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ABSTRACT
Some auxiliary systems of next generation naval ships will uti-
lize distributed automatic control. Such distributed control systems
will use interconnected sensors, actuators, controllers and network-
ing components to diagnose and reconfigure the auxiliary systems.
Testing these systems will be difficult with traditional methods of
fault analysis due to the interconnected and automatic nature of
these subsystems. We have designed a suite of genetic algorithms
to find interesting and hidden damage scenarios in a testbed of a
naval subsystem. Given this knowledge, we use a genetic algorithm
to improve upon the design of this subsystem.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Analysis—Opti-
mization

General Terms
Experimentation, Design

Keywords
Application, Multi-objective optimization, Design/synthesis, Co-
evolution

1. INTRODUCTION
Some auxiliary systems of next generation naval ships will uti-

lize distributed automatic control. Such distributed control systems
will use interconnected sensors, actuators, controllers and network-
ing components to diagnose and reconfigure the auxiliary systems.
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Auxiliary systems are designed with redundant capabilities to as-
sure survivability and robustness in the presence of battle damage.
However, because damage to the automatic control system can re-
sult in loss of auxiliary system control, survivable auxiliary systems
require that control systems be designed with redundancy greater
than or equivalent to the redundancy inherent in the auxiliary sys-
tem.

Building on previous efforts[1], We have used evolutionary test-
ing to evolve challenges, i.e. component level damage, to an on-
board ship system on which is layered a set of intelligent agents
that make inferences about the system’s state and reconfigure the
system. The goal was to challenge the system in an effective man-
ner, seeking out counterintuitive scenarios or minor damage that re-
sults in significantly impaired system performance. This was then
followed by evolutionary testing of the design itself. Thus, the ul-
timate goal was to devise a prototype design tool and approach for
the creation of distributed control systems that will result in con-
trol systems, and consequently auxiliary systems that are more ro-
bust and survivable. Key design elements that were investigated
were the location of sensors. Future investigations would include
the physical location of control system components, the number of
sensors, and the scope, or ”responsibility,” of high level intelligent
control agents.

In this paper we describe the design of our testbed, our experi-
ments, and results.

2. SYSTEM DESIGN
This section describes the testbed that was used to perform the

optimization of damage scenarios and system design.

2.1 Overall System Design
A diagram of the overall system design can be seen in Figure 1.
The plant model, sensor model, diagnosis model, and control

model make up the core of the fitness function for the genetic algo-
rithms. These components are described in detail in sections 2.2,
2.4, and 2.3.

Two separate genetic algorithms are displayed in the system di-
agram. One, the Damage GA, consists of the components labelled
“Damage Fitness Evaluator”, “Damage Genetic Algorithm Stim”,
“Failures”, and “Spatial Model”. The other GA, referred to as the
Design GA, consists of the components labelled “Sensor Placement
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Figure 1: Oak 3 System Block Diagram

Fitness Evaluator”, “Sensor Placement GA Stim”, and “Sensor Lo-
cations”.

The general idea here is that the fitness function represents a sim-
ulation of a target system plus the control software that operates on
that system. The damage GA and design GA are attempting to use
this function to measure the worst damage event possible, or the
best design of the sensor system, respectively. How this was actu-
ally calculated is detailed in sections 2.7 and 2.6.

2.1.1 Component high-level descriptions
The components of the fitness function each serve a different

role in simulating the target system. The Plant Model acts as a
ground-truth simulator of the system’s physical components. The
Plant Model can simulate the effects of damage on the system and
can accept and implement low-level system commands. The Sensor
Model models the sensors that are detecting the state of the physical
system. The Diagnosis Model and Control Model represent the
target system’s control system. In our setup we give the control
system one shot to determine the state of the system from limited
sensor data and attempt to reconfigure the system to a better state.

The components of the GA’s attempt to come up with optimal
damage or sensor placements based on the methods of Genetic Op-
timization. Their operation is described in sections 2.6 and 2.7.

2.2 Plant Model
To generate ground truth for the diagnosis model, we utilized a

model of the Chilled Water demonstration system built in Epanet2
[6].

