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ABSTRACT
Classical Evolutionary Programming (CEP) and Fast Evo-
lutionary Programming (FEP) have been applied to real-
valued function optimisation. Both of these techniques di-
rectly evolve the real-values that are the arguments of the
real-valued function. In this paper we have applied a form
of genetic programming called Cartesian Genetic Program-
ming (CGP) to a number of real-valued optimisation bench-
mark problems. The approach we have taken is to evolve
a computer program that controls a writing-head, which
moves along and interacts with a finite set of symbols that
are interpreted as real numbers, instead of manipulating the
real numbers directly. In other studies, CGP has already
been shown to benefit from a high degree of neutrality. We
hope to exploit this for real-valued function optimisation
problems to avoid being trapped on local optima. We have
also used an extended form of CGP called Embedded CGP
(ECGP) which allows the acquisition, evolution and re-use
of modules. The effectiveness of CGP and ECGP are com-
pared and contrasted with CEP and FEP on the benchmark
problems. Results show that the new techniques are very ef-
fective.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods and Search

General Terms
Algorithms, Design, Performance

Keywords
Cartesian Genetic Programming, Real-valued Function Op-
timisation, Modules, Evolutionary Programming
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1. INTRODUCTION
In the past, Evolutionary Programming (EP) [5] has been

successfully applied to many numerical and combinatorial
optimisation problems [2, 3, 4]. However, one of the key
problems with methods for tackling such problems is con-
cerned with avoiding slow convergence to the optimum or
convergence to sub-optima. In a technique called Fast Evo-
lutionary Programming (FEP), Yao and Liu found that it
was more effective to using a Cauchy mutation operator
rather than the more usual Gaussian mutation used in EP
[17, 18]. They showed that FEP improved convergence to
the optimum on a series of multi-modal functions with many
local minima in comparison with Fogel’s EP (which Yao and
Liu refer to as classical EP (CEP)) [17, 18].

In this paper, we have drastically changed the representa-
tion of the genotype for these problems. Instead of directly
manipulating the real values themselves, we evolve a com-
puter program that writes out the real-value arguments to
the optimisation functions. Our motivation for doing this is
the following. Firstly, we hope that the change in dimen-
sionality and structure of the search space will be changed
and perhaps, may make some of these problems easier to
solve. Secondly, we hope to exploit a characteristic of the
CGP representation of programs. CGP has been shown to
benefit from the form and degree of redundancy that is natu-
rally present in its genotype. Thirdly, CGP has been shown
to be a highly effecient technique (in comparsion with other
GP techniques) on a number of GP benchmark problems.
Our final motivation was to look at the performance of an
extended form of CGP, called Embedded CGP (ECGP) [12]
in comparison with CGP, EP and FEP.

ECGP incorporates ideas from Module Acquisition [1],
that allows the automatic acquisition, evolution and re-use
of partial solutions in the form of modules. Previous work
[13, 15] has shown ECGP to be more computationally effi-
cient than CGP on a range of digital circuit problems and
the speedup grows with problem difficulty.

Recently, CGP and ECGP have been applied to the Ge-
netic Algorithm (GA) based Hierarchical-if-and-only-if (H-
IFF) [14], one-max and order-3 deceptive problems [16].
CGP and ECGP found solutions to the H-IFF problem more
easily than published attempts using a GA. CGP also found
solutions to the one-max and order-3 problems more easily
than simple and generational GAs and the GAuGE [11] and
LINKGAuGE [9] systems. This paper builds on the work
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from [14, 16] by modifying the technique to produce real-
valued numbers instead of binary strings, so that it can be
applied to real-valued optimisation problems.

The plan for the paper is as follows: Sections 2 and 3 give
an overview of CGP and ECGP. In section 4, we describe
our approach of applying CGP and ECGP to real-valued
optimisation problems. The details of our experiments are
shown in section 5 followed by the results and comparisons
in section 6. Section 7 gives conclusions and suggestions for
future work.

