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ABSTRACT
The learning in a niche based learning classifier system de-
pends both on the complexity of the problem space and on
the number of available actions. In this paper, we introduce
a version of XCS with computed actions, briefly XCSCA,
that can be applied to problems involving a large number
of actions. We report experimental results showing that
XCSCA can evolve accurate and compact representations
of binary functions which would be challenging for typical
learning classifier system models.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithms

Keywords
LCS, XCS, Action Mappingss.

1. INTRODUCTION
Learning Classifier Systems combine reinforcement learn-

ing and genetic algorithms to solve problems. They main-
tain a population of condition-action-prediction rules called
classifiers which represents the current solution to the tar-
get problem. Each classifier represents a small portion of
the overall solution. The condition c identifies a part of the
problem domain. The action a represents a decision on the
subproblem identified by the condition c. The prediction p
provides an estimate of how valuable action a is in terms
of problem solution on the subproblem identified by condi-
tion c. In learning classifier systems, the genetic component
works on classifier conditions searching for an adequate de-
composition of the target problem into a set of subproblems;
the reinforcement component works on classifier predictions
to estimate the action values in each subproblem.
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Research in knowledge representation for learning classi-
fier systems has been usually focused on the classifier condi-
tions and on the development of new representations which
could improve the problem decomposition (e.g., [24, 8, 15]).
Recently, classifier prediction has also received attention and
the idea of computed prediction has been introduced to im-
prove the estimation of classifiers in terms of problem so-
lution [25]. Until now however only few works has consid-
ered the action side of classifier representation (see e.g. [1,
26]). This probably because in the vast majority of applica-
tions the number of actions is usually limited between two
(in typical Boolean problems) and eight (in typical maze
problems). However, the learning performance of a learning
classifier system depends on the number of available actions.
More actions means more options to be explored for finding
the solution and also a higher learning time. For instance,
Butz et al. [6] proved that in XCS the population size re-
quired to support all the subsolutions to a problem grows
linearly in the number of actions while the time to conver-
gence is exponential in the number of available actions [5].
These bounds suggest that XCS has an inductive bias which
is not well suited for problem involving a large number of
actions.

In this paper we investigate the application of learning
classifier systems to problem involving a large number of
discrete actions (for continuous actions, we refer the reader
to [26]). In particular, we consider the learning of binary
functions, which maps bitstrings of size m into bitstrings of
size n, which require 2n discrete actions, and introduce a ver-
sion of XCS [21] designed to tackle such tasks. We call our
version of XCS, XCS with computed action or briefly XC-
SCA. Our approach is inspired by the sUpervised Classifier
System (UCS) developed by Bernado et al. [2] and by pre-
vious work on computed prediction [25, 14]. From UCS [2],
XCSCA borrows the idea of focusing only on the best possi-
ble action without developing a complete knowledge about
the problem, i.e., without building a complete mapping as
done in XCS [21]. From Wilson’s computed prediction [25],
XCSCA borrows the idea of replacing one classifier parame-
ter with a parametrized function: the prediction in [25], the
classifier action in our case. XCSCA dramatically reduces
the search space both because (i) it focuses only on the best
action for each subproblem (as done in UCS), and because
(ii) it introduces generalization over the action space which
reduces the search space even further.
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2. XCS WITH COMPUTED ACTION
XCS with Computed Action (XCSCA) extends the typical

XCS structure to tackle problems involving a large number
of discrete actions. It is inspired to UCS [2], the extension
of XCS to supervised learning, and to XCSF [25], the ex-
tension of XCS with computed prediction. XCSCA borrows
from UCS the idea of having the correct action (the cor-
rect output) as a part of the system input, from XCSF the
idea of replacing a classifier parameter with a parametrized
function. Accordingly, XCSCA does not learn a complete
mapping of the target problem but, as UCS, it focuses on
the correct output which in XCSCA is computed from the
current input.

Classifiers. In XCSCA, classifiers consist of a condition,
which specifies the set of inputs that the classifier matches,
and four parameters: the vector w, used to compute a dis-
crete classifier action; the error ε, that estimates the error
affecting the computed action; the fitness F that estimates
the accuracy of the computed action; the numerosity num,
a counter used to represent different copies of the same clas-
sifier. In XCSCA, classifiers have no action. The classifier
action is computed using a function af (x,w), parametrized
by a vector w, that computes the classifier discrete action
based on the current input x and the parameter vector w
associated to each classifier. In XCSCA, classifiers have no
prediction since, as in UCS, there is no incoming reward.