The Chilled Water Reduced Scale Autonomy Demonstrator
(RSAD) is the target hardware-in-the-loop simulator used for this
research. The NSWC CD Philadelphia, Auxiliary Machinery Con-
trols & Automation Branch constructed the RSAD as a model of a
reconfigurable fluid system test platform to demonstrate technolo-
gies for unmanned operation. The RSAD fluid system hardware
consists of valves, sensors, chillers, heat exchangers which act as
chilled-water consuming services, and pumps. In normal operation
we will attempt to configure this system to provide chilled water
to as many important services as possible. A picture of the RSAD
can be seen in Figure 2.

Figure 2: Reduced Scale Autonomy Demonstrator (RSAD)

2.3 Diagnosis Model
Once ground truth has been provided by the plant model, the

ground truth is filtered using a sensor model, and then sent to the
diagnosis model. This filtration process reduces the ground truth
to what can be determined using the current sensor configuration
being evaluated. The diagnosis model then attempts to form a com-
plete picture of the system state using only the sensor readings. The
diagnosed system state can then be compared against the ground
truth to form a metric of diagnosis success, which is then utilized
by the GA for evaluating the ability of the current sensor config-
uration to correctly assess the faults in the system. To perform
diagnosis on the sensed system state, we used the Livingstone 2
Model-Based Reasoning Engine (MBRE)[7].

2.4 Control Model
The Control Model, as described in section 2.1, looks at the Di-

agnosed State produced by the Diagnosis engine and attempts to
create a set of low-level commands that will produce the best sys-
tem configuration possible. How well the Control Model operates
is fairly dependant on how good the diagnosis is.

The current control model is a planner that is capable of pro-
ducing reconfiguration plans for water supply systems that include
pumps, resources that need to be supplied, and a system of valves
and redundant supply lines. It takes as input a description of the
condition of the system, including pipe, valve and pump states. It
then attempts to create a configuration of these components that
supplies as many services as it can given the state of the system.
The planner also has the capability to supply more important ser-
vices first, and the capability to only supply one of a number of
redundant services if needed.

2.5 Genetic Algorithms
John Holland first proposed genetic algorithms in the 1970s as a

search technique that exploits the idea of biological evolution as it
occurs in nature [5]. The classical genetic algorithm is traditionally
used for search and optimization along the line of one objective
as defined by the fitness function. However, our problem requires
the optimization of two or more objectives at the same time, while
often these multiple goals are at odds with each other.

One way to address such a multi-objective problem with a tra-
ditional GA would be to incorporate both goals in the fitness func-
tion. As an alternative, multi-objective genetic algorithms[4] can
simultaneously optimize multiple objectives. For our purposes we
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chose to try both a single-objective fitness function and compare
results with the multi-objective algorithm NSGA2 [3], which rep-
resents the current state of the art in multi-objective evolutionary
optimization. It implements a standard Pareto frontier based rank-
ing algorithm and a binary tournament selection algorithm.

2.6 Damage Optimization GA
The goal of the damage GA is to discover damage scenarios for

the plant that can render vital services inoperative. We worked on
several different variations of this general idea. We looked at dam-
age scenarios that address specific elements chosen across the en-
tire plant, and scenarios where failures are dependant on the natu-
ral failure rate. In addition, we guide the evolutionary search along
three different dimensions: severity of the damage, likelihood of
the damage, and the complexity of the scenario. Depending on
the different combinations of these elements we developed several
single-objective and multi-objective GAs that are described in de-
tail in the following subsections. In all cases, a damage scenario is
simply a set of system components that the plant model would be
instructed to consider broken as part of its initial condition config-
uration. The severity of damage scenarios would then be evaluated
based on how many and which of the operational loads in the sys-
tem remain functional.

To avoid obvious solutions we limit the total number of damaged
components and only look at damaging valves, pipes, chillers, and
pumps, leaving the actual services and loads that characterize the
operational state of the system out of reach. If we let our GAs
damage services and loads directly, it would be trivial to find se-
vere damage scenarios by just marking the services themselves as
broken. Similarly, if our GAs have the freedom to damage as many
components as possible, they would quickly find that more dam-
aged components means more severely incapacitated system. Truly
interesting scenarios are these that have great consequences but are
caused by deceivingly small problems.

2.6.1 Damaged Components GA
The damaged components GA (DCGA) is a single-objective GA

that searches for a set of N broken components that would consti-
tute the damage scenario. The size of the set is a parameter that
is specified by the user. As already explained, the smaller the size
of the set, the more interesting the damage scenario would poten-
tially be. The challenge for DCGA is to discover severe damage
scenarios that involve only a few components.

