
Genetic Evolution of Hierarchical Behavior Structures
Brian G. Woolley and Gilbert L. Peterson

Air Force Institute of Technology
Department of Electrical and Computer Engineering

2950 Hobson Way, Bldg 640
Wright-Patterson AFB, OH 4543

(937) 255-3636

brian.woolley@ieee.org, gilbert.peterson@afit.edu

ABSTRACT
The development of coherent and dynamic behaviors for mobile
robots is an exceedingly complex endeavor ruled by task
objectives, environmental dynamics and the interactions within
the behavior structure. This paper discusses the use of genetic
programming techniques and the unified behavior framework to
develop effective control hierarchies using interchangeable
behaviors and arbitration components. Given the number of
possible variations provided by the framework, evolutionary
programming is used to evolve the overall behavior design.
Competitive evolution of the behavior population incrementally
develops feasible solutions for the domain through competitive
ranking. By developing and implementing many simple behaviors
independently and then evolving a complex behavior structure
suited to the domain, this approach allows for the reuse of
elemental behaviors and eases the complexity of development for
a given domain. Additionally, this approach has the ability to
locate a behavior structure which a developer may not have
previously considered, and whose ability exceeds expectations.
The evolution of the behavior structure is demonstrated using
agents in the Robocode environment, with the evolved structures
performing up to 122 percent better than one crafted by an expert.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics – Autonomous Vehicles;
D.2.2 [Software Engineering]: Design Tools and Techniques –
Evolutionary Prototyping.

General Term: Design

Keywords
Evolutionary Robotics, Genetic Programming, Behavior-Based
Robotics, Unified Behavior Framework.

1. INTRODUCTION
Mobile robots inherently exist in dynamic environments and are
expected to react well in unpredictable situations while
performing their task(s). Currently, most robots employ some
form of reactive behavior architecture [18]. To cope with the

variety in the environment, agents are implemented with a broad
set of skills, or behaviors. The goal of fusing several behaviors
into a single complex behavior is to deliver a coherent sequence
of actions that are ultimately more effective in a given
environment than any single behavior [22]. Such attempts have
proven to be a significant endeavor for two reasons. The first is
that the code complexity of a behavior grows exponentially as
additional traits are added. The second is that development of a
behavior that tries to maximize some criteria while minimizing
others is the optimization of a multi-objective problem [6].
To ease the complexity of designing and coding a behavior, a
behavior framework is introduced such that simple and
independent behaviors can be interchangeably arranged into an
arbitrated hierarchy. The goal of using the framework is to allow
for: parallel development of elemental behaviors and arbitration
units, to restrict the complexity of implementation to the
development of elemental behaviors, to encourage code reuse
within the domain, and to allow the application of an evolutionary
algorithm to discover sets of near-optimal behavior structures for
the domain.
By using the unified behavior framework (UBF) [23] to provide
behavioral logic to robots operating in the Robocode domain,
various behavior structures are possible based on a pool of simple
elemental behaviors and interchangeable arbiter components.
While many formations are poor choices, some unexpected
combinations may be quite good. By using the environment as an
evolutionary pressure, an initial population of randomly formed
structures is able to organize itself into coherent behaviors that are
well suited to combat. Through the repetitive application of
ranking each member and then evolving the population by
application of a genetic programming algorithm, behavior
structures emerge that are effective on an absolute scale [14].

2. BACKGROUND
The basis of this paper’s research draws on previous work related
to evolutionary computation, behavior based robotics, and the
evolution of robotic controllers.

2.1 Evolutionary Algorithms (EA)
The class of stochastic, global search & optimization algorithms
that use the repetitive application of seemingly simple rules to
discover emergent behaviors are known as evolutionary
algorithms (EA). Such techniques loosely imitate natural
evolution and the Darwinian concept of Survival of the Fittest
[11]. EA techniques are especially effective in large search spaces
because, they have a random element that makes them less

Copyright 2007 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee, contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