Performance Component. XCSCA works similarly to
UCS [2]. At each time step t, XCSCA receives as input the
current input example xt and the associated output yt. XC-
SCA builds a match set [M] containing the classifiers in the
population [P] whose condition matches the current input
xt. If [M] is empty covering takes place and a new classifier
that matches the current input is inserted in the population.
The covering classifier is generated as follows: the classifier
condition is created as in XCS [2, 21], the parameter vector
w is initialized with zero values, while all the other param-
eters are initialized as in XCS [21, 10].

At this point, the behavior of XCSCA is different depend-
ing on whether the system is working in learning mode or
in testing mode. During learning, XCSCA exploits the in-
coming information about the desired output yt to update
the classifiers in [M] following the procedure described be-
low. During testing, for each classifier cl in [M], XCSCA
computes the current (discrete) action af (xt, cl.w). Then,
for each action a computed from the classifiers in the match
set [M], XCSCA computes the classification accuracy of ac-
tion a for the input xt, C(xt, a), as the average fitness of the
classifiers in [M] that advocate action a, i.e.,

C(xt, a) =

P
[M ](xt,a) cl .F

|[M ](xt, a)| (1)

where [M ](xt, a) is the set of classifiers in [M] that for the
input xt advocate action a. Finally, XCSCA selects the
action with the highest classification accuracy.

Classifier Update. XCSCA works in a supervised fashion
as UCS [2] and thus it has no incoming reward. In UCS,
the incoming correct output yt is used to build the set [C] of
correct classifiers and the set [!C] of incorrect classifiers. In
XCSCA, the same information is exploited to train the clas-
sifiers in the match set [M]. The classifier error is updated
first, then the prediction, and finally the classifier fitness.

To update classifier error, we define an error function
εf (xt, yt, a) that measures the accuracy of the classifier ac-
tion. The error function εf (xt, yt, a) takes as input the cur-
rent example 〈xt, yt〉 and the proposed output a and returns
a measure of the error affecting the action prediction a with
respect to the target output value yt. In all of the exper-
iments we performed we used a very simple error function
that returns 0 if the classification is correct (i.e., yt = a)
and 1000 if the classification is incorrect (i.e., yt �= a). This
error function has the same range as the classifier error in
XCS and thus it allows us to use for XCSCA the typical
XCS settings for ε0. However, more complex definitions of
εf (xt, yt, a) may be used in more complex tasks. Given the
error εf (xt, yt, a), the error ε of the classifiers in [M] is up-
dated as, “cl.ε← cl.ε + β(εf (xt, yt, a)− cl.ε).” Then weight
vectors of the classifiers in [M] are updated according the
correct incoming action. This training phase depends on
the action function af (xt, cl.w) used and it is illustrated in
details in Section 4. Finally, classifier fitness is updated from
the classifier error as in XCS [21].

Discovery Component. The genetic algorithm works as
in XCS [24]. On a regular basis depending on the param-
eter θga, the genetic algorithm is applied to classifiers in
[M]. It selects two classifiers with probability proportional
to their fitness, copies them, and with probability χ performs
crossover on the copies; then, with probability μ it mutates
each allele. Crossover and mutation work as in XCS [22] ex-
cept for the parameter vector w. The parameter vectors w
of offspring classifiers can be either copied from the parents
(as done in the experiments presented here) or alternatively
they may be obtained by recombining the parents vectors.
The resulting offspring are inserted into the population and
two classifiers are deleted to keep the population size con-
stant.

3. RELATED WORK
To our knowledge, the first notion of computed action,

although not called with this name, was given by Ahluwalia
and Bull [1] who extended ZCS [20] with actions represented
using GP expressions and applied the new model to a well-
known classification task. In [1] action are computed in
that the GP expression that represents the classifier action
is then evaluated over the current inputs. With respect to
our work, the approach is limited to a two value action and
its scalability of multiple action is unknown; in addition, the
function is fully evolved, there is no training of the action
function as in our approach. Later, O’hara and Bull [17]
introduced the neural classifier system X-NCS which has no
condition-action structure but both the classifier condition
and the classifier action are represented by a neural network
whose weights are evolved by a genetic algorithm. Also in
this case, the classifier action is computed based on the cur-
rent input, though it is not learned but it is evolved through
the evolution of the network weights. This because X-NCS
is not restricted to supervised learning problems as XCSCA
or UCS but it may also be applied to typical multistep (grid)
problems. As in [1], also X-NCS has been usually applied to
problems involving a small number of actions 2 or 8 depend-
ing on the type of problem considered so the scalability to
more outputs is not clear. We refer the reader to the group
main page (http://www.csm.uwe.ac.uk/lcsg) and to the
many published papers available online for further details.
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The concept of having the action information provided by
the environment in a supervised learning fashion was first in-
troduced by Bernado et al. [2]. In UCS the classifier action is
created during covering using the incoming correct action,
then classifier actions can be modified through mutation.
In contrast, in XCSCA, the classifier action is trained ev-
erytime that the classifier enters in the match set so that it
does not have the concept of correct set [C] and incorrect set
[!C] [2]. UCS also uses a different definition of classifier ac-
curacy and classifier fitness. In UCS, the classifier accuracy
is computed as an average over the input-output examples
that the classifier experienced.