Fitness function.
To guide the evolutionary search DCGA uses a fitness function

that evaluates damage scenarios and calculates a score for each on
of them. DCGA’s fitness function does that by setting the scenario
that is being evaluated as the initial condition for the plant model
simulation and runs it. Next, the sensor model and the diagnostic
model are run to obtain the perceived state of the system which is
fed to the control model. The control model in turn issues a list
of commands in response to any changes from the nominal state
of the system. Finally, these commands are applied by the plant
model and the final state of the system is produced after another
simulation.

The fitness function inspects the final state of the system and cal-
culates a number that reflects the severity of the state by looking at
which services have been rendered inoperative - whether they were
turned off by the control model, or burned out due to overheating.
Different services have different importance to the operation of the
system and the fitness function assigns different points to each ser-
vice. In addition, some services are redundant, so having two of the

same kind working at the same time is not much different than hav-
ing only one when it comes to the operational state of the system.
Yet, having one of two redundant services down is rewarded differ-
ently than having both services open since this is an intermediate
step towards solutions that might have both services down.

For convenience DCGA tries to minimize the fitness function
across its population. To achieve that, the fitness function assigns
points for every service that remains operational after the infliction
of the damage scenario that is being evaluated. The points for each
service range from 1 to 15.

The redundant service pairs are scored together, and slightly
higher score is used when both services are working. The score
values were chosen with the following considerations in mind: a
vital load should be equivalent in fitness to more than one other
vital load, but less than all of them summed together; and redun-
dant loads should affect the fitness the same as one turned-off
non-redundant load if both are turned off. If one or the other of the
redundant loads is on, the fitness should be equivalent to a turned-
on vital service. If both are on, the fitness should be equivalent to
one vital plus one nonvital load. The actual numeric fitness value
is calculated by finding which services are operational and adding
up the corresponding scores.

2.6.2 Damaged Components GA Experiments
In our initial tests, we concentrated on finding damage scenar-

ios where N = 3. In other words, we look for combinations of 3
components that can incapacitate the system as severely as possi-
ble. Table 1 lists the other GA parameters that we used for our
simulation runs.

Parameter Value
Random seeds 1, 10, 20, 30, 40
Population size 30

Generations 25
Elite size 5

Mutation probability per gene 0.05
Crossover probability per gene 0.10

Table 1: DCGA simulation run parameters

According to our results DCGA was able to find damage scenar-
ios which completely incapacitate the system in each of the 5 runs
that we conducted.

Scenario Damaged components
1 PH1S,V002R,V101B
2 PG2S,PP201B,V002S
3 PE3S,V002R,V231S
4 PA4S,V122R,V234R
5 PA1S,V121R,V204S
6 ACP101,V122S,V204S
7 V006R,V121R,V122S
8 V003S,V006S,V231S
9 V122R,V127S,V230R
10 V121S,V127R,V231R

Table 2: DCGA sample damage scenarios

Table 2 lists some sample damage scenarios discovered by
DCGA that incapacitate the entire system. Because DCGA is
free to explore any combination of three components the broken
elements in these scenarios are scattered across the entire system.
Even though such scenarios are unlikely, they may constitute a
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good benchmark for constructing robust designs of the chilled
water system.

2.6.3 Natural Failures GA
The natural failures GA (NFGA) addresses the problem of find-

ing a severe as well as a likely natural failure scenario. Each com-
ponent in the system has a certain probability of failing from nat-
ural tear and wear, which is measured in terms of the mean time
between failures (MTBF). Table 3 lists the MTBF for every type
of component. All components that are of the same type share the
same probability of failure.

Component type MTBF in days
Pipe 180
Valve 30

Service 15
Load 60

Chiller 20
Pump 20

Table 3: MTBF in days per component type

When using NFGA the user can specify N - the number of dam-
aged components just as in DCGA. The difference is that in addi-
tion to any damaged components, there is an arbitrary set of com-
ponents that are considered failed due to natural causes. The com-
bined set of damaged and failed components constitutes the damage
scenario that is evaluated.

If the user sets N to zero, then NFGA would explore the space of
natural failure scenarios. It would try to discover a set of compo-
nents that fail naturally at the same time to bring as many services
down as possible. The difference from DCGA is that NFGA con-
siders the total likelihood of the natural failures occurring at the
same time. The more natural failures the chromosome accumu-
lates, the less likely the scenario becomes as per Table 3.

