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ABSTRACT
In this paper, we derive models of the selection pressure in
XCS for proportionate (roulette wheel) selection and tour-
nament selection. We show that these models can explain
the empirical results that have been previously presented in
the literature. We validate the models on simple problems
showing that, (i) when the model assumptions hold, the the-
ory perfectly matches the empirical evidence; (ii) when the
model assumptions do not hold, the theory can still provide
qualitative explanations of the experimental results.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithms, Theory.

Keywords
LCS, XCS, Proportionate Selection, Tournament Selection.

1. INTRODUCTION
Learning Classifier Systems [12, 9] combine genetic algo-

rithms, reinforcement learning, and a general-purpose rule-
based representation to solve problems online. Because
they combine different paradigms, they are also daunting
to study. The analysis of how a learning classifier system
works requires knowledge about how each component works
and, most important, about how such components interact.
As a consequence, few theoretical models have been devel-
oped (e.g., [13, 1]) and learning classifier systems are more
often studied empirically.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

Recently, facetwise modeling [10] has been successfully ap-
plied to develop bits and pieces of a theory of XCS [16].
Butz et al. [6] modeled different generalization pressures in
XCS so as to provide the theoretical foundation of Wilson’s
generalization hypothesis [17]; they also derived population
bounds that ensure effective genetic search in XCS. Later,
Butz et al. [2] also derived a bound for the learning time
of XCS until maximally accurate classifiers are found. More
recently, Butz et al. [4] presented a Markov chain analysis of
niche support in XCS which resulted in another population
size bound to ensure effective problem substainance.

In this paper, we present a model of selection pressure
under proportionate selection [16] and tournament selec-
tion [7]. These selection schemes have been empirically com-
pared by Butz et al. [3, 7] and later by Kharbat et al. [14]
leading to different claims. In genetic algorithms, these
selection schemes have been exhaustively studied through
the analysis of takeover time (see [11, 10] and references
therein). In this paper, we follow the same approach as [11,
10] and develop theoretical models of selection pressure in
XCS for proportionate and tournament selection. Specifi-
cally, we perform a takeover time analysis to estimate the
time from an initial proportion of best individuals until the
population is substantially converged to the best. We start
from the typical assumption made in takeover time analy-
sis [11]: XCS has converged to an optimal solution, which in
XCS typically consists of a set of non-overlapping niches. We
write differential equations that describe the change in pro-
portion of the best classifier in one niche for roulette wheel
and tournament selection. Initially, we focus on classifier ac-
curacy, later we extend the model taking into account also
classifier generality. We solve the equations and derive a
closed form solution of takeover time in XCS for the two
selection schemes (Section 3). In Section 4, we use these
equations to determine the conditions under which propor-
tionate and tournament selection (i) produce the same initial
growth of the best classifiers in the niche, or (ii) result in
the same takeover time. Then, in Section 6, we validate the
models using two artificial test problems showing that when
the assumptions of non-overlapping niches hold, the models
perfectly match the empirical evidence while they accurately
approximate the empirical results when such an assumption
is violated. Finally, in Section 7, we extend the models to
include classifier generality and show that, again, the models
fit empirical evidence when the model assumptions hold.

1846



2. THE XCS CLASSIFIER SYSTEM
We briefly describe XCS giving all the details that are

relevant to this work. We refer the reader to [16, 8] for more
detailed descriptions.

Knowledge Representation. In XCS, classifiers consist
of a condition, an action, and four main parameters: (i)
the prediction pk, which estimates the payoff that the sys-
tem expects when the classifier is used; (ii) the prediction
error εk, which estimates the error affecting the prediction
pk; (iii) the fitness Fk, which estimates the accuracy of the
payoff prediction given by pk; and (iv) the numerosity nk,
which indicates how many copies of classifiers with the same
condition and the same action are present in the population.

