Figure 12. The best solution of single point crossover and 

dynamic mutation for Problem 2 
 

 
Figure 13. The best solution of two point crossover and bit 

mutation for Problem 2 
 

 
Figure 14. The best solution of two point crossover and dynamic 

mutation for Problem 2 
 

Figure 11 – Figure 14 show the best solution of problem 2 were 
found by the proposed algorithm with the four different 
combinations, and Figure 15 shows the weight and time of violating 
the safe schedule constraint of each physician in the solution of 
Figure 11 – Figure 14. Since the solutions in Figure 11 – Figure 14 
violate no physician specification constraint, therefore, Figure 15 
ignores the information regarding the PSC. In Figure 15, FX means 
the solution in Figure X.  

In Figure 15, the standard deviations of the weight of the 8 
physician in the four solutions are 0.362284, 0.226385, 0.315945 
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and 0.392565. This also supports the previous conclusion that the 
combination “single-point crossover + dynamic mutation” performs 
better than others in minimizing the cost CFSC. The means of the 
time of violating the SSC of the 8 physician in the four solutions are 
2, 1.5, 1.125 and 0.875 also supports the previous conclusion that 
the combination “two-point crossover + dynamic mutation” 
performs better than others in minimizing the cost CSSC. However, it 
should be noted that the differences of the standard deviations of the 
weight of the four solutions are small and the values are all 
acceptable for most physicians. On the other hand, the time of 
violating the SSC is 1.5 would be less acceptable than the value 
0.875. Therefore, we conclude that the solution quality of the 
solution in Figure 14 is better than others in Figure 11 – Figure 13 
and hence we conclude that the combination “Two-point crossover 
+ dynamic mutation” is better than other combinations for the 
proposed genetic algorithm.  

 

 
Figure 15. Best solutions analysis 

 

5. CONCLUSIONS AND FUTURE WORKS 
In this paper, we analyze the requirements of scheduling the 
monthly rosters for the resident physicians and then formally 
present the resident physician scheduling problem. To solve the 
resident physician scheduling problem, this study adopts the 
evolutionary approach and takes several well-known operators and 
methods such as the single-point and two-point crossover operators, 
bit mutation, roulette wheel, elitism and tournament into 

considerations. Besides, this study proposed a new mutation 
operator called dynamic mutation for minimizing the cost CPSC. 
Several experiments were performed to compare the performance 
and solution quality of difference combinations. The experimental 
results shows that the combination “two-point crossover + dynamic 
mutation with the selection method E(0.3) + T(3)” brings best 
performance and solution quality for solving the resident physician 
scheduling problem. 

This study is incomplete. First, the design of a roster should take the 
information in previous monthly roster into consideration. In current 
stage, we can enlarge the chromosomes and enforce the algorithm to 
make no modifications to the boundary conditions (partial result in 
the previous roster). Second, we have no idea in determining the 
weights H1, H2 and H3 for the fitness function. Of current stage, 
manual determination by the experts is the only way determining 
the weights. We are now trying to use machine learning approaches 
to automatically determine the weights. 
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