2. CARTESIAN GENETIC
PROGRAMMING (CGP)

Cartesian Genetic Programming is a form of Genetic Pro-
gramming (GP) [6] invented by Miller and Thomson [8], for
the purpose of evolving digital circuits. However, unlike the
conventional tree-based GP, CGP represents a program as
a directed graph (that for feed-forward functions is acyclic),
which is only modified by mutation. The benefit of this
type of representation is that it allows the implicit re-use
of nodes in the directed graph. CGP is also similar to an-
other technique called Parallel Distributed GP, which was
independently developed by Poli [10]. Originally CGP used
a program topology defined by a rectangular grid of nodes
with a user-defined number of rows and columns. However,
later work on CGP showed that it was more effective when
the number of rows is chosen to be one [19]. This one-
dimensional topology is used throughout the work we report
in this paper.

CGP uses a fixed length representation, where the geno-
type consists of a list of integers, encoding the function and
connections of each node in the directed graph. However,
the number of nodes in the directed graph (phenotype) can
vary but is bounded, as every node encoded in the genotype
does not have to be connected. This allows areas of the
genotype to be inactive and have no influence on the phe-
notype, leading to a neutral effect on genotype fitness called
neutrality. This unique type of neutrality has been investi-
gated in detail [8] and found to be extremely beneficial to
the evolutionary process on the problems studied.

Each node in the directed graph is encoded in the geno-
type by a number of genes, determined by the arity of the
function the node represents. For each encoded node, the
first gene encodes the node’s function (using values from a
lookup table) and the remaining genes encode the node’s
input connections (using the index label of the node or pro-
gram input). The nodes take their inputs in a feed for-
ward manner from either the output of a previous node in
the directed graph or from the program inputs (terminals).
The program inputs are labelled from 0 to n-1 where n is
the number of program inputs. The nodes in the directed
graph are also labelled sequentially starting from n to n+m-
1 where m is the number of nodes in the directed graph. If
the problem requires k program outputs then k integers are
added to the end of the genotype, each one encoding the
index of the node in the directed graph where the program
output is taken from. These k integers are initially set as
pointers to the outputs of the last k nodes encoded in the
genotype. Figure 1 shows a CGP genotype and correspond-
ing phenotype for the 8-bit one-max problem, whilst Figure
2 illustrates the decoding procedure of a CGP genotype.
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2 3 92 6 70 1 4

54 87
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Figure 1: CGP genotype and corresponding phe-
notype for the 8-bit H-IFF problem. The under-
lined genes encode the function of each node using
the lookup table: V8A(0), Frog(1), Progn(2). See
Section 4 for function details. The index labels are
shown underneath each program input and node.
The inactive areas of the genotype and phenotype
are shown in grey dashes.

3. EMBEDDED CARTESIAN
GENETIC PROGRAMMING (ECGP)

ECGP incorporates ideas from Module Acquisition [1]
with CGP, to allow the automatic acquisition, evolution
and re-use of partial solutions (referred to as modules) [13].
Thereby giving CGP a form of Automatically Defined Func-
tion (ADF) [7]. This paper only gives a brief overview of
ECGP due to space restrictions. For information on the
technical details of ECGP, please refer to [13].

ECGP uses a modified CGP genotype making it a bounded
variable length representation (in terms of the number of en-
coded nodes in the genotype and the number of genes used
to encode each node). The number of nodes encoded in the
genotype decreases when sections of the genotype are encap-
sulated into modules (when modules are created by the com-
press operator) and increases when modules are expanded
back into sections of the genotype (when modules are de-
stroyed by the expand operator). The number of genes used
to encode the inputs of a node in the genotype can vary as
a result of either module mutation increasing or decreasing
the number of module inputs (therefore affecting the num-
ber of genes required to encode the module), or a module
being introduced into the genotype (requiring extra genes
to encode all of the module inputs).

Modules are capable of having multiple outputs, but the
CGP representation only encodes nodes with single outputs,
therefore each gene is now represented using a pair of inte-
gers rather than just a single integer, as in CGP. For each
gene encoding a node input, the first integer encodes the
node index (as in CGP), whilst the second integer encodes
the function output used.