One of the purposes of NFGA is to explore this tradeoff - severity
of the scenario versus total likelihood of such a scenario occurring
in reality. The N parameter can be used to balance that tradeoff.
The larger N is, the more components NFGA can damage without
incurring a loss in likelihood. The more damaged components there
are, the fewer natural failures we need to produce a severe damage
scenario altogether, and thus the more likely it would be.

Fitness function.
The addition of failure to the chromosome and NFGA’s ability to

fail as many components as necessary introduce the need to balance
the total loadScore with the likelihood of the failures to occur in the
first place. Since NFGA has to minimize the score but maximize
the probability of the failure to occur, the formulation shown in
Equation 1 was used.

Fitness =
1 + loadScore∏Allfailures

i=1
1

MTBFComponenti

(1)

The loadScore term represents the total damage severity and is
calculated as described earlier. The larger the probability of all fail-
ures in the chromosome to occur at the same time, the smaller the
fitness value will be. In Equation 1 the effect of the probabilistic
term is more pronounced relative to the loadScore since dividing
by small numbers such as the failure probabilities results in values
that are larger than the maximum loadScore. Yet, bringing the load-
Score down as a result of having severe damage scenarios reduces
the overall value significantly as well.

2.6.4 Natural Failures GA Experiments
We use NFGA to discover likely natural failure scenarios. For

our experiments we set the number of damages N to 0 and explore
purely natural failure scenarios. We conducted a set of experiments
similar to the ones we made with DCGA. We ran NFGA over five
different seeds and observe the results. Our preliminary runs indi-
cated that NFGA requires more generations and a larger population
than DCGA, so here we use a population size of 100 individuals
and run for 100 generations. The mutation and crossover proba-
bilities remain similar as from their perspective the chromosome
structure is virtually the same.

Figure 3 shows the progression of the minimum fitness for each
generation for the NFGA run with a seed equal to 1.

Figure 3: NFGA progress for seed 1

For all five seeds we observed a quick improvement in the fitness
during the first half of the run and the invariable discovery of the
same best solution - an individual with no natural failures. Table 4
lists some of the damage scenarios that NFGA discovered and their
respective fitness values.

Scenario Damaged components Fitness
1 None 58
2 PP101B 1160
3 ACP201 1160
4 V005R 1530

. . .
9 V002S,V005S 49500.0
10 PD4S,V002R,V201B 162000.0

Table 4: NFGA sample damage scenarios

This result is counterintuitive at first since our expectation is to
find a damage scenario and NFGA gives us a scenario where all
components are healthy. A closer look at our fitness function how-
ever reveals that NFGA actually did an excellent job.

The reason lies in the fundamental problem that plagues tra-
ditional GAs which try to solve multi-objective problems. The
purpose of NFGA is to find severe damage scenarios, which are
also very likely. To achieve this we put together a fitness function
which incorporates both elements - likelihood and damage sever-
ity as specified by Equation 1. Yet, NFGA simply found the most
likely but least damaging scenario - that of no natural failures and
therefore a maximum loadScore of 57.

The more failures, the larger the total sum becomes. Similarly,
the larger the loadScore is, the larger the total sum is as well. Yet,
for the loadScore to decrease, at least some failure must occur, but
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even the most likely failure (MTBF 20) more than compensates for
any decrease in loadScore and brings the total fitness value above
what it used to be.

The initial improvement is due to the fact that there are so many
failures that the scenarios are very unlikely and the fitness value is
very high. In addition however, due to the many failures the load-
Score is zero - indicating the great damage severity of the scenarios.
NFGA proceeds to reducing the amount of natural failures gaining
large improvements in total fitness value without incurring any loss
from a reduction in severity - whether half or a quarter of all com-
ponents are failed, the loadScore will still be down to zero. DCGA
showed us that only 3 out of 70 components are enough to bring
the loadScore down to zero.

This continues up to the point when the total number of natural
failures is low enough that removing more failures would actually
result in part of the chilled water system remaining operational.
Even then however, removing an additional failure reduces the total
fitness more than the gain in loadScore increases it as explained
above. For that reason NFGA settles with no failures at all and a
maximum loadScore of 57, bringing the total fitness to 58.