Essentially, XCSCA uses the same principle adopted in
computed prediction [23, 25]. In fact computed action is ba-
sically obtained by restricting the choice of the parametrized
function to a range adequate for discrete classifier actions.
Recently, Wilson [26] has extended classifier actions to realm
of continuous values. He proposed three architectures in-
spired to his previous work on computed prediction [23]:
one based on interpolation, one based on an actor-critic
paradigm, and one, apparently the most promising, on treat-
ing the action as a continuous variable homogeneous with
the input.

4. ACTION FUNCTIONS
Several functions may be used to compute discrete classi-

fiers actions depending on the problem being solved. With
Boolean functions [21], any function returning two values
is feasible. With binary functions, when more actions are
involved, more elaborate solutions need to be considered.

Constant Action Function. In the simplest case, the
classifier action can be represented by a parameter which is
set using the desired output yt. The vector w thus consists
of just one element, w0, which represents the classifier ac-
tion, i.e., af (xt,w) = w0, while the training of a classifier cl
simply sets the value of the classifier action to the desired
output yt. XCSCA with a constant action function works
similarly to UCS [2], but while in UCS [2] the classifier ac-
tion is set during covering and it can be modified through
mutation, in XCSCA the classifier action is changed every-
time the classifier enters the match set during training.

The Perceptron takes the current input xt and outputs
0 or 1 through a two stage process: first the linear combi-
nation wxt of the inputs xt and of the weight vector w is
calculated, then the perceptron outputs 1 if wxt is greater
than zero, 0 otherwise. The original binary input xt is en-
riched with the usual constant input x0 and, since zero val-
ues for inputs must be generally avoided [11], binary inputs
are mapped into integer values xi by replacing the zeros and
ones in xt with -5 and +5 respectively. Given the current
input xt and the desired output yt, the weight wi associated
to the integer input xi is updated as [19]:

wi ← wi + η(yt − ot)xi (2)

where ot is the perceptron output for input xt, and η is the
usual learning rate.

The Sigmoid is the obvious extension of the perceptron
and it is one of the most typical activation functions used
in neural networks [11]. The action function in this case is
defined as:

af (xt,w) =
1

1 + e−wxt
(3)

Classifier weights are updated through gradient descent as
follows,

wi ← wi + η(yt − af (xt,w))[
∂f(z)

∂z
+ ε]xi

where z = wtxt and the term “∂f(z)/∂z” is the usual ad-
justment factor to avoid flat spots [11].

Neural Networks. When the problem involves many ac-
tions, we can either employ an array of simple Boolean func-
tions, such as for instance an array of sigmoids, or a more
adequate solution such as a neural network. The action func-
tion af (xt,w) is now computed by neural network with n
inputs one for each component of xt, h hidden nodes, and as
many outputs as required by the problem. The activation
functions for both hidden and output nodes are the usual
sigmoid [11]. Given the current input xt and the desired
output yt, the network weights are updated using online
backpropagation [11].

5. DESIGN OF EXPERIMENTS
Each experiment consists of a number of problems that the

system must solve. Each problem is either a learning prob-
lem or a test problem. During learning problems, the sys-
tem exploits all the incoming information, the input xt and
the desired output yt, to train the classifiers in the match
set, thus no action is performed. During test problems, the
system always selects the action with highest classification
accuracy for the input xt and no update is performed. The
genetic algorithm is enabled only during learning problems,
and it is turned off during test problems. The covering oper-
ator is always enabled, but operates only if needed. Learning
problems and test problems alternate. The performance is
computed as the percentage of correct answers during the
last 100 test problems. All the reported statistics are aver-
ages over 20 experiments.