Using a pair of integers to encode each function gene al-
lows the introduction of node types into the ECGP represen-
tation. Node types allow the identification of nodes encoded
in the genotype representing: primitive functions (node type
0), modules that contain an original section of the genotype
(node type I) and modules that contain a re-used section
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Figure 2: Decoding the CGP genotype from Figure
1. Step 1: Output A (oA) connects to the output of
node 10, move to node 10. Step 2: Node 10 connects
to the output of nodes 3 and 9, move to nodes 3 and
9. Step 3: Nodes 3 and 9 connect to the output of
nodes 6 and 7, and program input 0, move to nodes
6 an 7. Step 4: Nodes 6 and 7 connect to the output
of nodes 3 and 5, and program input 0, move to node
5 (as node 3 has already been processed). Step 5:
Node 5 only connects to program input 0, therefore
the genotype is now decoded.

of the genotype (node type II). Operators act differently
on the nodes encoded in the genotype depending on their
node type. Node types are encoded as the second integer of
the function gene of every node, the first integer encodes the
primitive function (as in CGP) or module (using values from
a lookup table). Figure 3 illustrates the differences between
the CGP and ECGP representations.

Modules are represented using a modified ECGP repre-
sentation, which also encodes structural information about
the module. Four extra integers are added to the beginning
of the module genotype to encode the module identifier, the
number of inputs and outputs of the module, and the num-
ber of nodes the module contains. Currently, a module can
only contain nodes of type 0, to prevent bloat inside the
module. Once a module is created, it is added to the mod-
ule list (a dynamic extension of the function list) and can be
re-used whilst the module remains in the module list, along
with the primitive functions. The module list is updated
every generation to contain the module list of the fittest in-
dividual in the population (in accordance with the 1 + 4
evolutionary strategy).

The module genotype can be evolved by the module muta-
tion operators independently of the ECGP genotype. Either
a structural mutation can occur, which affects the number
of module inputs and outputs, or a point-mutation can oc-
cur, which affects the nodes contained in the module (as
mutation would occur in CGP).

Input 1 gene

fn  i0  i1 fn:nt  i0:o0  i1:o1

in in

Function
fn

Output 
from i0

Output 
from i1

Function
fn

Output o0 

from i0

Output o1 

from i1

Function gene

Input 0 gene

Node inNode in

Phenotype

Genotype

CGP ECGP

Figure 3: CGP and ECGP genotypes and corre-
sponding phenotypes for a single node. The compo-
nents of each gene are labelled as follows: function
(fn), node type (nt), node indexes that the node in-
puts are taken from (i0, i1), node outputs that the
node inputs are taken from (o0, o1), index of this
node (in).

4. APPLYING CGP AND ECGP TO REAL-
VALUED OPTIMISATION PROBLEMS

Previous work by Walker and Miller [15, 14, 16] has shown
that CGP and ECGP can be used to evolve solutions to
problems traditionally associated with Genetic Algortihms
(GAs). The method chosen was heavily influenced by a
GP benchmark problem called the Lawnmower Problem [7].
In the lawnmower problem, GP is used to evolve a set of
commands to move a lawnmower around a lawn, which has
been divided into a n x m grid of squares, where n and m
denote the width and height of the lawn respectively. The
lawnmower cuts the grass in each square it visits, with a
solution being found when the lawnmower has visited every
square of the grid, therefore cutting all the grass.

The approach used in the lawnmower problem was modi-
fied so that instead of evolving a set of instructions to control
a lawnmower moving on a 2-dimensional lawn, a set of com-
mands for a moving a tape head on a 1-dimensional tape
was evolved. In a similar way to the manner of discretizing
the lawn in the lawnmower problem, the tape is divided into
n squares, where n was the number of bits in the GA. Ini-
tially, all squares on the tape are blank, and the tape head
is positioned in the centre square of the tape (similar to the
lawnmower starting in the centre square of the lawn). In
a single command, the tape head can move one square or
jump a number of squares in the direction the tape head is
facing (left or right). If the tape head moves off one end of
the tape, it re-appears in the square at the opposite end of
the tape (just as the lawnmower would in the lawnmower
problem). When the tape head visits a square, the value of
the square is changed according to the rule in Equation 1.

if(square == blank || square == 1), square = 0 (1)

if(square == 0), square = 1

Therefore, the tape head behaves like the bit-flip operator
found in GAs. Once the set of commands has been executed,
the tape head will have produced a bit-string of length n
containing the symbols: - (blank), 0 and 1, which can be
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evaluated as an individual in a GA. A blank (-) in the bit-
string does not contribute towards the fitness score, as we
only want to generate bit-strings containing 0’s and 1’s.