1731

susceptible to becoming trapped in a local minimum. Since
evolutionary pressures are directing the search, they provide good
solutions to a wide range of optimization problems that traditional
deterministic search methods find difficult [12].
In nature, the evolutionary process occurs when the following
four conditions are satisfied: 1) an entity has the ability to
reproduce itself, 2) there is a population of such self-reproducing
entities, 3) there is some variety among the self-reproducing
entities, and 4) some difference in ability to survive in the
environment is associated with the variety [14].
One particular subset of EA algorithms is genetic programming
(GP). This subset is defined by its ability to manage the
adaptation of complex structures. Typically the structures are
hierarchical in nature, stored as trees, rather than sequentially as
in genetic algorithms. Since the organization and ordering of a
member’s structure is important, it must be preserved during
crossover (or sexual recombination). A single GP cycle, referred
to as an epoch, consists of five major events: 1) a fitness
evaluation of each member’s ability to cope in the environment,
2) a ranked ordering of the population, 3) a period of
recombination where the strongest members have the greatest
probability of reproducing, thus propagating successful attributes,
4) an opportunity for mutation, which is optionally used to
introduce variety and avoid local minima and 5) a pruning of the
population size by removing unfit members. Once one epoch is
complete a new epoch begins [6, 14].
Many times an environment is competitive and adversarial in
nature, meaning that the members of a population must gain their
fitness measure at the expense of another. Such competitive
evolutions rank individuals in the population relative to their
peers. This approach is beneficial because despite the members of
the initial population being highly unfit, over a period of time,
members evolve and rise to higher levels of performance as
measured in terms of absolute fitness. What is interesting is that
such a process is a self-organizing, mutually bootstrapping
process that is driven only by relative fitness (and not by absolute
fitness) [14].

2.2 Behavior Based Robotics
Research efforts in robotics through about 1985 focused almost
exclusively on planning and world modeling [10] in an attempt to
develop completely rational mobile robots [18]. The sense-plan-
act approach, Figure 1a, proved inadequate in dynamic and
unpredictable environments, where the robot finds itself in trouble
when its internal state loses sync with the reality that it is intended
to represent [2]. This is because anything approaching a real
world model typically requires so much time to maintain and
develop plans for, that the state of the environment changes
before the actions can be carried out, effectively nullifying the
action sequence. The main problem is that a traditional Lorenz
control loop [19] directly links the rate at which a robot can
evaluate its environment to the computational time requirements
of the planning module.
The need to alleviate this planning bottleneck led tasks to be
decomposed into collections of low-level primitive behaviors.
This approach took on the self-contradictory term, reactive
planning [10]. The ideas behind reactive planning stem from
arguments such as Braitenberg’s, who argues that the complex
behavior of natural organisms may be the result of simple

behaviors. Braitenberg further argues that by combining simple
behaviors, more complex behaviors and attributes are possible [3].
In equivalent research Brooks claims that for many tasks, robots
do not need traditional reasoning, only a tight coupling of sensing
to action. He backs that claim with robust autonomous robots
using the Subsumption architecture [4, 5].

Figure 1: Two organization decompositions for robot control
(A) Sequential execution of functional modules; (B) A task-
based decomposition into parallel execution modules.

Subsumption is the canonical architecture that advocates for a
layered control system based on task decomposition, an approach
which is radically different from previous research. Figure 1
highlights this quintessential paradigm shift, with the sense-plan-
act architecture shown in (A) and the new horizontal structure of
Subsumption shown in (B). This parallel organization naturally
promotes concurrent and asynchronous responses to sensor input.
Each individual layer works to achieve its particular goal.
Coordination between layers is achieved when complex actions
(or higher layers) subsume simpler actions, or when low-level
behaviors inhibit higher layers. From this work other distinct
behavior architectures emerged: motor schemas [1], circuit
architecture [13], action-selection [15], colony architecture [7],
animate agent architecture [8], DAMN [17] and utility fusion
[18].
Traditionally, a mobile robot design implements a single behavior
architecture, thus binding its performance to the strengths and
weaknesses of that architecture. The unified behavior framework
(UBF) incorporates the critical ideas and concepts of these eight
existing reactive controllers, demonstrating that each can be
represented using a single straightforward framework. At is core
the UBF uses an abstract behavior interface to define a family of
behavioral algorithms that can be used interchangeably regardless
of the underlying behavior architecture. Using the UBF, the
developer (and in this case, the evolutionary algorithm) is not
restricted to using any single behavior architecture [23].
Additionally, the UBF supports the construction of new behaviors
as compositions of existing behavior modules, the reuse of
subcomponents is also encouraged in the UBF via a mechanism
modeled on the composite pattern [9]. The composite pattern
allows new control structures to be formed as arbitrated
hierarchies of existing behaviors, with the resulting structure
acting as a single behavior unit [23].
The software design mechanisms of the strategy and composite
patterns encourage a developer to use modular approaches that
ease the complexity of designing, testing and implementing a
collection of reactive behaviors, while providing the ability to
form larger hierarchies of behaviors. This isolates code
complexity to the atomic (or leaf) behaviors. The freedom to join
existing behaviors as compositions encourages experimentation