6. BOOLEAN FUNCTIONS
In the first set of experiments, we applied XCS with com-

puted actions to the learning of Boolean functions, a typical
testbed for learning classifier systems. For this purpose, we
selected a typical functions from the literature, the Boolean
multiplexer [21, 22].

Boolean Multiplexer. These are defined over binary
strings of length n where n = k + 2k; the first k bits,
x0, . . . , xk−1, represent an address which indexes the remain-
ing 2k bits, y0, . . . , y2k−1; the function returns the value of
the indexed bit. For instance, in the 6-multiplexer function,
mp6, we have that mp6(100010) = 1 while mp6(000111) = 0.

Experiments. At first, we compared XCS and XCSCA on
the 20-multiplexer; for XCS and XCSCA the same param-
eter setting was used [9]: N = 2000, β = 0.2; α = 0.1;
ε0 = 10; ν = 5; χ = 0.8, μ = 0.04, θdel = 50; θGA = 50;
δ = 0.1; GA-subsumption is on with θsub = 50; while
action-set subsumption is off. Figure 1a compares the per-
formance of XCS with that of XCSCA with the constant ac-
tion function, the perceptron, and the sigmoid. XCSCA gen-
erally reaches optimal performance faster than XCS: with
the constant action function such a difference is slight but
when more powerful action functions, namely the percep-
tron and the sigmoid, are used the difference is more visible.
The 20-multiplexer is a very simple problem and the sigmoid
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does not provide an advantage over the percetron: in fact,
the perceptron converges faster due to its simpler update
procedure. As expected, computed action allows better gen-
eralization: all the three versions of XCSCA converge faster
to smaller solutions than XCS. XCSCA with the perceptron
generalizes faster than XCSCA with the sigmoid because the
perceptron update is faster than the sigmoid update and the
two function are basically equivalent on this simple problem.
In fact, the differences in Figure 1 are actually not statisti-
cally significant.

To understand how XCSCA evolve more compact solu-
tions we analyze one of the evolved solutions. For this pur-
pose we report in Table 1 classifiers from one of the popu-
lation evolved by XCSCA with the perceptron in the first
experiment on the 20-multiplexer; column “c” reports the
classifier condition; column “xw” reports the argument of
the perceptron (if xw > 0 then the perceptron output is
1, otherwise it is 0); column “ε” reports the error, column
“F” reports the fitness, column “num” reports the numeros-
ity; variable Xi represents the multiplexer variable xi after
it has been mapped into -5/5 values; variable Yi represents
the multiplexer variable yi after it has been mapped into
-5/5 values. The population mainly consists of classifiers
whose conditions have only four specific bits instead of the
usual five specific bits that XCS would require to solve the
same problem. Such classifiers are characterized by small
weights corresponding to each input variable except for the
one corresponding to the bit identified by the address bits.
For instance let us consider the column “wx” of the first
classifier in Table 1. We can distinguish three different con-
tributions: (i) a constant term due to the first constant
weight and to the variables inputs Xi, that is overall equal
to 2.6− 0.5 · 5 + 0.5 · 5 + 0.4 · (−5) + 0.2 · (−5) = −0.4; (ii)
the term due to the inputs corresponding to the bits iden-
tified by the address, i.e. 2.6Y12; (iii) a sort of noise that
is due to all the inputs Yi with i �= 12, that ranges between
−8.5 and +8.5, depending on Yi values. Overall we have
wx = −0.4 ± 8.5 + 2.6Y12) that is wx ≥ 4.1 when y12 = 1
(i.e. Y12 = 5) and wx ≤ −4.9 when y12 = 0 (i.e. Y12 = −5).
This results in an action equal to 1 (af (x) = 1) when y12 = 1
and action equal to 0 (af (x) = 0) otherwise, i.e the classifier
is able to compute the correct action.

7. BINARY FUNCTIONS
We now move to problems involving many actions. For

this purpose we consider binary functions which map bit-
strings of size m into bitstrings of size n.

7.1 Binary Shift
We begin with a very simple binary function which can

become easily challenging for a niche based learning classifier
system like XCS, i.e., the binary shift. The binary shift
of size m, shortly shiftm, takes as input a binary string
x = 〈x1, . . . , xm〉 and returns the binary string y of size m
obtained by shifting the m input bits to the right, i.e., y =
〈0, x1, . . . , xm−1〉. For example, if m = 8 and x =11011011,
then shift8(11011011) returns 01101101.