In the work described in this paper, we have modified the
approached used previously so that it can be applied to real-
valued optimisation problems. The approach still evolves
a sequence of commands, which affect the movement of a
tape-head on a piece of tape, as in the [15, 14, 16]. How-
ever, the main difference in our approach is that we have
changed the rule that alters the value of a square on the
tape. Instead of just altering the value of a square between
0 and 1, as in Equation 1, the new rule permits a square
to have an integer value between 0 and 9. This allows the
tape to produce a real-valued number, where each square
represents a significant figure of a real-valued number. If
more than one real-valued number is to be generated, each
real-valued number is allocated a set number of squares on
the tape, which is determined by the user, and also deter-
mines the overall length of the tape. When the tape head
visits a square, the square’s value is either incremented or
decremented by 1. We keep the values written in squares in
the range 0 to 9 by applying a modulo 10 operation. The
new rule is given in Equation 2.

if(increment == true)

square = (square + 1) % modulusV alue

if(increment == false),

square = (square − 1) % modulusV alue

(2)

The range of the real-valued numbers produced on the
tape can also be restricted by altering the modulus value
for specific squares. For example, this allows us to limit
the first square on the tape to allow only 0’s and 1’s by
setting the modulus value of the first square equal to 2.
If a modulus value of 2 was set for every square on the
tape, the rule in Equation 2 would be equivalent to the old
rule in Equation 1 and the tape would produce a binary
string rather than a real-valued number. Another purpose
of restricting the range of a square’s value using modulus
2, would be to represent the sign of the real-valued number
produced on the tape. This restriction is applied to the first
square allocated to every real-valued number represented
on the tape (so that we can deal with the sign of numbers).
If this square’s value is 0 it represents a positive number,
whilst a 1 represents a negative number. The position of
the decimal point on the tape is a user-defined parameter,
as this is related to the problem to be solved and the range
of real values allowed in the optimisation problem.

Once a set of commands has been executed, the tape head
will have produced a string containing the symbols between
0 and 9 (possibly less depending on the user-defined range
restrictions), as shown in Figure 4. The tape is then decoded
into a series of real-valued numbers, as shown in Figure 5,
which can be evaluated as an individual in an EP system.
The fitness function used here is described in Section 5.

Although the proposed approach changes the nature of the
real-valued function optimisation problems, we hope that
changing the dimensionality and neutral interconnectedness
of the genotype space may alleviate problems typical of some
forms of EP - early convergence on sub-optima. By using
a CGP representation, we have allowed the possibility that
small changes to the genotype can produce a big change in
the real-valued numbers produced on the tape. This acts a

CGP Genotype Tape Head 
Commands

Real-valued 
Number

..., 000, 210, ... ..., 0,0,0,0,0,...
..., 0,0,0,1,0,...
..., 0,0,0,1,1,...
..., 0,0,0,1,1,...
..., 0,0,0,2,1,...

...,
move,
move,
turn,

move,
...

Figure 4: The three step procedure for producing
an real-valued number data on the tape from the
CGP genotype, via a set of tape head commands.

1 3 5 7 0 0 0 1 6 0

-3.5700

29

1.6092

Figure 5: Decoding the real-valued number data on
a tape (consisting of 12 squares) into two real-valued
numbers (each consisting of 6 squares) suitable for
evaluation. The decimal point occurs after the sec-
ond square in each number.

little like having an implicit variable rate mutation operator.
We hope that this approach might alleviate the strong sensi-
tivity of algorithm peformance to the value of the mutation
probability that EP approaches commonly suffer from.

The CGP program has four program inputs, three of which
are constrained versions of those used in the lawnmower
problem: move - moves the tape head one square in the di-
rection it is facing and changes the value of the new square
according to Equation 1, turn - alters the direction the tape
head travels along the tape from right to left or vice versa
and random constant - a random number, r, chosen at the
start of each independent run, where 0 <= r < n. The
other program input is transition, which alters Equation 2
to either increment or decrement the value of a square when
it is visited by the tape-head. Move, turn and transition
also return a constant, 0, so mathematical operations can
also be performed on the program inputs.

The function set used contains the same functions as the
lawnmower problem: progn - a program node, which exe-
cutes the graph connected to its first input, followed by the
graph connected to its second input and returns the result of
the second input, v8a - performs addition on its two inputs
and returns the result, and frog - moves the tape head by a
number of squares specified by its input in the direction it
is facing and changes the value of the new square according
to Equation 2.