1732

with various structural arrangements of elemental behaviors,
arbitration components and existing behavior structures [23].
Under the UBF, behavioral structures are formed by joining
groups of behaviors together at arbitrated nodes. At a structure’s
lowest levels are the leaf behaviors, which capture the simple
logical skills of the system. Each leaf passes an action
recommendation to the joining node above. Each joining node
uses its arbiter to consolidate the recommendations of its sub-
behaviors into a single action recommendation that is passed to
the joining node above. Such a hierarchical structure ensures that
the root of the behavior will only present a single action
recommendation to the robot controller. For longer descriptions of
the arbiters and the behaviors used in this experiment, refer to
section 3.5.

2.3 Evolutionary Robotics
Previous work that spans the boundary between evolutionary
computation and robotics includes the evolution of a layered
Subsumption architecture for robot control [20] and the evolution
of controllers for racing a remote controlled car around a track
[21]. This work demonstrates the ability of evolution to develop
and tune individual architectures to a given domain.
This paper uses the common interface of the unified behavior
framework [23] to expand the scope of the evolutionary search,
allowing the fitness of several behavior-based architectures to be
evaluated concurrently for a particular domain.

3. IMPLEMENTATION
The discussion of this experiment’s design and implementation is
presented first as a high level design followed by an explanation
of the Robocode adaptation, the fitness function, the genetic
program, and concludes with a description of the elemental
behavior/arbiter components.

3.1 High-Level Design
Because the UBF behavior structures are trees, consisting of root
nodes with arbiters and leaf behaviors, the mapping to a genetic
programming representation is straightforward. The high-level
design of the evolutionary system used to automate the discovery
of effective behavior structures is centered on the fitness function
and the evolution engine. An adaptation of the Robocode robot
battle simulator forms the basis of the fitness function which
interacts with the evolution engine via input and output files. Each
epoch of the evolutionary process is established by the repetition
of four execution stages: Stage I enacts the relative fitness
function described in section 3.3.1 to evaluate the relative fitness
of individuals in a population. Stage II is the evolutionary engine
that advances a population by one generational time, i.e. from P(t)
to P(t+1). Stage III enacts the absolute fitness function described
in section 3.3.2 to measure a population’s current level of fitness,
in reference to an unchanging benchmark behavior. Stage IV is a
simple parser that maintains a historical record of each
population’s evolutionary progress. This four step cycle is shown
in Figure 2.

Figure 2: Cyclical progression of Stages I through IV.

3.2 Robocode Adaptation
Robocode [16] was chosen as a simulation environment because it
provides a dynamic, straightforward environment for comparing
different control architectures. However, it is not as useful for
experimenting with established robot control architectures
because rather than accepting motor commands, commands are
discrete requests that set a robot to turn left 90 degrees, or travel a
set distance and then stop. This motor interface is atypical of
standard robot motor control mechanisms. For this reason, the
motor interface of Robocode version 1.0.7 was adapted to allow
for a velocity based approach, it now accepts commands that
specify the desired velocity and rate of turn for the chassis as well
as the turn rate for the gun turret and the radar. Once set, these
rate based values persist until changed.

3.3 Fitness Function
The scoring mechanism provided in Robocode provides a
quantifiable metric that indicates the relative fitness that two or
more behavior structures have in a given environment. In this
experiment the fitness function is configurable to operate in either
a relative or an absolute fitness evaluation mode. The first is used
during Stage I to rank the individuals in a population relative to
each other. The second evaluation mode is used in Stage III to
capture a population’s absolute fitness relative to an unchanging
benchmark behavior. This section concludes with a discussion of
the noise parameters inherent in using a nondeterministic fitness
function and presents the standards for this experiment.