Performance Component. At time t, XCS builds a
match set [M] containing the classifiers in the population
[P] whose condition matches the current sensory input st; if
[M] contains less than θnma actions, covering takes place and
creates a new classifier that matches st and has a random ac-
tion. For each possible action a in [M], XCS computes the
system prediction P (st, a) which estimates the payoff that
XCS expects if action a is performed in st. The system pre-
diction P (st, a) is computed as the fitness weighted average
of the predictions of classifiers in [M] which advocate action
a. Then, XCS selects an action to perform; the classifiers
in [M] which advocate the selected action form the current
action set [A]. The selected action at is performed, and a
scalar reward R is returned to XCS.1

Parameter Updates. The incoming reward R is used to
update the parameters of the classifiers in [A]. First, the
classifier prediction pk is updated as, pk ← pk + β(R− pk).
Next, the error εk is updated as, εk ← εk + β(|R− p| − εk).
To update the classifier fitness Fk, the classifier accuracy κ
is first computed as,

κ =

(
1 if ε < ε0

α(ε/ε0)
−ν otherwise

(1)

the accuracy κ is used to compute the relative accuracy κ′ as,
κ′ = κ/

P
[A] κi. Finally, the classifier fitness Fk is updated

towards the classifier’s relative accuracy κ′ as, Fk ← Fk +
β(κ′ − Fk).

Genetic Algorithm. On a regular basis (dependent on
the parameter θga), the genetic algorithm is applied to clas-
sifiers in [A]. It selects two classifiers, copies them, and with
probability χ performs crossover on the copies; then, with
probability μ it mutates each allele. The resulting offspring
classifiers are inserted into the population and two classifiers
are deleted to keep the population size constant.

Two selection mechanisms have been introduced so far for
XCS: proportionate, roulette wheel, selection [16] and tour-
nament selection [7]. Roulette wheel selects a classifier with
a probability proportional to its fitness. Tournament ran-
domly chooses the τ percent of the classifiers in the action
set and among these it selects the classifier with higher “mi-
croclassifier fitness” fk; that is, as the numerosity is included
in the fitness calculation, tournament selection obtains the
numerosity of a single classifier as: fk = Fk/nk [7, 5].

1In this paper we focus on XCS viewed as a pure classifier,
i.e., applied to single-step problems. A complete description
is given elsewhere [16, 8].

3. MODELING TAKEOVER TIME
The analysis of takeover time in XCS poses two main

challenges. First, while in genetic algorithms the fitness of
an individual is usually constant, in XCS classifier fitness
changes over time based on the other classifiers that appear
in the same evolutionary niche. Second, while in genetic
algorithms the selection and the replacement of individuals
are usually performed over the whole population, in XCS
selection is niche based, while deletion is population based.

To model takeover time [11], we assume that XCS has
evolved a set of non-overlapping niches, where a niche rep-
resents a region in the solution space that consists of clas-
sifiers that represent the same schema [12] and predict the
same output. Accordingly, we can focus on one niche with-
out taking into account possible interactions among over-
lapping niches. We consider a simplified scenario in which
a niche contains two classifiers, cl1 and cl2; classifier clk
has fitness Fk, prediction error εk, numerosity nk, and mi-
croclassifier fitness fk = Fk/nk. In this initial phase, we
focus on classifier accuracy and hypothesize that cl1 be the
“best” classifier in the niche, because is the most accurate,
i.e., κ1≥κ2, while we assume that cl1 and cl2 are equally
general and thus they have the same reproductive opportu-
nities (this assumption will be relaxed later in Section 7).
Finally, we assume that deletion selects classifiers randomly
from the same niche. Although this assumption may appear
rather strong, if the niches are activated uniformly this as-
sumption will have little effect as the empirical validation of
the model will show (Section 6).

3.1 Roulette Wheel Selection
Under Roulette Wheel Selection (RWS), the selection

probability of a classifier depends on the ratio of its fitness
Fi over the fitness of all classifiers in the action set. With-
out loss of generality, we assume that classifier fitness is a
simple average of classifier’s relative accuracies and compute
the fitness of classifiers cl1 and cl2 as,

F1 =
κ1n1

κ1n1 + κ2n2
=

1

1 + ρnr

F2 =
κ2n2

κ1n1 + κ2n2
=

ρnr

1 + ρnr

where nr = n2/n1 and ρ is the ratio between the accuracy of
cl2 and the accuracy of cl1 (ρ = κ2/κ1). The probability Ps

of selecting the best classifier cl1 in the niche is computed
as,

Ps =
F1

F1 + F2
=

1

1 + ρnr

Once selected, a new classifier is created and inserted in the
population while one classifier is randomly deleted from the
niche with probability Pdel(cl j) = nj/n with n = n1 + n2.