5. EXPERIMENT DETAILS
In this paper, CGP and ECGP are applied to real-valued

function optimisation problems f8(x), f16(x) and f18(x) from
Yao and Liu’s paper [17] and are shown in Table 1. The
number of real-valued inputs and the range allowed for each
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Table 1: The three multi-modal functions used to test CGP and ECGP.
Function Dimension Range fmin

f8(x) =
Pn

i=1 −xi sin(
√

xi) 30 [-500, 500] -12569.5
f16(x) = 4x2

1 − 2.1x4
1 + 1

3
x6

1 + x1x2 − 4x2
2 + 44

2 2 [-5, 5] -1.0316285
f18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2

+ 6x1x2 + 3x2
2)] × [30 + (2x1 − 3x2)

2(18 − 32x1 2 [-2, 2] 3
+ 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

input is also shown for each function, along with the known
minimum value of the function. All three functions are
multi-modal functions with many local minima, thereby al-
lowing many possibilities for algorithms to converge early
on local minima. Also, the three functions chosen allow us
to see how CGP and ECGP perform on low and high di-
mensional functions and also functions with small and large
ranges for each dimension.

For each function, the length of tape used by the CGP
program had to be decided upon. One square is needed to
represent the sign of each function input and one square
is needed for each significant figure in the range of each
function. The evolved function inputs need to be relatively
accurate, so an extra 8 decimal places (each represented by
a tape square) were allowed, in addition to the number of
decimal places present in the known minimum value of each
function. The calculation of the number of tape squares
required for each function input is summarised in Equation
3. The total length of the tape is calculated using Equation
4.

squaresPerFunctionInput = sign

+ significantF iguresOfRange

+ decimalP lacesOfMin + 8

(3)

tapeLength = functionDimension

× squaresPerFunctionInput
(4)

The total length of tape we used for each function is shown
in Table 2, as well as the modulus values for each tape square
of a number, the position where the decimal point occurs (in
tape squares) and the number of generations allowed for a
each experiment. The number of generations allowed for
each function differs from those found in [17], as a different
population size was used. Instead, we calculated the total
number of evaluations that the FEP approach used [17].
We ensured that the number of function evaluations used
for CGP and ECGP was the same.

The parameters used by CGP and ECGP are shown in
Table 3. These are taken from [13]. The probabilities and
rates of the various mutation operators were shown to be
optimal in a series of previous experiments.

The fitness function used by CGP and ECGP is the same
as that used in EP and is simply a minimisation function,
which awards higher fitness depending on the closeness to
the known global minimum value of the function.

6. RESULTS AND DISCUSSION
For each experiment, the best of generation minimum fit-

ness was taken when the total number of generations was
reached. The average and standard deviation was calculated
from the minimum fitness figures from all 50 independent

Table 3: The parameter settings used for CGP and
ECGP (* - ECGP only). The mutation rate is ex-
pressed as a percentage of the genotype length. The
operator rates and probabilities are per generation.

Parameter Value

Population size 5
Number of nodes 2,000
Genotype point mutation rate 2% (40 Genes)
Compress/Expand probability * 0.1/0.2
Module point mutation probability * 0.04
Add/Remove input probability * 0.01/0.02
Add/Remove output probability * 0.01/0.02
Maximum module size * 5 nodes
Number of independent runs 50

runs and are shown in Table 4 along with the corresponding
figures for CEP and FEP from [17]

In the 50 independent runs, CGP found the global mini-
mum value in runs 5, 4 and 11, and ECGP found the global
minimum value in runs 7, 5 and 11 for functions f8(x), f16(x)
and f18(x) respectively. This shows that both CGP and
ECGP are capable of finding the optimal minimum value
for all functions tested. We anticipate that other runs didn’t
end in finding the global minimum because of the restricted
number of evaluations used (not because of early conver-
gence). Previous findings concerning CGP and ECGP [12,
13, 14, 16] have shown that both CGP and ECGP are capa-
ble of producing a 100% success rate on all runs that are long
enough. This is because the neutrality in the representation
appears to allow the techniques to avoid convergence. In fu-
ture work, we intend to evaluate the lack of convergence by
continuing the evolution until the runs have found the global
minimum (providing the global minimum value is known),
rather than stopping the runs by a certain generation.