(1) R(k) = 1

1

−
⋅

∑
=

n

i
i

k

score

scoren (2) Pr(k) =

∑
=

n

i
i

k

score

score

1

An individual’s rating and probability of selection are defined by
equations (1) and (2) respectively, where n denotes the number of
members in a population and k is a specific individual.

3.3.1 Relative Fitness
The relative fitness mode is the evaluation mode used during
Stage I and ranks individuals in the population relative to their
peers, regardless of their absolute fitness. The Robocode
application is configured using the melee battle file and places ten
robots on the battlefield for a twenty-five round, all-for-one
melee. Because individuals advance their score by exploiting
other members, the scores that result from this sequence provide a
means of stratifying the members of a population relative to each
other. Each member’s rating, R(k), is calculated as the percent
difference of a nominal score (total score/n); values above zero
indicate superior combat skills while below zero ratings indicate
an inferior level of performance. The probability of selection for
an individual is based on their fraction of the total score.

3.3.2 Absolute Fitness
The absolute fitness mode is the evaluation mode used during
Stage III to gain insight into how subsequent generations of a
population are progressing over time by ranking it against a fixed
benchmark behavior. This evaluation is used to observe the fitness
of a population on an absolute scale and is never used to drive the
direction of the evolution. In this mode, the Robocode application
is configured to set the population’s fittest member against the
benchmark behavior for a twenty-five round, one-on-one battle.

1733

In most cases this approach provides a good estimate of absolute
fitness. However, in some cases, a population can discover
structures that are particularly good at defeating the benchmark
without being a globally optimal solution. For this reason, these
values only serve as an indicator of how a population is
progressing towards the notion of absolute fitness.
The benchmark behavior, as generated by a user expert, is shown
in Figure 3 and consists of the behaviors Wander v3, Charge,
Dodge and Fire v1 joined by an activation fusion arbiter. The
benchmark’s observed behavior has three operating modes: one
that executes a random S-wander pattern across the battlefield
while attempting to track and shoot opponents, another which
aggressively charges towards a nearby weaker opponent with
guns blazing, and an evasive behavior that emerges above the
other two when the benchmark is taking fire from unseen
opponents.

Figure 3: The control structure of the benchmark behavior.

3.3.3 Noise Parameter
The jitter inherent in the absolute fitness function is caused by the
stochastic variance in the simulator’s ability to accurately stratify
members relative to each other. The nondeterministic progression
of battles in Robocode is caused by random starting postures and
the dynamic interaction of opposing behavior algorithms. The
results of any battle will have some level of uncertainty, where
the more rounds per battle, the smaller the uncertainty. To
demonstrate this, a sequence of battles is created with the
benchmark facing itself in combat. On average, when identical
behavior structures are set against each other, neither one should
score better than the other. When battles consist of five rounds
each, the average relative fitness measured is 0.6% with a
standard deviation of 40.2%. When battles consist of twenty-five
rounds each, the average relative fitness is 0.5% and the standard
deviation drops to 17.6%, the raw noise is illustrated in Figure 4a.

Figure 4a: Noise for Benchmark vs. Benchmark (25-rounds).

Although, increasing the number of rounds per battle reduces
jitter and more accurately stratifies an individual’s relative fitness,
this approach is prohibitive due to time requirements. To keep the
speed of the evolutionary cycles manageable, twenty-five round
battles are established as the standard for this experiment, setting
the fitness function’s noise parameter at plus or minus 17.6% per

battle. To smooth the representation of how sequences of battles
are progressing, a ten-tap moving average is applied to smooth the
results and establish a noise floor. Applying this filter to the data
in Figure 4a establishes a noise floor expectation with a near zero
average and a jitter of 5.45%. The effect of using this approach is
illustrated in Figure 4b and is applied throughout the experiment.

Figure 4c: A 10-tap moving average dampens variance, shows
trends over time and establishes the experiment’s noise floor.

3.4 Genetic Program (GP)
The hierarchical nature of behavior structures under the UBF
allows a genetic program (GP) to perform a stochastic search of
the solution space. The GP in this experiment maintains a fixed
population of ten members and uses elitism, mutation and
generational recombination to guide the search from an initial
random population towards a set of behavior structures that are
coherent for the domain. The GP’s parameter settings are
specified in Table 1.

Table 1: Parameters and settings of the genetic program.