The binary shift is challenging both because the number of
possible actions is exponential in the number of inputs (there
are in fact 2m−1 actions) and because the usual ternary
representation of classifier conditions allows only generaliza-
tions in the position m of classifier conditions. Thus, XCS
requires a population of 22(m−1) classifiers to represent the
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Figure 1: XCS and XCSCA applied to the
20-multiplexer: (a) performance; (b) number of
macroclassifiers.

solution. However, it is rather intuitive to design an action
function to solve the binary shift. The most straightforward
solution consists of an array of two-valued action functions
(e.g., the perceptron or the sigmoid) each one computing
a separate action bit based on the current inputs. For in-
stance, to solve the binary shift of size 8, shift8, the action
function would consist of an array of eight perceptrons (one
for each output).

Figure 2 compares (a) the performance and (b) the popu-
lation size of XCS and XCSCA using a constant action, an
array of perceptrons, and an array of sigmoids. For all the
four models the parameters were set as follows: β = 0.2;
α = 0.1; ε0 = 10; ν = 5; χ = 0.8, μ = 0.04, θdel = 50;
θGA = 50; δ = 0.1; GA-subsumption is on with θsub = 50;
while action-set subsumption is off. For XCS the population
size was set to 20000 while for XCSCA was set to 2000. As
the plot shows, with an array of simple two-valued action
functions, XCSCA quickly reaches optimality and evolves
the minimal representation possible, one classifier with a
condition that matches all the possible inputs; the action
function is implemented by an array of perceptrons (or sig-
moids) which transfer the input bits in their final shifted po-
sition. Learning the shift8 with a constant action function
is much simpler than learning it with XCS. XCSCA with a
constant action function needs only 27 classifiers to represent
the optimal solution. Accordingly, it slowly reaches optimal-
ity while the population slowly decreases. Although 20000
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c xw ε F num

1100################ 2.6 − 0.5X0 + 0.5X1 + 0.4X2 + 0.2X3 + 0.2Y0 + 0.1Y1 0.0 1.0 147.0
+0.1Y2 − 0.1Y3 − 0.0Y4 + 0.1Y5 + 0.2Y6 − 0.1Y7 − 0.1Y8 − 0.3Y9
−0.1Y10 − 0.0Y11 + 2.6Y12 − 0.0Y13 − 0.1Y14 + 0.2Y15

1101################ 0.2 − 0.1X0 + 0.0X1 − 0.0X2 + 0.0X3 − 0.0Y0 − 0.0Y1 0.0 1.0 137.0
−0.0Y2 + 0.1Y3 − 0.1Y4 − 0.1Y5 − 0.0Y6 + 0.1Y7 + 0.1Y8 + 0.0Y9
−0.0Y10 − 0.1Y11 + 0.1Y12 + 1.9Y13 + 0.1Y14 − 0.1Y15

. . . . . . . . . . . .
0011################ 0.6 − 0.1X0 − 0.2X1 + 0.1X2 − 0.5X3 − 0.0Y0 + 0.0Y1 0.0 1.0 108.0

+0.1Y2 + 1.7Y3 − 0.0Y4 − 0.0Y5 − 0.0Y6 − 0.0Y7 + 0.1Y8 + 0.0Y9
−0.0Y10 − 0.0Y11 − 0.1Y12 + 0.0Y13 − 0.1Y14 − 0.0Y15

Table 1: Classifiers from a population evolved by XCSCA when the action function is implemented using a
perceptron: c is the condition; xw is the argument of the perceptron, if xw > 0 then the action is 1, otherwise
it is 0; ε is the error, F is the fitness, num is the numerosity; Xi and Yi represent the multiplexer variables
xi and yi after they have been mapped into -5/5 values.

classifiers are theoretically enough to represent the solution
for the shift8, XCS cannot reach optimality. However, it
should be noted that while XCSCA is actually learning only
the optimal actions, XCS evolves a complete representation
of the problem solution. Thus, its learning burden is actu-
ally much higher than that of XCSCA.

7.2 Binary Sum
The binary shift involves many actions, however it is a

rather easy problem in that each action bit can be inde-
pendently determined. We now move to a more difficult
function, the binary sum, in which the action bits are cor-
related. The binary sum of size m, shortly summ, takes as
input a binary string of size 2m, representing two binary
numbers of size m, x and y, and returns a binary string s of
size m+1 obtained by the sum x+y. For example, suppose
that k = 4, x =1001, and y =1011, then sum4(10011011)
returns 10100. The circuit that computes sum4 is depicted
in Figure 3. As can be noted, while the least significant
output bit s0 is solely determined by the least significant
input bits (x0 and y0), the subsequent action bits sj depend
both on the input bits xj and yj and the incoming carry
bit (cj−1) determined by the sum of the preceding bits. The
sum4 function is rather difficult. Accordingly, when we apply
a feedforward neural network to learn sum4 we need at least
20 hidden nodes to reach optimal performance (Figure 4).

