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ABSTRACT
In this paper, we develop a new optimization framework that
consists of the extended compact genetic algorithm (ECGA)
and split-on-demand (SoD) to tackle the characteristic de-
termination problem for solid state devices. As most deci-
sion variables of characteristic determination problems are
real numbers due to the modeling of physical phenomena,
and ECGA is designed for handling discrete-type problems,
a specific mechanism to transform the variable types of the
two ends is in order. In the proposed framework, ECGA is
used as an optimization engine, and SoD is adopted as the
interface between the engine and the problem. Moreover, in-
stead of one mathematical model with various parameters,
characteristic determination is in fact a set of problems of
which the mathematical formulations may be very different.
Therefore, in this study, we employ the proposed framework
on three study cases to demonstrate that the technique pro-
posed in the domain of evolutionary computation can pro-
vide not only the high quality optimization results but also
the flexibility to handle problems of different formulations.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global op-
timization; J.2 [Computer Applications]: Physical Sci-
ences and Engineering—Electronics, engineering, physics

General Terms
Algorithms, Design, Experimentation

Keywords
Characteristic determination, Solid state devices, ECGA,
Adaptive discretization, Split-on-demand, SoD

1. INTRODUCTION
The realization of modern computing equipment, which

vastly contributes to all the fields related to computation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

relies on the advance and development of the integrated cir-
cuit (IC) [3, 22]. One the most fundamental and important
element in the integrated circuit is the solid state device [21,
17], for example, the bipolar junction transistor (BJT) [17],
the metal-oxide-semiconductor field-effect transistor (MOS-
FET) [15], the thin-film transistor (TFT) [12], and the like.
The solid state device is the basic building blocks for the
integrated circuit design and composition. The quality and
properties of the solid state device are critical to the in-
tegrated circuit and are therefore critical to the computer
systems which are built up on the integrated circuit. Hence,
the development of solid state devices plays an essential role
in modern computation from a fundamental perspective.

One of the key issues in developing the solid state device is
to determine crucial characteristics for the observed physical
phenomena [1, 13]. Different structures, materials, or fab-
rication processes can make the produced device to possess
different properties. In order to gain understandings of how
the device operates and to improve current devices or invent
new devices, characteristic determination has to be properly
conducted. Unlike those problems, which is composed of one
mathematical model with various parameters, often tackled
in the computation related disciplines, characteristic deter-
mination is in fact a variety of problems of which the math-
ematical formulations may be very different thanks to the
different underlying physical phenomena. Thus, although
certain optimization techniques might be utilized to handle
some characteristic determination problems, it is very dif-
ficult to employ a single method to determine parameters
coming from dissimilar physical models.

Given the importance and difficulty of the characteristic
determination problem for solid state devices, researchers
and developers oftentimes take two approaches. One is to
make a lot of efforts to adopt a traditional optimization
method for every encountered physical model. The other
is to manually determine the characteristics. Manual de-
termination usually involves several person-weeks or even
person-months to handle only a few problems. However,
the methods proposed in evolutionary computation, such as
genetic algorithms (GA) [9, 5, 6, 24], offer an alternative
approach thanks to their flexibility. In order to speed up
the development of solid state devices as well as to relocate
the manpower for better use, we develop a new framework
based on the techniques in evolutionary computation.

Particularly, in the present work, we adopt the extended
compact genetic algorithm (ECGA) [8] as the back-end opti-
mization engine and the split-on-demand (SoD) technique [4],
an adaptive discretization method, as the interface between
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ECGA and the characteristic determination problem. We
employ the proposed framework to tackle three different
characteristic determination problems encountered while con-
ducting research on thin-film transistors. The numerical re-
sults we obtained for determining the characteristics on the
three study cases demonstrate that the proposed framework
can handle problems of different natures and deliver high
quality solutions in an efficient manner.

The remainder of the paper is organized as follows. In sec-
tion 2, the idea, integration, and workflow of the real-coded
ECGA, which is composed of ECGA and SoD, are described
in detail. In section 3, we employ the proposed framework
to tackle three characteristic determination problems of dif-
ferent natures. Finally, section 4 gives a summary of this
study and draws conclusions.