Parameter Symbol Setting
Population Size n 10
Elitism Rate (%) E 10%

Mutation Rate (%) M 10%
Generation Rate (%) G 80%
Contributing Set Size r G · n

Variance (%) v ± 10%
Max Branching b 4

Max Depth d 7
Number of Generations X 1000

The Elitism rate (E) provides the GP a means of propagating
successful structures as they are discovered. By advancing a
fraction of the population with highest fitness directly from
population P(t) into P(t+1), the GP partially becomes hill
climbing.
The Mutation rate (M) adds a random element to the search,
attempting to avoid becoming trapped in local minimum. This
fraction of the population P(t+1) are randomly generated behavior
structure intended to maintain the genetic diversity of the
population and promote exploration throughout the course of the
search.
The Generation rate (G) specifies the rate of generational
recombination. This fraction of the population P(t+1) are new
behavioral structures formed by the crossover of members in the
contributing set. Recombination is a two step process consisting
of a selection step and a crossover step:

1734

The selection process uses stochastic universal selection (SUS)
[2] to choose the contributing members from the population P(t).
SUS uses r equally spaced markers across the population’s score
distribution. The selection markers shift within the selection space
based on the initial value (or seed). The seed is a randomly
selected value between zero and 1/r.
During crossover, pairs of individuals are randomly selected from
the contributing set of members and through the process of
genetic recombination, each pair forms two new individuals that
are ultimately introduced into the population P(t+1). During a
crossover event, a randomly chosen branch from each
contributing UBF tree is removed and given to the other. By
swapping behavioral sub-structures, two offspring are created
where the donated portion is replaced by the acquired structure.
The resulting offspring are then pruned at the maximum depth (d)
to limit their complexity and are given additional variation (v)
through fluctuations in the behavior weights held by each arbiter.
The new generation of members is then introduced into the
population P(t+1).

3.5 Description of Elemental Components
Using the UBF interface, thirteen elemental behaviors and seven
arbiters are developed and tested as independent components. The
functionality of each component is briefly described below and
then used as the pool of genetic material from which members of
the population are formed.
The behaviors are:
Charge—when another robot (with a lower energy level) is
detected, this behavior causes our robot to turn towards the other
and charge towards it, attempting to cause damage by hitting it.
Dodge—when hit by a bullet or by another robot, this behavior
causes our robot to respond with an evasive maneuver based on
the type of attack and afflicted quadrant.
Fire v1—has three operating modes. When no target is detected,
the default mode turns the turret in a clockwise direction. When a
target is detected, the target tracking algorithm causes the gun
turret rotation to slow or reverse its direction in an attempt to
continue tracking the target. In addition to target tracking, when
the target is less than three degrees off boar site our robot will fire
on another, the power committed to the bullet is reduced as a
function of the target off boar site angle.
Fire v2—is exactly like Fire v1 with the exception that the
maximum power is always committed to the bullet.
Return Fire—holds a grudge against another that has previously
attacked our robot. When no specific target is set, the default
mode behaves exactly like Fire v2 until our robot is shot or hit by
another. When an aggressive opponent is specified, only that
target is engaged. The aggressor remains the target until it is
killed.
Scan Left—turns the gun turret and the radar counterclockwise.
Scan Right—turns the gun turret and the radar clockwise.
Short Range Fire—is based on Fire v1, but only fires at targets
that are at close range and are less than fifteen degrees off boar
site. Maximum power is always given to the bullet.
Sitting Duck—will always recommend that our robot stop all
motion, including the motion of the gun and the radar.