We can now model the evolution of the numerosity of the
best classifier cl1 at time t, n1,t, which will (i) increase in
the next generation if cl1 is selected by the genetic algorithm
and another classifier is selected for deletion; (ii) decrease if
cl1 is not selected by the genetic algorithm but cl1 is selected
for deletion; (iii) remain the same, in all the other cases.
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More formally,

n1,t+1 =

8>>>><
>>>>:

n1,t + 1 with prob. 1
1+ρnr

`
1− n1

n

´
n1,t − 1 with prob.

“
1− 1

1+ρnr

”
n1
n

n1,t otherwise

where n is the niche size. This model is relaxed by assuming
that one classifier only can be deleted when sampling the
niche it belongs. Grouping the equations above, we obtain,

n1,t+1 = n1,t +
1

1 + ρnr
− n1,t

n

which can be rewritten in terms of the proportion Pt of
classifiers cl1 in the niche (i.e., Pt = n1,t/n). Using the
equality nr = (1− Pt)/Pt we derive,

Pt+1 = Pt +
1

n
· 1

1 + ρ 1−Pt
Pt

− 1

n
Pt

assuming Pt+1 − Pt ≈ dp/dt we have,

dp

dt
≈ Pt+1 − Pt =

1

n

»
Pt(1− ρ)− P 2

t (1− ρ)

Pt(1− ρ) + ρ

–
(2)

that is,

Pt(1− ρ) + ρ

Pt(1− Pt)
dp ≈ 1− ρ

n
dt (3)

which can be solved by integrating each side of the equa-
tion, between P0, the initial proportion of cl1, and the final
proportion P of cl1 up to which cl1 has taken over,Z P

P0

Pt(1− ρ) + ρ

Pt(1− Pt)
dp ≈ 1− ρ

N

Z
dt ≈ t(1− ρ)

N
(4)

the left integral can be solved independently as [15],Z P

P0

Pt(1− ρ) + ρ

Pt(1− Pt)
dp ≈ t(1− ρ)

N
(5)

from which we derive the takeover time of cl1 in roulette
wheel selection,

t∗rws ≈ N

1− ρ

»
ρ ln

„
P

P0

«
+ ln

„
1− P0

1− P

«–
(6)

The takeover time t∗rws under the assumption that the two
classifiers are equally general depends (i) on the ratio ρ be-
tween the accuracy of cl2 and the accuracy of cl1, as well
as, (ii) on the initial proportion of cl1 in the population.
A higher ρ implies an increase in the takeover time. When
ρ = 1 (i.e., cl1 and cl2 are equally accurate), t∗rws tends to
infinity, that is, both cl1 and cl2 will remain in the popula-
tion. When ρ is smaller, the takeover time decreases. For a ρ
close to zero, t∗rws can be approximated by t∗ρ→0 ≈ n ln 1−P0

1−P
.

The takeover time also depends on the initial proportion P0

of cl1 in the population. A lower P0 increases the term in-
side the brackets, and so it increases the takeover time. In
contrast, an higher P0 results in a lower takeover time.

3.2 Tournament Selection
To model takeover time for tournament selection in XCS

we assume a fixed tournament size of s, instead of the typ-
ical variable tournament size [5]. The underline assump-
tion of the takeover time analysis is that the system already

converged to an optimal solution made of non overlapping
niches. Thus, there is basically no difference between a fixed
tournament size and a variable one. Tournament selection
randomly chooses s classifiers in the action set and selects
the one with higher fitness. As before, we assume that cl1
is the best classifier in the niche, which in terms of tourna-
ment selection translates into requiring that f1 > f2, where
fi is the fitness of the microclassifiers associated to cl i. In
this case, the numerosity n1 of cl1 will (i) increase if cl1
participates in the tournament and another classifier is se-
lected to be deleted; (ii) decrease if cl1 does not participate
in the tournament but is selected by the deletion operator;
(iii) remain the same, otherwise. More formally,

n1,t+1 =

8>>><
>>>:

n1,t + 1 with prob.
ˆ
1− `

1− n1
n

´s˜ `
1− n1

n

´
n1,t − 1 with prob.