2. THE REAL-CODED ECGA
The real-coded ECGA is a new optimization framework,

composed of the extended compact genetic algorithm [8]
and split-on-demand (SoD) [4], proposed in the study. In
this section, we will first give a brief review of ECGA, then
describe how SoD discretizes real numbers for ECGA, and
introduce the integration of ECGA and SoD.

2.1 A Brief Review of ECGA
The major difference between ECGA and traditional ge-

netic algorithms is that ECGA is one of the estimation of dis-
tribution algorithms (EDAs) [14, 18], which use probability
models to describe populations and replace the crossover op-
erator with sampling procedures. There are two main asser-
tions behind the concept of ECGA. First, learning a “good”
probability distribution is equivalent to learning linkage.
Second, the “goodness” of a probability distribution is based
on how much space is needed to store the population as well
as the distribution.

As a precursor of ECGA, the compact GA (cGA) [7] re-
vealed that the population in genetic algorithms can be
represented as a probability distribution, and the role of
crossover can be played by sampling the model. Thus, find-
ing the optimal solution in cGA is equivalent to finding the
optimal probability distribution. ECGA extends the proba-
bility model in cGA to the marginal product model (MPM).
MPMs are similar to the models of the cGA and PBIL [2],
except that they can represent a probability distribution
over more than one gene at a time.

The goal of ECGA is to find “good” distributions, but how
do we define the criterion of the quality of a distribution?
The answer is the idea of Occam’s Razor [16]:

By reliance on Occam’s Razor, good distribu-
tions are those under which the representation
of the distribution using the current encoding,
along with the representation of the population
compressed under that distribution, is minimal.

This idea leads to the definition of the minimum descrip-
tion length (MDL) [19]. Following the definition, we can use
MDL on MPMs and define the model complexity and com-
pressed population complexity of a probability distribution:

Model Complexity = log2 N

mX
i=1

2si , (1)

1
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2

(a) Population distribution and 2 split positions at gener-
ation 1. γ = 0.5. 10× γ = 5.
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(b) Population distribution and 4 split positions at gener-
ation 10. γ = 0.4. 10× γ = 4.

2

−100 100

1453

(c) Population distribution and 5 split positions at genera-
tion 20. γ = 0.3. 10× γ = 3.

Figure 1: Populations and possible split positions
(vertical lines). The numbers close to the positions
are the order in which the positions are decided.

and

Compressed Population Complexity

= N

mX
i=1

X
p

−p log2 p .
(2)

In these formulas, m is the number of subsets, si the size
of the ith subset, p is the probability of a pattern in the
ith subset, and N is the population size. The combined
complexity is the summation of model complexity and com-
pressed population complexity.

In each generation, after selection, ECGA searches for
good MPMs based on their combined complexity to model
the current population. The MPM with the minimal com-
bined complexity is the very model to use. By sampling the
obtained model, the offspring population is created, and the
evolutionary process for optimization is repeated iteratively.

2.2 Split on Demand for Discretization
ECGA is designed for handling problems in the binary do-

main. In order to employ ECGA to tackle problems in the
continuous domain, certain mechanism is needed to trans-
form the type of variables. In this work, for the optimization
functionality, we employ an ECGA extension, iECGA [10],
proposed to directly handle integer variables in ECGA. For
the variable-type interface, we adopt an adaptive discretiza-
tion technique, called split-on-demand (SoD) [4], to encode
the individuals as real vectors into the ones as integer strings
such that ECGA can accomplish the optimization task with-
out significant modifications.