Figure 5a reports the performance of XCSCA on the sum4

function; XCS is not reported since it cannot learn the func-
tion even with a large population. The parameters are set as
in the previous experiments with the shift8. As expected,
sum4 is more difficult. In fact, XCSCA quickly reaches opti-
mal performance when actions are computed using an array
of perceptrons, an array of sigmoids, or a neural network
with 10 hidden nodes. In contrast, the learning is extremely
slow when a constant action function is involved. If we com-
pare the performance of XCSCA (Figure 5a) with that of
single neural networks (Figure 4), we note that, in terms of
number of learning problems, XCSCA is slightly faster than
neural networks (although the difference is not statistically
significant). However, in terms of computation effort neural
networks are obviously cheaper since XCSCA maintains a
population of networks. When we consider the amount of
generalization achieved (Figure 5b) we note that XCSCA
with neural networks require less classifiers, while the array
of perceptrons and the array of sigmoids provide similar gen-
eralizations. Finally, it is interesting to analyze the general-
izations that XCSCA evolves in this problem. Table 2 shows

c ε F num

###0#### 0.0 1.0 971.0
###1#### 0.0 1.0 967.0
#######1 0.0 0.1 56.0
##0###0# 0.0 0.0 4.0
###1##0# 0.0 0.0 1.0
#011##1# 0.0 0.0 1.0

Table 2: Population evolved by XCSCA for the sum4

when the action function is computed using a neural
network.

a typical population evolved by XCSCA for sum4 when the
action function is computed using a neural network with 10
hidden nodes (which in principle cannot solve the problem);
action functions are not reported since they would require
too much space. As it can be noted, XCSCA tends to evolve
few very general and overlapping classifiers which partition
the problem space based on the value of the least significant
input bits. For instance, the first classifier in Table 2 is ap-
plied only when the first number (specified by the initial four
bits) is even, i.e., when the sum won’t result in a carry from
the first bit. The next two classifiers are activated when a
carry is probable, i.e., when one of the least significant bit
is set to 1.

7.3 Anticipatory Function
In the last set of experiments, we applied XCSCA to a

problem that is well-known to the learning classifier systems
community, i.e., the learning of anticipatory behavior [7].
Anticipatory classifier systems [7] extend the typical classi-
fier structure by adding the prediction of the next state that
the system will encounter after the classifier action is per-
formed. In our case, we did not extend XCSCA with antic-
ipations but simply we applied XCSCA to learn a model of
the environment which may be used to implement anticipa-
tions. For “real” anticipatory classifier systems we refer the
reader to [7] and to [18] for a neural based implementation of
anticipatory classifier systems. We focused on typical mul-
tistep environments, namely the woods environments, that
have been already used both with XCS [21] and ACS [7]. We
applied XCS to Woods1 [21] and Maze5 [13] and we traced
the state transitions that XCS performed during the learn-
ing steps. Each transition records the current state st, the
performed action at, and the next state st+1 encountered af-
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Figure 2: XCSCA applied to the shift8: (a) perfor-
mance (b) number of macroclassifiers.

ter action at was performed in st+1. For each environment,
we generated ten data sets containing 100000 transitions.
The sequence of transitions contained in each data set was
fed to XCSCA which had to learn a mapping from state-
action pairs (represented as strings of 19 bits) into the next
states (represented as strings of 16 bits). Since the transi-
tions were obtained during learning, each data set contain
many copies of the same transitions and the sequences are
highly correlated.

We applied different versions of XCSCA to learn the
model of Woods1 (Figure 6) and Maze5 (Figure 7); all the
parameters were set as in the previous experiments except
for the population size N that was set to 5000 classifiers.
Figure 6a reports the performance and the population size
for XCSCA in Woods1 using an array of perceptrons, an ar-
ray of sigmoids, and neural networks with ten hidden nodes.
The problem is simple and all the three versions of XCSCA
perform almost the same and they also reach the same level
of generalization. Figure 6b compares the performance of
XCSCA with neural networks with the performance of feed-
forward neural networks with different numbers of hidden
nodes. As can be noted, a neural network with 40 hidden
nodes quickly reaches a near optimal performance, though
it never goes stably to 100%. To learn a model of Woods1
with a 100% accuracy requires more than 40 hidden nodes.
In contrast, XCSCA using neural networks with 10 hidden
nodes can learn as fast as neural networks with 30 hidden
nodes (which on the other hand does not reach fully opti-