NFGA is a shining example of the problem of traditional GAs
which try to solve multi-objective problems. One can try to bal-
ance the fitness function a little better and increase the penalty that
comes from the loadScore term when the total number of failures
begins to decrease too much, but invariably NFGA will converge
to the one specific area of the solution space, which is strictly de-
scribed by the fitness function. What we really need to expose is
the Pareto frontier[2] of non-dominated solutions that show the ac-
tual trade-off between the likelihood of a failure scenario and its
severity.

2.6.5 Natural Failures MOGA
Here we translate NFGA into its multi-objective variant (NF-

MOGA). The motivation behind this is that we would like to ad-
dress the issues described in section 2.6.4. NFGA optimizes two
objectives - the severity of the damage scenario and its total like-
lihood. Because the fitness function combines the two metrics
NFGA suffers from convergence towards specific parts of the solu-
tion space without exposing the Pareto frontier of non-dominated
solutions that truly describe the tradeoff between the two objec-
tives.

Objective functions.
The two objectives that NFMOGA optimizes are the severity of

the damage scenario and the likelihood of all indicated natural fail-
ures occurring at the same time. We split them in two separate
objective functions. For the severity of the damage scenario we use
the familiar loadScore, while for the likelihood objective we use
Equation 2 below.

Likelihood = log
1∏Allfailures

i=1
1

MTBFComponenti

(2)

In this formula we take the logarithm with base 10 of the origi-
nal metric in order to rescale the product. The likelihood objective
needs to be minimized in order to get a high probability of all fail-
ures occurring at the same time

2.6.6 Natural Failures MOGA Experiments
The experimental set-up for NFMOGA follows the same struc-

ture as with our other GAs. We use five different seeds and observe
the results. We run NFMOGA for 200 generations and use the same
mutation and crossover probabilities that we had for NFGA since

the chromosome is the same. Here the standard elitism mechanism
is irrelevant because NSGA2 [3] achieves that effect intrinsically.

Figure 4 displays NFMOGA’s progress for seed 10. The set-up
of this figure is different from what we have seen so far. It shows the
Pareto frontier of non-dominated solutions for each generation as a
set of connected points. Every point represents a specific individual
evaluated along the two objectives that NFMOGA optimizes. The
y-axis shows the value for the Likelihood objective, while the x-
axis shows the value of the loadScore.

Figure 4: NFMOGA progress for seed 10

The goal of NFMOGA is to minimize both objectives, so we
see a shift of the Pareto frontier towards the origin as generations
progress. Not surprisingly we see most of the individuals spread
out along the Likelihood objective and with a zero value for the
loadScore objective. The reason for that is the same as it was for
NFGA. It is likely that the chromosomes contain more than enough
failures to bring the whole system down, especially in the initial
generations. This trend is consistent for each of the five seeds that
we used.

The difference from NFGA however is that here the prevalence
of severe damage scenarios does not hinder the discovery of solu-
tions where the loadScore is not zero. The multi-objective mecha-
nism ensures that the two goals are optimized independently and we
can see the range of the tradeoff between Likelihood and loadScore
more clearly. Table 5 lists some of the non-dominated scenarios
discovered by NFMOGA after 200 generations.

Scenario Damaged components loadScore Likelihood
1 NONE 57.0 0.0
2 V122R 57.0 1.4
3 V006S 56.0 1.4
4 PP201A,V003S 51.0 2.7
5 V103S,V603S 46.0 2.9
6 V005R,V006S 45.0 2.9
7 PC3S,V231R 20.0 3.7
8 V121R,V127R,V234S 16.0 4.4
9 PB3S,V006R,V231S 16.0 5.2

Table 5: NFMOGA sample damage scenarios

We ordered the scenarios in Table 5 to show the tradeoff between
the two objectives. Clearly with the increase of the Likelihood
(smaller values) the severity of the damage decreases (loadScore
increases). NFMOGA does a much better job than NFGA at expos-
ing this relationship and helps for a more thorough understanding
of the problem.
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2.7 Design Optimization GA
One of our goals for this project is to demonstrate the use of an

evolutionary algorithm for exploring different designs of the chilled
water plant system. The first things that come to mind when dis-
cussing evolutionary algorithms are search and optimization, how-
ever design could be viewed as a kind of optimization as well. As
long as we can provide a genetic representation of our designs and
a way to evaluate them, we can use an evolutionary algorithm to
explore and optimize different solutions.