The main idea of SoD is to split the interval where we de-
mand to obtain more information in order to build a more
accurate probabilistic model for the region. There are two
parameters for SoD: the split rate, γ, and the split rate de-
cay, ε. γ is used to determine whether or not an interval
should be split. Assuming that the population size is N , if
an interval contains more than or equal to N × γ individu-
als, this interval should be split into two small intervals at a
random position. By adjusting the split rate, we can control
the accuracy of the probabilistic model and the size of code
table. Figure 1 illustrates a splitting process under different
γ. In Figure 1(a), γ = 0.5 and the search space is split into
three intervals. In Figure 1(b), because γ gets smaller, the
search space is split into more intervals.

Most good optimization algorithms consist of two ele-
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Algorithm 1 Pseudo code for SoD.

procedure Split-on-Demand
Split(lower bound, upper bound)
γ ← γ × ε

end procedure

procedure Split(`, u)
m← random[`, u]
N` ← number of individuals in [`, m]
Nu ← number of individuals in [m, u]
if N` ≥ N × γ then

Split(`, m)
else

Add a code for the range [`, m]
end if
if Nu ≥ N × γ then

Split(m, u)
else

Add a code for the range [m, u]
end if

end procedure

Algorithm 2 Pseudo code for the real-coded ECGA.

procedure rECGA
Gen← 1
Initialize N individuals of real-numbers at random
while Gen ≤ Genmax do

Evaluate the population of size N
Perform tournament selection of size S
Use SoD to produce the code table
Encode the population by using the code table
Model the encoded population with MPM search
Perform crossover with the given MPM model
Generate the offspring with the code table
Gen← Gen + 1

end while
end procedure

ments: exploitation and exploration. In the proposed frame-
work, we control the degree of exploitation vs. the degree of
exploration by adjusting the split rate γ. We use a decreas-
ing factor: ε, where 0 < ε < 1 to manipulate γ. At the early
stage of search, we need more exploration than exploitation.
γ is set to 0.5, which means that one dimension of the search
space will be split into only two or three intervals. As the
search process goes, exploitation is more and more impor-
tant. We multiply γ with ε at each generation to make it
gradually smaller and smaller, and the MPM model is more
and more accurate for the regions filled with individuals.
Finally, Algorithm 1 shows the pseudo code for SoD.

2.3 ECGA with SoD
With the help of SoD, the real-coded ECGA (rECGA) can

now handle problems in the continuous domain. The pop-
ulation in rECGA is represented in two forms: real vectors
and binary strings. In the evaluation and selection phases,
the population is in the form of real vectors. In the modeling
and crossover phases, the population is in the binary-string
form. SoD transforms real vectors into binary strings, and
binary strings are converted back to real vectors by using
random sampling. For example, if the code of an individual
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Fig. 1 (a)

Source Drain
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SiO2
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Poly-Si
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Fig. 1 (b)

Fig. 1 (c)

(a) Structure of poly-Si TFT.

(b) High-conducting channel for TFT.

Figure 2: The structure and the high-conducting
channel formed for the conventional poly-Si TFT.

is 11 in binary, and the interval for the code 11 is [−50, 0], the
value is uniformly randomly sampled in the interval [−50, 0].
Finally, the integration of ECGA and SoD, which is the pro-
posed framework in this paper, is shown in Algorithm 2.

3. CASE STUDY
In the previous section, we proposed a new optimization

framework in order to handle the characteristic determina-
tion problem for solid state devices. In this section, we apply
the proposed framework to tackle three characteristic deter-
mination problems which we encountered while conducting
research on developing thin-film transistors (TFT). The first
one is to determine the quality parameters of the poly-Si
thin-film under the normal condition, and the second one
deals with different materials and fabrication processes un-
der high gate bias. Finally, the third case is to determine
the frequency response property of the solid state device.