`
1− n1

n

´s n1
n

n1,t otherwise

By grouping the above equations we derive the expected
numerosity of cl1,

nt+1 = nt +
h
1−

“
1− n1

n

”si “
1− n1

n

”
−

“
1− n1

n

”s n1

n

which we rewrite in terms of the proportion P of cl1 in the
niche (i.e., Pt = n1,t/n) as,

Pt+1 = Pt +
1

n
(1− Pt)

ˆ
1− (1− Pt)

s−1˜
Assuming dp

dt
≈ Pt+1 − Pt, we derive,

dp

dt
≈ Pt+1 − Pt =

1

n

ˆ
(1− Pt)[1− (1− Pt)

s−1]
˜
, (7)

that is,

dt

n
≈ 1

1− Pt
dp +

(1− Pt)
s−2

1− (1− Pt)s−1
dp

Integrating each side of the equation we obtain,Z
dt

n
≈

Z P

P0

1

1− Pt
dp +

Z P

P0

(1− Pt)
s−2

1− (1− Pt)s−1
dp

i.e.,

t

n
≈ ln

„
1− P0

1− P

«
+

1

s− 1
ln

»
1− (1− P )s−1

1− (1− P0)s−1

–

so that the takeover time of cl1 for tournament selection is,

t∗TS ≈ n

»
ln

„
1− P0

1− P

«
+

1

s− 1
ln

»
1− (1− P )s−1

1− (1− P0)s−1

––
(8)

Given our assumptions, takeover time for tournament selec-
tion depends on the initial proportion of the best classifier
P0 and the tournament size s. Both logarithms on the right
hand side take positive values if P > P0, indicating that the
best classifier will always take over the population regardless
of its initial proportion in the population. When P < P0,
both logarithms result in negative values, and so does the
takeover time.

4. COMPARISON
We now compare the takeover time for roulette wheel se-

lection and tournament selection and we study the salient
differences between the models. For this purpose, we com-
pute the values of s and ρ for which, (i) the two selection
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schemes have the same initial increase of the proportion
of the best classifier, and for which (ii) the two selection
schemes have the same takeover time. This analysis results
in two expressions that permit to compare the behavior of
roulette wheel selection and tournament selection in differ-
ent scenarios.

First, we analyze the relation between the ratio of classi-
fier accuracies ρ and the selection pressure s in tournament
selection to obtain the same initial increase in the proportion
of the best classifier with both selection schemes. Taking the
equations 2 and 7, and replacing Pt by P0 we get that the
initial increase of the best classifier in each selection scheme
is:

ΔRWS ≈ 1− ρ

n

P0(1− P0)

(1− ρ)P0 + ρ

ΔTS ≈ 1

n
(1− P0)[1− (1− P0)

s−1]

By requiring ΔRWS = ΔTS and simplifying the equation
further [15] we obtain,

Pt(1− ρ)

(1− ρ)Pt + ρ
≈ 1− ˆ

(1− Pt)
s−1˜

,

that is,

s ≈ 1 +
ln ρ− ln [(1− ρ)P0 + ρ]

ln(1− P0)
(9)

This equation indicates that, in tournament selection, the
tournament size s which regulates the selection pressure has
to increase as the ratio of accuracies ρ decreases to have the
same initial increase of the best classifier in the population
as roulette wheel selection. For example, for ρ = 0.01 and
P0 = 0.01, tournament selection requires s ≈ 70 to produce
the same initial increase of the best classifier as roulette
wheel selection. On the other hand, low values of s result in
the same effect as roulette wheel selection with high values
of ρ. Equation 9 indicates that, even with a small tourna-
ment size, tournament selection produces a stronger pressure
towards the best classifier in scenarios in which slightly inac-
curate but initially highly numerous classifiers are compet-
ing against highly accurate classifiers. On the other hand,
when the competition involves highly inaccurate classifiers,
a larger tournament size s is required to obtain the same
selection pressure provided by roulette wheel selection.

We now analyze the conditions under which both selection
schemes result in the same takeover time. For this purpose,
we equate t∗RWS in Equation 6 with t∗TS in Equation 8,

ρ

1− ρ
ln

„
P ∗(1− P0)

P0(1− P ∗)

«
≈ 1

s− 1
ln

„
1− (1− P ∗)s−1

1− (1− P0)s−1

«
.