Figure 3: The circuit that implements the function
sum4. The blocks “FA” are full adder that implement
the sum of two bits including an incoming carry.
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Figure 4: The performance of neural networks on
sum4 using different numbers of hidden nodes.

mality). Figure 7 provides the same comparison for Maze5.
In this case, XCSCA with neural networks with 20 hidden
nodes is slightly faster than XCSCA using arrays of per-
ceptrons and sigmoids (Figure 7a). However, the difference
is not statistically significant. Feedforward neural networks
with 40 hidden nodes cannot learn a model of Maze5 whereas
XCSCA using neural networks with 20 hidden nodes easily
converges to optimal performance (Figure 7b).

Table 3 shows examples of classifiers from populations
evolved by XCSCA using neural networks for (a) Woods1

and (b) Maze5. Action functions are not reported because
too complex. The Woods1 environment is simple to model,
in fact most of the evolved classifiers are fully general ex-
cept for the bits corresponding to the last three action bits.
I.e., the problem of predicting the next state can be parti-
tioned based on the performed action and using the state
bits for computation. Maze5 is more difficult (as the per-
formance of single feedforward neural networks suggest). In
fact, the evolved classifiers require more specific bits than
those evolved for Woods1. This suggest that to predict the
next state in Maze5, XCSCA also needs to partition the prob-
lem based on the current state, not only on the performed
action.

8. CONCLUSIONS
Problems involving many actions can be challenging for a

niche based learning classifier system like XCS. In this paper,
we introduced a version of XCS in which computed actions
are exploited to learn functions involving a large number
of discrete actions. Previous theoretical results suggest that
XCS has an inductive bias which is not well suited for dealing
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Figure 5: XCSCA applied to sum4: (a) performance
and (b) number of macroclassifiers.

with many actions [6, 5]. However, the XCSF idea [25],
i.e., partitioning plus the use of mapping functions, seems
to have a much less restricted inductive bias (with some
functions better than others, as illustrated). In fact, by
applying the mapping functions to compute actions, XCSCA
can evolve maximally accurate and compact representations
of binary functions that cannot be solved with XCS [21].

In XCSCA, each classifier implements a very simple super-
vised learning model that is trained from online experience;
the population is an ensemble of models that are initially
filtered through the matching process and later aggregated
through an accuracy weighted average so as to provide a
prediction of the target output. In this perspective, XCSCA
(more than other classifier system models) resembles many
similarities to aggregated predictors such as bagging [3], ran-
dom forests [4], and other approaches developed in the area
of Machine Learning [16]. Accordingly, future research di-
rections include the application of XCSCA to supervised
classification problems to compare the performance of XC-
SCA with that of aggregated approaches [3, 4].
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[2] Ester Bernadoó-Mansilla and J.M. Garrell.
Accuracy-based learning classifier systems: Models,
analysis and applications to classification tasks.
Evolutionary Computation, 11:209–238, 2003.

[3] Leo Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[4] Leo Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[5] Martin Butz, David G. Goldberg, and Pier Luca
Lanzi. Bounding learning time in XCS. In Genetic and
Evolutionary Computation – GECCO-2004, LNCS,
2004. Springer-Verlag.

[6] Martin Butz, David G. Goldberg, Pier Luca Lanzi,
and Kumara Sastry. Bounding the population size to
ensure niche support in XCS. Technical Report
2004033, Illinois Genetic Algorithms Laboratory –
University of Illinois at Urbana-Champaign, IL 61801,
February 2004.

[7] Martin V. Butz. Anticipatory Learning Classifier
Systems, volume 4 of Genetic Algorithms and
Evolutionary Computation. Springer-Verlag, 2000.

[8] Martin V. Butz. Kernel-based, ellipsoidal conditions in
the real-valued XCS classifier system. In Beyer H.G.
et al., editor, GECCO 2005: Proceedings of the 2005
conference on Genetic and evolutionary computation,
volume 2, pages 1835–1842, 2005. ACM Press.