3.1 Conventional TFT
A conventional poly-Si thin-film transistor, as shown in

Figure 2(a), is composed of three terminals: gate, source,
and drain. When the transistor is turned on, electrons will
transport from source to drain through the poly-Si area (the
dotted area in the figure), and a high-conducting channel
will be formed on the top of this poly-Si area, as shown in
Figure 2(b). The poly-Si area can exhibit a wide range of
thin-film qualities. For a high quality poly-Si film, electrons
can easily transport through it. As a result, the transistor
can provide a large conduction current. For a low quality
poly-Si thin-film, on the contrary, the electrical conductiv-
ity is low and the transistor output current is also reduced.
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Algorithm 3 Fitness function pseudo code for case I.

procedure F1
Input: gene[0 . . . 4]={Nd, Sd, Etd, Nt, Ett}
Input: experimental data Ea[0 . . . 100], VG[0 . . . 100]
Output: f - the fitness of gene
Constants: q = 1.6× 10−19, Cox = 7× 10−8, Ec = 1.2
i← 0, f ← 0
while i < 101 do

Fix VG = VG[i], use binary approximation to ob-
tain the value of Ea in Equation (5)

f = f + |Ea − Ea[i]|
i = i + 1

end while
return f

end procedure

Parameter Value

Population size (N) 250
Tournament size (S) 8

Number of generation (Genmax) 25
Crossover probability 0.975
Initial split rate (γ) 0.5
Split rate decay (ε) 0.995

Table 1: Parameters adopted in the real-coded
ECGA for handling the three study cases.

Therefore, controlling the quality of the poly-Si film is es-
sential to the creation and production of high-performance
transistors. In addition to the output current, the quality
of the poly-Si thin-film in the device is also a key issue to
design the fabrication process and to develop the physical
model as well as the SPICE model for poly-Si TFTs.

To characterize the poly-Si thin-film quality, the defect
state distribution, N(E), as follows is usually utilized.

N(E) =
Nd√
2πSd

exp

„
− (E − Etd)2

2S2
d

«
+Nt exp

„
−Ec − E

Ett

«
,

(3)

where parameters Nd, Sd, Etd, Nt, and Ett represent the
properties of TFT. However, in practice, these parameters
are not available and cannot be directly measured. Instead,
these parameters have to be determined by measuring the
observable experimental data and matching the equation

q

Z Ec−Ea

Ec−Eamax

N(E)dE = Cox (VG − Vfb − φs) , (4)

where q = 1.6 × 10−19, Cox = 7 × 10−8, Ec = 1.2 are con-
stants, and Ea, Eamax, VG, Vfb, and φs are obtained from
the experimental observation, to establish the relationship
between the quality measurements (Nd, Sd, Etd, Nt, Ett)
and the observed outcomes (Ea, Eamax, VG, Vfb, φs). After
calculating the integral in Equation (4), we obtain

CoxVG

q
=

"
−NdSd

2
Erf

„
Etd − E√

2Sd

«

+NtEtt exp

„
E − Ec

Ett

«#˛̨̨̨
˛
Ec−Ea

Ec−0.6

.

(5)
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Figure 3: Experimental data and the match results
for case I.

The characteristic determination problem in this case is to
find the values of Nd, Sd, Etd, Nt, Ett according to the given
set of measured values of Ea vs. VG such that Equation (5)
can be matched. We measured the value of Ea for VG =
0, . . . , 10.0 for every 0.1, and obtained 101 pairs of (Ea, VG).
The objective value for matching Equation (5) is defined as
the sum of the absolute value of the differences between the
calculated results and the 101 pairs of experimental data. A
more clear procedure is shown in Algorithm 3.

Moreover, the ranges of the parameter can be decided
according to physical laws. In this case, the ranges for the
five parameters are

• Nd: 109–1015;

• Sd: 10−2–100;

• Etd: 0.5–0.7;

• Nt: 1011–1017;

• Ett: 0.05–1.0.

We ran rECGA with 250 individuals for 25 generations.
Detailed parameters of rECGA are shown in Table 1. In the
50 independent trials, the curve generated from the best so-
lutions is shown as the solid line in Figure 3. To simply verify
that the results we obtained are not merely “lucky shots”,
we also conducted the pure random search for 250× 25× 50
function evaluations. The result for the random search is
shown as a dashed line in the figure. As we can see in the
figure, the curve generated the pure random search goes very
far from experimental data. As a side note, the curve of a
similar matching quality can also be manually obtained for
about three to five person-days, while the proposed frame-
work takes only minutes to finish all the 50 trials.