Sniper Fire—is adapted from Fire v1 and is specialized to attack
slow moving targets at long ranges. When a target is found to be
stopped or moving slowly it recommends that our robot stop its
movement and track the target until it is less than one half of a
degree off boar site. Maximum power is always given to the
bullet.
Wander v1—circumnavigates the perimeter of the board. Our
robot’s current velocity is maintained unless it is less than the
minimum.
Wander v2—simulates Brownian motion by randomly executing a
series of fifty degree arcs. When a wall is detected, the current
velocity is flipped to reverse our direction.
Wander v3—performs a series of “S” turns. Random selection is
used to set the length of the arc to be between thirty and one
hundred twenty degrees before changing the turn direction. When
a wall is found, the current velocity is reversed to change our
direction.
The available arbitration techniques are:
Activation Fusion—is a semi-cooperative arbiter that uses a
highest activation selection approach on a per motor command
basis. Unlike highest activation, activation fusion builds a new
action set, allowing the motor commands left unspecified by the
behavior with highest level of activation to be set using the
recommendations of behaviors with lower activation levels. When
used with market based systems, this technique is easily referred
to as utility fusion, but risks confusion with Rosenblatt’s utility
fusion [18] behavior architecture.
Command Fusion—is derivation of the motor schema architecture
[1], a cooperative arbitration approach that uses summation and
normalization of proposed motor commands to derive the
resultant set of motor commands. The input of all contributing
behaviors are used on a per motor command basis to form the
resultant command vector.
Highest Activation—is a winner-take-all arbiter that returns the
action set with the highest vote value. Inspired by the action-
selection architecture [15], this approach provides a dynamic
mechanism for competitive selection by allowing behaviors to
indicate their urgency for activation. Associated behavior weights
are used to internally tune global performance by scaling the
votes of behaviors that either over or under vote. The concept of
activation levels is synonymous with the concept of utility in
market based systems.
Highest Priority—is a winner-take-all arbiter that returns the
action set of the highest priority behavior indicating a desire to
act, regardless of vote value. Like Subsumption [4, 5], the
recommendations of lower priority behaviors only execute if
higher priority behaviors abstain.
Monte Carlo—is a stochastic arbitration technique that uses
fitness proportional random selection to activate one sub-behavior
for a period of time. At the end of the period another random
selection occurs, activating the chosen sub-behavior for the
current period.
Null Arbiter—always passes an empty action back, regardless of
the action set passed in. Using this arbiter deactivates the branch
of control where it is applied.
Priority Fusion—is a semi-cooperative arbiter that uses priority
based arbitration on a per motor command basis. Unlike the

1735

highest priority arbiter above, priority fusion builds a new action
set that allows the unspecified action fields of higher priority
behaviors to be filled by lower priority action requests.

4. RESULTS
In this experiment, eight behavior populations are independently
evolved over the course of 1,000 generations. While the initial
populations are collections of randomly generated behavior
structures and are generally unfit on an absolute scale, they
introduce variety into the population. Through the repetitive
ranking, selection and recombination of the members within a
population, initially random structures organize themselves into
populations of structures that are measurably effective on an
absolute scale [14].
In this experiment each of the eight initial populations converges
on relatively simple solutions that exploit similar aspects of the
Robocode domain. This section discusses how the populations’
absolute fitness progresses over time, then discusses the critical

aspect of the Robocode domain that acts as the evolutionary
pressure shaping the solutions, and finally concludes with a
comparison of how the individual solution structures rate relative
to each other.
The absolute fitness of each population is a measurement of the
population’s performance against the fixed behavior structure,
which allows the progress of independent evolutions to be
compared directly. The fitness rating is calculated as the percent
difference of a nominal score; values above zero indicate superior
combat skills while below zero ratings indicate an inferior level of
performance. The trend graph presented in
Figure 5a is a progression of the eight individual populations as
they evolve over time.

The use of a fixed benchmark behavior to evaluate absolute
fitness is somewhat misleading, because it reports high fitness
ratings for configurations that are exceedingly effective against
the benchmark without being a general solution.

Figure 5a: Progression of eight individual populations, measured relative to the benchmark.

Figure 5b: Progression of average of fitness for all populations, measured relative to the benchmark.

1736

This anomaly occurs in population 8, which initially favors a
configuration that displays a high level of fitness against the
benchmark (see generations 100 through 300 in
Figure 5a), but later abandons that family of configurations in
favor of structures that are more successful in general. To reduce
the affects of such anomalies and achieve a better indication of
how the populations are progressing towards absolute fitness, the
average progress of the eight populations is used.
Figure 5b presents the average progress of the eight populations
as measured against the benchmark.