By approximating (1− x)s−1 by its first order Taylor series
at the point 0, that is, (1 − x)s−1 ≈ 1 + (s − 1)x, and by
futher simplifications, we derive,

s ≈ 1 +
1− ρ

ρ

ln(P ∗)− ln(P0)

ln[P ∗(1− P0)]− ln[P0(1− P ∗)]
(10)

Given an initial proportion of the best classifier, the equa-
tion is guided by the term 1−ρ

ρ
. As the accuracy-ratio ρ

decreases, s needs to increase polynomially. On the other
hand, higher values of ρ require a low tournament size s.
Thus, Equation 10 reaches the same conclusions of Equa-
tion 9: tournament selection is better than roulette wheel
in scenarios where highly accurate classifiers compete with
slightly inaccurate ones.

5. TEST PROBLEMS
To validate the models of takeover time for roulette wheel

and proportionate selection, we designed two test problems.
The single-niche problem fully agrees with the model as-
sumption. It consists of a niche with a highly accurate clas-
sifier cl1 and a less accurate classifier cl2. The covering is
off and the population is initialized with N ·P0 copies of cl1
and N ·(1−P0) copies of cl2, where N is the population size.
The prediction error ε1 of the best classifier cl1 is always set
to zero while the prediction error ε2 of cl2 is set as,

ε2 = ε0
“ ρ

α

”ν

(11)

where ρ is the ratio between the accuracy of cl2 and the
accuracy of cl1 i.e., ρ = κ2/κ1 (Section 3). In the experi-
ments, we set α = 0.1 and ν = 5. Note that varying ρ we
are changing the fitness scaling between cl1 and cl2. This
could be equivalently done by maintaining ρ and varying ν,
as in [14].

The multiple-niche problem consists of a set of m niches
each one containing one maximally accurate classifier and
one classifier that belongs to all niches. The population con-
tains P0 ·N copies of maximally accurate classifiers (equally
distributed in the m niches) and (1 −m · P0) · N copies of
the classifier that appears in all the niches. The parame-
ters of classifiers are updated as in the case of the single
niche in the previous section, permitting to vary the ratio
of accuracies ρ, and so, validating the model under different
circumstances. This test problem violates two model as-
sumptions. First, the size of the different niches differ from
the population size since the problem consists of more than
one niche. While in the model we assumed that the deletion
would always select a classifier in the same niche, in this
case deletion can select any classifier from the population.
Second, the niches are overlapping since there is a classifier
that belongs to all the niches. This also means that the sum
of all niche sizes will be greater than the population size,
i.e.,

Pm
1 (ni,1 + ni,2) > N , where ni,1 is the numerosity of

the maximally accurate classifier in niche i and ni,1 is the
numerosity of the less accurate classifier in the niche i.

6. EXPERIMENTAL VALIDATION
We validated the takeover time models using the single-

niche problem and the multiple-niche problem. Our results
show a full agreement between the model and the experi-
ments in the single-niche problem, when all the model as-
sumptions hold. They also show that the theory correctly
predicts the practical results in problems where the initial
assumptions do not hold, if either the accuracy-ratio is low
enough in roulette wheel selection or the tournament size is
high enough in tournament selection.

Single-Niche. At first, we applied XCS on the single-niche
problem and analyzed the proportion of the best classifier
cl1 under roulette wheel selection and tournament selection.
Figure 1 compares the proportion of the best classifier in the
niche as predicted by our model (reported as lines) and the
empirical data (reported as dots) for roulette wheel selection
and tournament selection with s = {2, 3, 9} when ρ = 0.01.
The empirical data are averages over 50 runs. Figure 1 shows
a perfect match between the theory and the empirical re-
sults. It also shows that, as predicted by the models and
discussed in Section 4, roulette wheel produces a faster in-
crease in the proportion of the best classifier for ρ = 0.01.
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Figure 1: Empirical and the theoretical takeover
time when ρ = 0.01 for roulette wheel selection and
tournament selection with s=2, s=3 and s=9.