2.7.1 Flowmeter Sensor Location MOGA
The flowmeter sensor location MOGA (FSLMOGA) searches

for robust configurations of the flowmeter sensors in the system,
while at the same time it tries to minimize the total number of sen-
sors used. The motivation is to provide an automated mechanism
that can reduce the cost of the diagnostic system while it preserves
its quality by exploring the tradeoff between these competing ob-
jectives.

The sensor model of the system is designed with 16 flowmeter
sensors - one for each service in the plant model. FSLMOGA ex-
plores different variants of this by trying to use fewer sensors. It
essentially removes some of the flowmeter sensors while it keeps
the others and searches for the ones that are not vital to the good
operation of the diagnostic model.

Genotype and genetic operators.
The genetic representation for FSLMOGA needs to encode for

the presence or absence of 16 different flowmeter sensors. For this
purpose we chose to use 16 boolean-valued genes in our chromo-
some - one for each sensor. A ’true’ value in a gene means that the
corresponding sensor is present, while a ’false’ value means that it
is absent. Table 6 shows an illustration of the FSLMOGA chromo-
some.

Chromosome Gene1 Gene2 Gene3 . . . Gene16

Value true false true . . . true

Table 6: FSLMOGA genotype

There is no limit to how many sensors may be removed at a time.
The exploration ranges from setups where there are virtually no
flowmeter sensors to systems where all 16 sensors are present.

Objective functions.
FSLMOGA is trying to minimize the number of flowmeter sen-

sors used, while at the same time it maintains the ’robustness’ of the
system. We evaluate the robustness of a configuration by running
it against a portfolio of selected damage scenarios and evaluating
the loadScore metric for each one of them. Next, the difference be-
tween the maximum possible score and the resulting loadScore is
taken, and the average across all damage scenarios is found. Equa-
tion 3 describes the resulting robustnessScore.

robustness =

∑Scenarios
i=1 (maxScore− loadScorei)

numScenarios
(3)

This objective practically tries to maximize the familiar load-
Score metric across a set of damage scenarios. A sign of a healthy
system would be a high loadScore, where as many services as pos-
sible are operational. By subtracting the loadScore from the max-
imum possible score, we convert the problem from maximization
to minimization for convenience. The damage scenarios that con-
stitute the portfolio are chosen by the user. They can certainly be

evolved with one of our damage genetic algorithms like NFMOGA
for example.

The maxScore constant here is equal to 58 instead of 57 when
one of the main services is turned off.

The second objective of FSLMOGA is to minimize the number
of flow meter sensors used. This objective is directly at odds with
the robustnessScore goal, as reducing the amount of sensors trans-
lates in poorer diagnoses for the diagnostic model, and therefore
smaller loadScore. Equation 4 shows the sensorsScore metric.

sensorsScore = Number of sensors used (4)

2.7.2 Design Optimization GA Experiments
Here we run FSLMOGA for five different seeds to see if it can

discover robust designs with fewer flowmeter sensors. For these
experiments we put together a portfolio of damage scenarios that
were discovered by another GA that optimized explosion events
with an explosion radius of 20 units. Tables 7 and 8 list the damage
scenarios that went into the portfolio, while Table 9 lists the values
for the standard GA parameters that were used.

Scenario X Y Z loadScore TruthScr
1 68.5 55.6 48.9 0.0 41
2 79.1 79.2 50.5 31.0 60
3 35.0 43.0 49.0 31.0 63
4 71.4 46.4 29.1 46.0 49
5 71.5 59.5 42.5 46.0 42

Table 7: Damage scenarios portfolio

Scenario Components
1 V003S,PB5S,PB5R,

V103S,PA4S,PA4R,V103R
2 PA1S,PA1R,V003S,V003R,

PB5S,PA7S,PB5R,PA4S,
V002S,PA7R,V002R,PA4R

3 PB5S,PA7S,PB5R,
PA7R,V103R

4 V003S,PA4S,PA4R
5 V003S,PB5S,PB5R,V103S

Table 8: Damage scenarios portfolio components

We chose these scenarios with several considerations in mind.
First of all, we picked scenarios that affect the system differently.
Some are more confusing, while others are more severe. The total
robustnessScore for the portfolio is 27.2 if all scenarios are evalu-
ated with the full set of 16 flowmeter sensors.