Looking at the progression of average fitness during the course of
one-thousand generations, a notable period of improvement
occurs during the initial two-hundred generations where fitness
improves from a nominal rating of 0% to a rating of 78%. The
remainder of the evolution is relatively stable, maintaining an
average rating of 94% against the benchmark and ends with a
rating of 101%.
While the evolution of eight independent populations converges
on a variety of solutions, each structure captures a similar aspect
of the Robocode domain. The populations naturally move towards
somewhat passive solutions that are capable of attacking a target
when conditions are favorable. This approach is effective because
a robot must commit a fraction of its energy when shooting at an
opponent. Like gambling, it benefits a robot to shoot when there
is a reasonable expectation of hitting a target. If the shot misses,
the committed energy is lost. If the shot hits a target, the target’s
energy is reduced by that amount and the shooter claims twice the
energy committed. Observations made during the fitness
evaluations in Stage III show that the aggressive nature of the
benchmark behavior is self-defeating because it often fires from
long distances where there is little expectation of scoring a hit.
The more conservative behavior allows members to achieve high
relative fitness ratings by simply evading the benchmark until it
cripples itself by draining its own energy reserves.

Figure 6: Behavior structures discovered from the evolution
of eight randomly generated behavior populations.

The solution structures discovered by each of the eight
populations are shown in Figure 6. At first glance, the common

thread between the solutions is that they each employ a motion
behavior and a tracking/shooting behavior joined by a fusion
based arbiter. The use of a fusion based arbiter allows the robot to
pursue multiple objectives simultaneously.
Conspicuously missing from the solutions above are the shooting
behaviors: Return Fire, Fire v1 and Sniper Fire. Having identified
the importance of using a more conservative shooting approach,
Fire v1 and Return Fire are undesirable because they impose no
range restriction and take unlikely shots at distant targets. The
Sniper Fire behavior, a highly specialized behavior for shooting
unmoving targets at long range, is likely to become obsolete
because a population adopts continuous motion as a minimal
requirement for survival.
Of the motion based behaviors, Wander v2, Charge and Dodge
each fail to make an appearance in the solution set. Wander v2,
which simulates Brownian motion, was intended to produce
erratic movements that can not be effectively tracked by an
opponent. In reality, it produces erratic motion in a localized area,
making shots in the general direction more likely to score a hit.
As noted above, somewhat passive behaviors are able to conserve
their energy and achieve higher mortality rates, thus a behavior,
like Charge, that moves our robot into an opponent’s effective
radius is also unfavorable. The absence of the Dodge behavior
suggests that an ability to sustain continuous motion can act as a
passive means of evading incoming attacks and indicates that
such defensive measures are “good enough.”
Observations of the solution structures in Figure 6 during battle
shows that each is coherent, meaning that the behavior has the
ability to perform basic elements of combat like tracking and
shooting targets while moving within the battlefield without
impeding its own progress towards the immediate goal and is able
to consistently demonstrate a level of fitness that is superior to the
benchmark. The real question is, “How good are these solutions
on an absolute scale?”
To better understand how the eight solutions rank on an absolute
scale, the eight solutions are compared in an eight-on-eight battle
to discover the fitness of each solution structure relative to the
others. This approach uses a series of 1,000 battles to create an
inter-population fitness evaluation and the results are shown in
Figure 7. Rather than separating into bands, where some solutions
consistently achieve higher performance ratings than others, they
are (with the exception of run 5) tightly interwoven, indicating
that the solutions presented by the individual evolutions are
equally matched. With a performance variance equal to the noise
floor, seven of the resulting behavior structures are considered to
be equivalent solutions.

Figure 7: Relative fitness of the eight population runs, where
seven of the solutions are considered equivalent.

The solutions presented by each run are relatively simple
structures, lacking the depth and complexity typically associated

1737

with genetic programming solutions. Each solution structure
presents a clear pairing of one motion behavior with one or two
shooting behaviors. The lack of multiple skills within successful
structures indicates that the scope of the elemental behaviors is
too large. The behaviors provided, while incomplete for the
domain, prefer to act alone and do not act as generic operators
that can be composed by an EA to form deeper and more intricate
solution structures that have coherent outward operations.

5. CONCLUSIONS
The ability of the unified behavior framework (UBF) to simplify
the development and testing of behaviors for a given domain is
demonstrated through the use of a genetic program to automate
the discovery of effective behavior structures from a pool of
simple behavior and arbitration elements. In this experiment, a
genetic program is used to discover combinations of elemental
components that contribute to the robots motion and its ability to
track and shoot targets. The ability of the UBF to support the
composition and recombination of behavior structures by the
genetic program validates its ability to form structures that are
logically correct, if not semantically coherent for a given domain.
In robotic behavior based system development, the optimal
solution is unknown and potentially changes with the introduction
of new components. Along with the broad capabilities of the
UBF, the use of a stochastic search discovers good solutions and
is recommended as a useful tool for developing behavior based
systems. The results show that this method is more effective than
relying on raw human cleverness to achieve an optimal
configuration directly. Additionally, the close relative fitness of
the solution structures indicates that many equivalently good
solutions exist within a domain, and that the approach is feasible
for other robotic domains.