Firstly, the results show both CGP and ECGP can both
be successfully applied to real-valued function optimisation
problems. Comparing the results of CGP and ECGP with
CEP and FEP on functions f16(x) and f18(x) shows that
all techniques are capable of finding the global minimum
value, within a certain degree of error. In fact, the mean
for CGP and ECGP is fractionally lower than the mean for
FEP on the function f18(x). However, this is unlikely to be
statistically significant. CGP and ECGP give better results
for f8(x), than CEP (which is converged) but is not as good
as FEP.

The main difference in our results for all three functions is
that CGP and ECGP have a much larger standard deviation
than CEP and FEP. This indicates the distribution of the
best solutions found from each independent run in CGP and
ECGP is more unpredictable than the distributions of best
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Table 2: The tape parameters used for each function.

Function Tape Squares per Tape Modulus Value Decimal Point Total Number
Function Input Length per Tape Square Position of Generations

f8(x) 13 390 [2,5,10,10, ..., 10] 4 225,025
f16(x) 17 34 [2,5,10,10, ..., 10] 2 2,525
f18(x) 10 20 [2,2,10,10, ..., 10] 2 2,525

Table 4: Average minimum fitness and standard deviation figures of CGP, ECGP, CEP and FEP applied to
functions f8(x), f16(x) and f18(x).

CGP ECGP CEP FEP

Function Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

f8(x) -11239.7 1620.9 -11290.6 1493.2 -7917.1 634.5 -12554.5 52.6
f16(x) -1.03 6.55 × 10−4 -1.03 6.08 × 10−4 -1.03 4.9 × 10−7 -1.03 4.9 × 10−7

f18(x) 3.0 4.64 × 10−3 3.01 9.03 × 10−3 3.0 0 3.02 0.11

solutions for CEP and FEP. This means that it is harder to
guarantee that a run of CGP and ECGP will always produce
a good set of optimal inputs for each function. This is not
really surprising given the small populations used.

Comparing the results of CGP and ECGP shows that both
techniques perform on a par with the some of the best tech-
niques. However, it is clear that ECGP does not appear to
offer any real advantages over CGP on these problems. This
suggest that good programs that control the tape writing
head may not be modular. However, further work is needed
to clarify this further. It accords also with our comparative
results for a number of binary GA problems [16].

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented for the first time an ap-

proach to real-valued function optimisation using CGP and
ECGP. The approach uses CGP and ECGP to evolve a list
of commands for a tape-head, which produces a series of
real-valued numbers on a tape by executing the commands.
The results show that CGP and ECGP are both capable
of producing results which are comparable to, if not better
than CEP and FEP. However, we are not directly comparing
the performance of CGP and ECGP with CEP and FEP, as
the approach used by CGP and ECGP changes the nature
of the test problems. Instead, we are using the comparison
to judge whether the benefits of the CGP and ECGP repre-
sentation (such as neutrality) could help avoid convergence
on local minima and also whether CGP and ECGP could
provide a feasible alternative to EP for real-valued function
optimisation.

In the experiments in this paper, all runs were stopped at
a particular generation so comparisons could be made. How-
ever, we have found before, that the nature of the CGP al-
gorithm usually allows it to continue and not converge until
a solution is found. In future work, we intend to allow CGP
to run until it has reached a certain error threshold from the
global minimum or maximum (depending on which the func-
tion requires), as in real-world optimisation problems, the
optimal value may not always be known. Also, CGP will be
applied to further real-valued optimisation problems to sub-
stantiate the results in this paper and to understand more
about the tape and tape-head approach, as it appears to be
quite sensitive to numerical values of the parameters chosen.

There are of course a number of ways that we could have
chosen to represent real-valued numbers on the tape. We
could have allowed the tape to hold only binary strings and
used the 2’s compliment method to convert the binary string
into a real-valued number. Each real-valued number would
then have been represented by 32 or 64 squares on the tape,
depending on the precision required. This approach was not
used in this paper, as this would introduce binary strings
that can not be converted to any real-valued number. Also,
there would be the issue of how to specify a range in which all
real-valued numbers produced on the tape must be within.
In addition we would have to decide how to deal with those
that fall outside of the specified range. All these issues will
be addressed in future work.
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