Parameter Value
Random seeds 1, 10, 20, 30, 40
Population size 30

Generations 30
Mutation probability per gene 0.10
Crossover probability per gene 0.10

Explosion radius 20

Table 9: FSLMOGA simulation run parameters

Our preliminary runs showed that a smaller population size and a
fewer number of generations would be sufficient to see reasonable
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convergence towards the true Pareto frontier. In addition, we de-
creased the mutation and crossover probabilities. The chromosome
is built from 16 genes, so these probabilities ensure at least one or
two mutation / crossover events per mating which is the typical set-
ting for a standard GA. Figure 5 shows the progress of the Pareto
frontier for seed 40.

Figure 5: FSLMOGA progress for seed 40

The advancement of the set of non-dominated solutions from
generation to generation is clearly visible. The shape of the Pareto
frontier that FSLMOGA discovers is the same across all five seeds
and the solutions that it includes range from a total of 12 flowmeter
sensors to none.

According to the results the system can maintain the same ro-
bustness that it has with 12 sensors with only 2 sensors. This is an
impressive reduction. Furthermore, the robustnessScore is brought
down to 11.4 for 2 sensors from 27.2 with 16 sensors.

We begin to see an increase in the robustnessScore if we go down
to one or no sensors at all, but even then it does not exceed 27.2,
which is a very counterintuitive result. Practically, the system per-
forms just as well without any sensors as with all of them, and
performs best with just a subset. This is due to the fact that the ac-
curacy of the diagnosis produced by the diagnostic model depends
not only on how many and which specific sensors are available, but
also on the specific damage scenario and the default state of the
system. Because of the interaction of these three factors, some-
times sensors may provide misleading information and it would be
more accurate to just take the default state of the system instead of
the measured state. FSLMOGA discovers these inefficiencies for
the specific scenarios in the portfolio and discards the misleading
sensors, preserving only the essential ones.

For each of the five different seeds FSLMOGA discovers the
same set of 2 flowmeter sensors that bring down the robustnessS-
core to 11.4 just by themselves. It is always the sensors on SP23
(RS02) and SP107 (RS22S) that are kept. Table 10 compares the
loadScore and the sensedTruthScore for each of the scenarios in the
portfolio when they are evaluated with a system that works only
with these two sensors versus a system that works with the full set
of 16 sensors.

We see a dramatic increase in the loadScore as well as the
sensedTruthScore for three of the scenarios. A loadScore value of
57 means that the system is fully operational, and all services are
being supplied with chilled water. It is an interesting result that by
removing the right set of sensors such a large improvement can be
gained.

Scenario loadScr16 truthScr16 loadScr2 truthScr2
1 0.0 41 57.0 59
2 31.0 60 31.0 60
3 31.0 63 31.0 63
4 46.0 49 57.0 61
5 46.0 42 57.0 60

Table 10: Damage scenarios comparison for a system with 16
sensors vs. a system with 2 sensors

The most compelling example is scenario 1. By removing all
sensors but the two FSLMOGA discovered we gain an improve-
ment from a completely incapacitated system to all services oper-
ational. This implies that the damage scenario itself did not really
destroy the system, but rather resulted in a confusing diagnosis,
which in turn prompted the control model to shut all services down.
Now that FSLMOGA removed the confusion produced by some of
the sensors, the control model takes actions that are appropriate for
the situation and the damage is handled without any consequences
for the operation of the system.

This is evident by the increase in sensedTruthScore. The sensed-
TruthScore is a measurement of the accuracy of the diagnosis
produced by the diagnostic model. A higher value means that
fewer components in the system were misdiagnosed. The maxi-
mum value for the sensedTruthScore is 64.

2.7.3 FSLMOGA vs. damage GA experiment
FSLMOGA was able to discover a design for the system that has

an improved ability to handle the damage scenarios in the selected
portfolio. The natural question that this result provokes is whether
this new design is truly better. It could be the case that FSLMOGA
simply optimized for the specific set of damage scenarios that were
part of the portfolio and any other damage scenario would be dev-
astating. Even worse, it may turn out that reducing the amount of
flowmeter sensors to 2 may turn some previously benign damage
scenarios into serious threats.

Such concerns are well founded as any optimization or search
technique always carries some risk of overfitting the solutions it
produces. One way to test whether this is the case is to actually
go back to the damage GA and have it discover new damage sce-
narios for the chilled water system when it is equipped only with
the two sensors suggested by FSLMOGA, namely the sensors on
SP23 (RS02) and SP107 (RS22S). This time the GA failed to dis-
cover a solution that incapacitates the whole system for each of the
five different seeds. In addition, the damage GAcould not bring the
sensedTruthScore below 55 either. This implies that the design that
was discovered by FSLMOGA is fairly robust and is better than the
original one.