To obtain a similar increase with tournament selection we
need an higher tournament size: in fact, the second best
increase in the proportion of the best classifier is provided
by tournament selection with s = 9. Finally, as indicated
by the theory, the time to achieve a certain proportion of
the best classifier in tournament selection increases as the
selection pressure decreases.

We performed another set of experiments and compared
the proportion of the best classifier in the niche for an accu-
racy ratio ρ of 0.5 and 0.9. Figure 2 compares the propor-
tion of cl1 as predicted by our model (reported as lines) and
the empirical data (reported as dots) for (a) ρ = 0.5 and
(b) ρ = 0.9; the empirical data are averages over 50 runs.
The results show a good match between the theory and the
empirical results. As predicted by the model, tournament
selection is not influenced by the increase of ρ: the increase
in the proportion of cl1 for ρ = 0.5 (Figure 2a) is basically
the same as the increase obtained when ρ = 0.9 (Figure 2b).
Thus, coherently to what was empirically shown in [7], tour-
nament selection demonstrates its robustness in maintaining
and increasing the proportion of the best classifier even when
there is a small difference between the fitness of the most
accurate classifier (cl1) and the fitness of the less accurate
one (cl2). In contrast, roulette wheel selection is highly in-
fluenced by the accuracy ratio ρ: as the ratio approaches 1,
i.e., the accuracy of the two classifiers become very similar,
the increase in the proportion of the best classifier becomes
smaller and smaller. In fact, when ρ = 0.90, after 16000
activations of the niche the best classifier cl1 has taken over
only the 5% of the niche.

Multiple-niche. In the next set of experiments, we vali-
dated our model of takeover time on the multiple-niche prob-
lem, where the assumptions about non-overlapping niches
and about deletion being performed in the niche are vio-
lated. For this purpose, we ran XCS on the multiple-niche
problem with two niches (m = 2); each niche contains one
maximum accurate classifier and there is one, less accurate,
overlapping classifier that participates in both niches.

Figure 3a compares the proportion of the best classi-
fier in the niche for roulette wheel selection for an accu-
racy ratio ρ of 0.01 and 0.20. The plots indicate that, for
small values of the accuracy ratio ρ, our model (reported
as lines) slightly underestimates the empirical takeover time
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Figure 2: Empirical and the theoretical takeover
time for roulette wheel selection and tournament
selection with s=2, s=3 and s=9 when (a) ρ = 0.50
and (b) ρ = 0.90.

(reported as dots). As the accuracy ratio ρ increases, the
model tends to overestimate the empirical data (Figure 3b).
This behavior can be easily explained. The lower the accu-
racy ratio (Figure 3a), the higher the pressure toward the
highly accurate classifiers, and consequently, the faster the
takeover time. When ρ is 0.20 and 0.30, the difference be-
tween the model and the empirical results is visible only at
the beginning, while it basically disappears as the number
of activations increases. For higher values of ρ, the overgen-
eral, less accurate, cl2 has more reproductive opportunities
in both niches where it participates. These results indicate
that (i) the model for roulette wheel selection is accurate
in general scenarios if the ratio of accuracies is small (i.e.,
when there is a large proportion of accurate classifiers in
the niche) and (ii) that in situations where there is a small
proportion of the best classifier in one niche competing with
other slightly inaccurate and overgeneral classifiers (above a
certain threshold of ρ), the overgeneral classifier may take
over the population removing all the copies of the best clas-
sifier. It is interesting to note that, as the number of niches
increases from m = 2 to m = 16, the agreement between
the theory and the experiments gently degrades (see [15] for
more results). Figure 4a compares the proportion of the best
classifier as predicted by our model and as empirically de-
termined in tournament selection with s = 9. As in roulette
wheel selection for a small ρ, the results for tournament

1850



0 2000 4000 6000 8000 10000 12000 14000 16000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Activation Time of the Niche

P
ro

po
rt

io
n 

of
 th

e 
B

es
t C

la
ss

ifi
er

Takeover time in RWS for Overlapping Niches and  δ={0.01,0.20}

Empirical RWS  δ=0.01
Model RWS  δ=0.01
Empirical RWS  δ=0.20
Model RWS  δ=0.20

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Activation Time of the Niche