1828



  0%

 25%

 50%

 75%

100%

 0  20000  40000  60000  80000  100000P
E

R
F

O
R

M
A

N
C

E
 A

N
D

 N
O

 M
A

C
R

O
 (

%
 O

F
 N

)

NUMBER OF TRANSITIONS

NN (PER)
NN (MAC)

SIGMOID (PER)
SIGMOID (MAC)

PERCEPTRON (PER)
PERCEPTRON (MAC)

(a)

  0%

 25%

 50%

 75%

100%

 0  20000  40000  60000  80000  100000

P
E

R
F

O
R

M
A

N
C

E

NUMBER OF TRANSITIONS

XCSCA NN (h=20)
NN (h=20)
NN (h=30)
NN (h=40)

(b)

Figure 7: (a) XCSCA applied to the learning of the
model for Maze5: performance (empty dots) and pop-
ulation size (solid dots); (b) Comparison with neural
networks.

[9] Martin V. Butz, Kumara Sastry, and David E.
Goldberg. Strong, stable, and reliable fitness pressure
in XCS due to tournament selection. Genetic
Programming and Evolvable Machines, 6:53–77, 2005.

[10] Martin V. Butz and Stewart W. Wilson. An
algorithmic description of xcs. Journal of Soft
Computing, 6(3–4):144–153, 2002.

[11] Simon Haykin. Neural Networks: A Comprehensive
Foundation. Prentice Hall PTR, 1998.

[12] J.H. Holland. Escaping brittleness: The possibilities of
general purpose learning algorithms applied to parallel
rule-based systems. In R.S. Michalski et al., editors,
Machine Learning, An Artificial Intelligence
Approach, volume 2, chapter 20, pages 593–623.
Morgan Kaufmann, Los Altos, CA, 1986.

[13] Pier Luca Lanzi. An Analysis of Generalization in the
XCS Classifier System. Evolutionary Computation
Journal, 7(2):125–149, 1999.

[14] Pier Luca Lanzi, Daniele Loiacono, Stewart W.
Wilson, and David E. Goldberg. XCS with computed
prediction for the learning of boolean functions. In
Proceedings of the IEEE Congress on Evolutionary
Computation – CEC-2005, pages 588–595, 2005. IEEE.

[15] Drew Mellor. A first order logic classifier system. In
Hans-Georg Beyer and Una-May O’Reilly, editors,
GECCO, pages 1819–1826. ACM, 2005.

c ε F num
################011 0.0 1.0 557.0
################000 0.0 0.9 496.0
################111 0.0 0.8 451.0
################101 0.0 0.8 436.0
. . . . . . . . .

(a)

c ε F num
#####0#0####0#0#111 0.0 0.9 126.0
1####0########1#00# 0.0 0.9 118.0
####0#########0#010 0.0 0.8 113.0
####0######01###100 0.0 0.8 112.0
. . . . . . . . .

(b)

Table 3: Classifiers from two populations evolved by
XCSCA for (a) Woods1 and (b) Maze5.

[16] Tom M. Mitchell. Machine Learning. McGraw-Hill,
1997.

[17] Toby O’Hara and Larry Bull. Accuracy-based neuro
and neuro-fuzzy classifier systems. Technical Report
UWELCSG02-001, University of West England., 2002.

[18] Toby O’Hara and Larry Bull. Building anticipations in
an accuracy-based learning classifier system by use of
an artificial neural network. In IEEE Press, editor,
IEEE Congress on Evolutionary Computation, pages
2046–2052, 2005.

[19] F. Rosenblatt. Principles of Neurodynamics. Spartan
Books, New York, 1962.

[20] Stewart W. Wilson. ZCS: A zeroth level classifier
system. Evolutionary Computation, 2(1):1–18, 1994.
http://prediction-dynamics.com/.

[21] Stewart W. Wilson. Classifier Fitness Based on
Accuracy. Evolutionary Computation, 3(2):149–175,
1995. http://prediction-dynamics.com/.

[22] Stewart W. Wilson. Generalization in the XCS
classifier system. In Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages
665–674. Morgan Kaufmann, 1998.

[23] Stewart W. Wilson. Function approximation with a
classifier system. In Lee Spector et al., editor,
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages
974–981, San Francisco, California, USA, 7-11 July
2001. Morgan Kaufmann.

[24] Stewart W. Wilson. Mining Oblique Data with XCS.
volume 1996 of Lecture notes in Computer Science,
pages 158–174. Springer-Verlag, April 2001.

[25] Stewart W. Wilson. Classifiers that approximate
functions. Journal of Natural Computating,
1(2-3):211–234, 2002.

[26] Stewart W. Wilson. Three architectures for continuous
action. Technical Report 2006019, Illinois Genetic
Algorithms Laboratory – University of Illinois at
Urbana-Champaign, 2006.

1829



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