3. SUMMARY OF ANALYSIS AND
FUTURE WORK

In this project our objectives were to demonstrate the applica-
bility of evolutionary algorithms to intelligent ship control systems
testing and design. For our purposes we developed several genetic
algorithms (GA) and multi-objective genetic algorithms (MOGA)
that we used to discover damage scenarios for a chilled water plant
system and to search for improved configurations of the sensor lay-
out in the system.

As a first step we developed the damaged components GA
(DCGA). This algorithm was used to search for damage scenarios
that are unrelated in space and incapacitate the chilled water sys-
tem as severely as possible. Our experiments demonstrated that

2120



DCGA can easily discover sets of three components that if dam-
aged simultaneously can bring the whole system down. Although
unlikely, such scenarios are excellent examples of counterintuitive
situations that seem benign at first, but actually have the potential
to be terminal for the operations of the entire system.

Next we added the notion of likelihood to DCGA in what be-
came the natural failures GA (NFGA). It took into account the like-
lihood of any given component failing due to natural causes and
produced natural failure scenarios that were as likely as possible,
but also as severe as possible. Given these two separate objectives,
NFGA combined them in its fitness function, which practically es-
tablished a specific relationship between them. This forced NFGA
to discover solutions that were likely, but not very damaging to the
system.

To remedy NFGA’s problem we were motivated to transform it
into a multi-objective GA, which we called NFMOGA. It split the
likelihood and the severity of a natural failures scenario in two sep-
arate objectives that were optimized independently. This helped us
expose the actual tradeoff between the two objectives and to exam-
ine a Pareto frontier of non-dominated solutions. We exposed the
clearly inverse relationship between the likelihood of a scenario and
the level of severity that it has.

This led us to our final step for which we created the flowmeter
sensor location multi-objective GA (FSLMOGA). It is our take on
creating an EA that explores different design options for the sensor
placement in the chilled water plant. FSLMOGA used a portfolio
of damage scenarios generated with a GA to evaluate its designs.
During our experiments with FSLMOGA we discovered that it is
possible to use only two out of sixteen sensors, which perform bet-
ter than a system equipped with the full set of sensors installed.

FSLMOGA optimized the average operational level of the sys-
tem across the portfolio of damage scenarios as well as the total
number of sensors used in the system. We managed to get sig-
nificant gains in survivability while reducing the total amount of
sensors down to two out of sixteen.

To validate these results we conducted a final experiment where
we took the two-sensor design produced by FSLMOGA and we fed
it back into the damage GA in an attempt to discover new damage
scenarios that can break it. While our results revealed that there
are damage scenarios that can bring a good portion of the system
down, the damage GA failed to discover a damage scenario that
completely incapacitates the system. In addition, the damage GA
was unable to discover damage scenarios that lead the diagnostic
model to misinterpret the state of more than 10 components.

This led us to believe that there are some inefficiencies in the di-
agnostic system, which can be remedied by removing some sensors
and preserving others that are key to its proper operation. In addi-
tion, the process of going back and forth between a ’damage’ GA
and a ’design’ GA resembles an arms race process that can be used
to evolve ever better designs that can handle progressively adapted
damage scenarios. Such a mechanism can be automated into a co-
evolutionary process which evolves damage scenarios and system
designs in parallel as separate species.

Competitive coevolutionary algorithms have been developed for
many different applications and are suggested as an avenue of fu-
ture work for this project. We believe that there is much to be
learned about the robustness of the chilled water plant in a coevo-
lutionary environment, especially if the system is rid of its ineffi-
ciencies and more accurate simulation models are employed.

By using a sequential approach of going back and forth between
two separate algorithms like the damage GA and FSLMOGA the
user runs the risk of settling at local optima for the design and
the possible damage scenarios. On the other hand, by maintain-
ing two populations in parallel and evolving them simultaneously,
a coevolutionary algorithm has a much greater ability to explore
the full specter of possibilities and arrive at globally optimal so-
lutions both for designs and damage scenarios. The intrinsic in-
teraction between the two and the diversity offered by maintaining
entire populations instead of small portfolios remedy the inherent
bias and premature convergence issues of a sequential approach.
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