P
ro

po
rt

io
n 

of
 th

e 
B

es
t C

la
ss

ifi
er

Takeover time in RWS for Overlapping Niches and  ρ={0.30,0.40,0.50}

Empirical RWS  ρ=0.30
Model RWS  ρ=0.30
Empirical RWS  ρ=0.40
Model RWS  ρ=0.40

(b)

Figure 3: Takeover time for roulette wheel selection
when (a) ρ = {0.01, 0.20} and (b) ρ ∈ {0.30, 0.40}.

selection show that the empirical takeover time is slightly
faster than the one predicted by the theory. Again, this be-
havior is due to the presence of the overgeneral classifier in
both niches, causing a higher pressure toward its deletion.
Increasing the tournament size s produces little variations
in either the empirical results or the theoretical values, and
so the conclusions extracted for s = 9 can be extended for
higher s. On the other hand, decreasing s causes that the
empirical values go closer to the theoretical values, since
the pressure toward the deletion of the overgeneral classi-
fier decreases. Figure 4b reports the proportion of one of
the maximum accurate classifiers for s ∈ {2, 3}. The results
show that the theory predicts accurately the empirical val-
ues for s = 3, but for s = 2 the difference between the model
and the data is large. In this case, a small tournament size
combined with the presence of the overgeneral classifier in
both niches produces a strong selection pressure toward the
overgeneral classifier that delays the takeover time.

The results in the multi-niche problem support what was
empirically shown in [7]: tournament selection is more ro-
bust than roulette wheel selection. Under perfect conditions
both schemes perform similarly, which is coherent to what
was shown in [14]. However, the takeover time of the best
classifier is delayed in roulette wheel selection for a higher
accuracy ratio ρ. The empirical results indicate that, with
roulette wheel selection, the best classifier was eventually
removed from the population when ρ ≥ 0.5.

0 2000 4000 6000 8000 10000 12000 14000 16000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Activation Time of the Niche

P
ro

po
rt

io
n 

of
 th

e 
B

es
t C

la
ss

ifi
er

Takeover time in TS s=9 for Overlapping Niches

Empirical TS s=9
Model TS s=9

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Activation Time of the Niche
P

ro
po

rt
io

n 
of

 th
e 

B
es

t C
la

ss
ifi

er

Takeover time in TS s={2,3} for Overlapping Niches

Empirical TS s=2
Model TS s=2
Empirical TS s=3
Model TS s=3

(b)

Figure 4: Takeover time in tournament selection for
(a) s = 9, (b) s ∈ {2, 3}.

On the other hand, tournament selection demonstrated
theoretically and practically to be more robust, since it does
not depend on the individual fitness of each classifier. In all
experiments with tournament selection, the best classifier
could take over the niche, and only for the extreme case
(i.e., for s = 2) the experiments considerably disagreed with
the theory.

7. MODELING GENERALITY
Finally, we add classifier generality to the picture. As be-

fore, we model the proportion of the best classifier cl1 in one
niche, however, in this case cl1 is not only the maximally ac-
curate classifier in the niche, but also the maximally general
with respect to niche. We focus on one niche and assume
that cl1, being the maximally general and maximally ac-
curate classifier, appears in the niche with probability 1 so
that cl2 appears in the niche with a relative probability ρm.
We model the numerosity of the classifier cl1 at time t, n1,t

as follows. The numerosity n1,t of cl1 in the next generation
will (i) increase when both cl1 and cl2 appear in the niche
and cl1 is selected by the genetic algorithm while cl2 is se-
lected for deletion; (ii) increase when only cl1 appears in the
niche and another classifier is deleted; (iii) decrease only if
both cl1 and cl2 are in the niche, cl1 is not selected by the
genetic algorithm but it is selected for deletion. Otherwise,
the numerosity of cl1 will remain the same. More formally,
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n1,t+1 =

8>>>><
>>>>:

n1,t + 1 with prob. ρm

“
1

1+ρnr

” `
1− n1

n

´
+

(1− ρm)
`
1− n1

n

´
n1,t − 1 with prob. ρm

“
1− 1

1+ρnr

”
n1
n

n1,t otherwise

As done before, we can group these equations to obtain,

n1,t+1 = n1,t +ρm

„
1

1 + ρnr
− n1,t

n

«
+(1− ρm)