3.2 TFT under High Gate Bias
When the transistors are operated under high gate bias, it

is reported that the interface, as shown in Figure 4, between
the poly-Si and the gate insulator also has great influence
on the output current. As a consequence, to determine the
property of TFTs under high gate bias, an interface-state
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Figure 4: TFT under high gate bias.

distribution is inserted into N(E) to appropriately model
the overall defect quality:

N(E) =
Nd√
2πSd

exp

„
− (E − Etd)2

2S2
d

«
+Nt exp

„
−Ec − E

Ett

«
+Ni exp

„
−Ec − E

Eit

«
,

(6)

where Ni and Eit are two more fitting parameters for the
interface-state distribution. The ranges of Ni and Eit are

• Ni: 1011–1020;

• Eit: 0.05–1.0.

In this study case, we determine the quality parameters
for four kinds of TFTs: ELA [11], FLA [20], SSL [25], and
SPC [23]. There are several instances for each kind of TFT,
and for simplicity in the present work, we choose only one
or two instances to perform the computation. Similar to the
previous study case, the values of the quality parameters can
be obtained by fitting the experimental data to Equation (6).
The fitness function F2 is similar as in study case 1. The
pseudo code of F2 is shown in Algorithm 4.

The parameters for rECGA are identical to those used for
case I, which is shown in Table 1. The curves generated by
the best solutions in the 50 independent trials are shown
as solid lines in Figure 5, and the best results obtained by
the pure random search are shown as dashed lines. As we
can observe in the figures, the pure random search can only
match the first data point in all cases, while the proposed
framework can provide high quality matching curves. Fur-
thermore, these problem instances cannot be easily handled
by human manipulation. We merely succeeded in manually
matching a few problem instances for several person-weeks.

3.3 Frequency Response
The previous-addressed poly-Si thin-film quality and the

interface quality also influence the frequency response of
transistors. Since in circuitry, transistors may be operated
under various frequencies, the frequency response is a very
important property to determine the fabrication process, to
determine the device model, and to determine the circuit
design. In poly-Si TFTs, the frequency response is charac-
terized through the capacitance measurement. As indicated
in Figure 6(a), the gate/SiO2/poly-Si structure can be ex-
pressed by the equivalent circuit depicted in Figure 6(b).

Algorithm 4 Fitness function pseudo code for case II.

procedure F2
Input: gene[0 . . . 6]={Nd, Sd, Etd, Nt, Ett, Ni, Eit}
Input: experimental data Ea[0 . . . K], VG[0 . . . K]
Output: f - the fitness of gene
Constants: q = 1.6× 10−19, Cox = 7× 10−8, Ec = 1.2
i← 0, f ← 0
while i < K + 1 do

Fix VG = VG[i], use binary approximation to ob-
tain the value of Ea in Equation (6)

f = f + |Ea − Ea[i]|
i = i + 1

end while
return f

end procedure

That is, the total effective capacitance is the series of the ox-
ide capacitance Cox and the equivalent parasitic capacitance
Ceq. The equivalent parasitic capacitance Ceq is the shunt
of the bulk capacitance Cb and the interface capacitance Cit.
Generally, Cox is a constant, which is independent of gate
bias or frequency, while Cb and Cit have a dependence on
frequencies according to the following equation

Ceq = Cit + Cb

= qDit
tan−1(ωτit)

ωτit
+ qDs

tan−1(ωτs)

ωτs
, (7)

where ω is 2πf , and f is the frequency. Dit and τit are inde-
pendent of frequencies, but depend on gate biases. Ds and
τs are independent of both frequencies and gate biases, since
the frequency and gate bias should not strongly influence the
bulk properties.