6. ACKNOWLEDGMENTS
The authors would like to acknowledge funding through
AFRL/SNR Lab Task 06SN02COR from the Air Force Office of
Scientific Research, Lt. Col. Scott Wells, program manager. The
views expressed in this article are those of the author and do not
reflect the official policy or position of the United States Air
Force, Department of Defense, or the U.S. Government.

7. REFERENCES
[1] R. C. Arkin. “Behavior-based robot navigation for extended

domains.” Adaptive Behavior, vol. 1, pp. 201-225, 1992.
[2] J. E. Baker. “Reducing bias and inefficiency in the selection

algorithm.” Proceedings of the Second International
Conference on Genetic Algorithms on Genetic Algorithms
and their Application, pp. 14-21, 1987.

[3] V. Braitenberg. Vehicles: Experiments in Synthetic
Psychology. Cambridge, MA: MIT Press, 1984.

[4] R. A. Brooks. “A Robust Layered Control System for a
Mobile Robot.” IEEE Journal of Robotics and Automation,
vol. RA-2, pp. 14-23, 1986.

[5] R. A. Brooks. “New Approaches to Robotics.” Science, vol.
253, pp. 1227-1232, 1991.

[6] C. Coello Coello, D. Van Veldhuizen, and G. Lamont.
Evolutionary Algorithms for Solving Multi-Objective
Problems. New York, NY: Kluwer Academic, 2002.

[7] J. Connell. “A Behavior-Based Arm Controller.” IEEE
Transactions on Robotics and Automation, vol. 5, pp. 784-
791, 1989.

[8] R. J. Firby, “Adaptive execution in complex dynamic
worlds,” Ph.D. Dissertation, Yale University,
YALEU/CSD/RR #672, 1989.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design
Patterns. Boston, MA: Addison-Wesley, 1994.

[10] E. Gat. “On Three-Layer Architectures.” Artificial
Intelligence and Mobile Robots: Case Studies of Successful
Robot Systems, pp. 195 - 210, 1998.

[11] D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Reading, MA: Addison-Wesley,
1989.

[12] P. Husbands. “Genetic Algorithm in Optimization and
Adaptation.” Advances in Parallel Algorithms, pp. 227 - 276,
1992.

[13] L. P. Kaelbling, “An Architecture for Intelligent Reactive
Systems,” in SRI International Technical Note No. 400.
Menlo Park, CA, 1986.

[14] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA:
MIT Press, 1992.

[15] P. Maes. “Situated Agents Can Have Goals.” Robotics and
Autonomous Systems, vol. 6, pp. 49 - 70, 1990.

[16] M. Nelson. “Robocode Central.”
http://robocode.sourceforge.net, 2006.

[17] J. Rosenblatt. “DAMN: A distributed Architecture for
Mobile Navigation.” the AAAI Spring Symposium on Lessons
Learned for Implemented Software Architectures for
Physical Agents, pp. 167 - 178, 1995.

[18] J. Rosenblatt. “Utility Fusion: Map-Based Planning in a
Behavior-Based System.” Field and Service Robotics, pp.
411 -418, 1998.

[19] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Dicipline. Upper Saddle River, NJ: Prentice
Hall, 1996.

[20] J. Togelius. “Evolution of a subsumption architecture
neurocontroller.” Journal of Intelligent and Fuzzy Systems,
vol. 15, pp. 15-20, 2004.

[21] J. Togelius and S. M. Lucas. “Evolving controllers for
simulated car racing.” Arxiv preprint cs.NE/0611006, 2006.

[22] H. Utz, G. Kraetzschmar, G. Mayer, and G. Palm.
“Hierarchical Behavior Organization.” 2005 International
Conference on Intelligent Robots and Systems, 2005.

[23] B. Woolley and G. Peterson, “Unified Behavior Framework
for Reactive Robot Control,” Technical Report, Air Force
Institute of Technology, WPAFB, OH, 2007.

1738

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