“
1− n1,t

n

”
we rewrite n1,t in terms of the proportion Pt of cl1 in the
niche (Pt = n1,t/n with nr = (1− Pt)/Pt) and obtain,

Pt+1 = Pt +
1

n
· 1− Pt

ρ + (1− ρ)Pt
[(1− ρ)Pt + (1− ρm) ρ]

Assuming Pt+1 − Pt ≈ dp/dt, we obtain [15],

t∗rws ≈ n

1− ρρm

»
ln

„
1− P0

1− P

«
+

+ ρρm ln

„
(1− ρ)P + ρ(1− ρm)

(1− ρ)P0 + ρ(1− ρm)

«–
(12)

which depends on the ratio of accuracies ρ, the initial pro-
portion of the best classifier P0 and the generality of the
inaccurate classifier ρm. In the previous model, cl1 would
not take over the niche when it was as accurate as cl2 (Sec-
tion 3). In this case, cl1 will take over the population if it is
either more accurate or more general than cl2. Otherwise,
if cl1 and cl2 are equally accurate and general, both will
persist in the population (t∗RWS →∞), coherently with the
previous model. Low values of ρm suppose quicker takeover
times than high values of ρm. For ρm = 1, i.e., the classifiers
cl1 and cl2 are equally general, Equation 12 is equivalent to
Equation 6.

Similarly, we extend the model of takeover time for tour-
nament selection taking classifier generality into account. In
this case, the numerosity n1,t of cl1 at time t is,

n1,t+1 =

8>><
>>:

n1,t + 1 with prob. ρm

ˆ
1− `

1− n1
n

´s˜ · `1− n1
n

´
+ (1− ρm)

`
1− n1

n

´
n1,t − 1 with prob. ρm

`
1− n1

n

´s n1
n

n1,t otherwise.

As we did before, we can group these equations and we can
rewrite n1,t+1 in terms of Pt as,

Pt+1 = Pt +
1

n
(1− Pt)

ˆ
1− ρm (1− Pt)

s−1˜
which, by assuming dp

dt
≈ Pt+1−Pt, and through integration

(see [15] for details), results in the following equation for
takeover time with tournament selection,

t∗TS ≈ n

»
ln

„
1− P0

1− P

«
+

1

s− 1
ln

»
1− ρm(1− P )s−1

1− ρm(1− P0)s−1

––
(13)

Takeover time for tournament selection now depends on the
tournament size s, the initial proportion of the best classifier
P0, and also on the generality of the inaccurate classifier ρm.
For low ρm or high s, the value of the second logarithm in the
right term of the equation diminishes so that the takeover
time mainly depends logarithmically on P0. High values of
ρm imply slower takeover times; for ρm = 1, this model
equates Equation 8.
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Figure 5: Takeover time for roulette wheel selection
when (a) ρm is 0.1 and (b) ρm is 0.9.

We validated the new models of takeover time for roulette
wheel selection and tournament selection on the single-niche
problem for a matching ratio ρm of 0.1 and 0.9. The ex-
perimental design is essentially the same one used in the
previous experiments (Section 6), but in this case the less
accurate and less general classifier cl2 appears in the niche
with probability ρm. Figure 5 compares the proportion of
the best classifier cl1 in the niche as predicted by the theory
and both the plots for roulette wheel selection (Figure 5)
and tournament selection (Figure 6) show a perfect match
between the theory (reported as lines) and the empirical
data (reported as dots).

8. CONCLUSIONS
We have derived theoretical models for the selection pres-

sure in XCS under roulette wheel and tournament selection.
We have shown that our models are accurate in very sim-
plified scenarios and they can qualitatively explain the be-
havior of the two selection mechanisms in more complex sce-
narios. Overall, our models support what empirically shown
in [7]: tournament selection is more robust than roulette
wheel selection. Under perfect conditions both schemes per-
form similarly, which is coherent to what shown in [14].
However, the selection pressure is weaker in roulette wheel
selection when the classifiers in the niche have similar accu-
racies. On the other hand, tournament selection turns out
to be more robust both theoretically and practically, since it
does not depend on the individual fitness of each classifier.
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Figure 6: Takeover time for tournament selection
when (a) ρm is 0.1 and (b) ρm is 0.9.
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