As the previous two study cases, the frequency response
parameters (Dit, τit, Ds, τs) cannot be directly measured,
either. As a result, we measure Ceq under various gate biases
and frequencies and determine the frequency response pa-
rameters according to the observed experimental data. The
frequency response of Ceq under different gate biases are
shown in Figure 7. The values of gate biases and frequen-
cies we used to obtained the experimental data are

• Gate biases: −1.3, −1.4, −1.5, −1.6, −1.7, −1.8, −1.9,
−2.0, −2.1, −2.2;

• Frequencies: 1× 104, 3× 104, 5× 104, 1× 105, 3× 105,
5× 105, 1× 106.

There are totally 70 values for Ceq under the combinations
of gate biases and frequencies measured. We used these ex-
perimental data to calculate Ceq according to Equation (7).

As shown in Figure 7, there are ten gate biases. Equa-
tion (7) indicates that there is a single pair of Ds and τs for
all Ceq values, and for each set of Ceq values obtained under
the same VG, one pair of Dit and τit should be determined.
Thus, there are 22 frequency response parameters. The ob-
jective value in this study case is also the sum of differences
between the experimental data and the calculated results.

Without determining all the frequency response parame-
ters simultaneously, we handle these parameters in separate
groups. Because the values of Ceq are smallest when the gate
bias is −1.3 or −1.4, higher accuracy is needed to determine
the parameters for the two sets of experimental data. There-
fore, in the first group, we determine Ds, τs, Dit|VG=−1.3,
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Figure 5: Experimental data and the match results for case II. ELA, SSL, FLA, and SPC are four different
kinds of TFTs.

(a) Structure of gate/SiO2/poly-Si. (b) Equivalent circuit for the structure.

Figure 6: Structure of gate/SiO2/poly-Si and its equivalent circuit.
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Figure 7: Frequency response for TFTs.

τit|VG=−1.3, Dit|VG=−1.4, τit|VG=−1.4. After obtaining Ds

and τs, which are independent of VG and f , we use the Ds

and τs to determine Dit and τit for other gate biases. All
the parameters of rECGA are identical to those in previous
study cases, shown in Table 1, and the matching results are
shown as the solid lines in Figure 8.

Figure 8 demonstrates that the matching results are re-
markably satisfactory as the experimental data and the phys-
ical model pose a very difficult challenge for human to man-
ually handle. Furthermore, based on the outcomes from
the previous study cases, the pure random search has been
decided inappropriate to handle the characteristic determi-
nation problem for solid state devices. As we can see in
this work, the proposed framework of the real-coded ECGA,
composed of ECGA and SoD, can be employed to tackle the
characteristic determination problems of which the physical
phenomena may be quite different.

4. SUMMARY AND CONCLUSIONS
In the paper, we proposed a new optimization frame-

work by integrating the extended compact genetic algorithm
(ECGA) and split-on-demand (SoD), an adaptive discretiza-
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Figure 8: Match results for the frequency response.

tion method, to tackle the characteristic determination prob-
lem for solid state devices. Firstly, we briefly reviewed the
key idea of ECGA and introduced the mechanism of SoD.
Then, the real-coded ECGA (rECGA), which is an integra-
tion of ECGA and SoD, proposed in the present work was
described in detail. We employed rECGA to handle three
characteristic determination problems of which the physi-
cal phenomena and the mathematical models were differ-
ent. The numerical results demonstrated that the proposed
framework performed well on the study cases.

The characteristic determination problem is very impor-
tant not only because the development of modern electronic
computing equipment relies on solid state devices but also
because more and more unknown physical phenomena are
observed while the scale of the device gets smaller and smaller.
In order to gain understandings of these unknown phenom-
ena, getting access to the physical parameters that cannot be
directly measured or observed is indeed of great assistance
and importance. With the help of methodologies in evolu-
tionary computation, this paper offers a viable and practical
approach for researchers and developers to deal with the en-
countered characteristic determination problems effectively
and efficiently.
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Along this line of research, the immediate future work
is to continue to apply the proposed framework on other
problems emerging from the research on solid state devices.
Moreover, in the process of extracting the desired parame-
ters for the specific physical model, novel insights could be
gained because computation of such an intensity is seldom
utilized in this way to examine the existing physical models.
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