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ABSTRACT

This paper investigates the use of Random Dynamic Neigh-
borhoods in Particle Swarm Optimization (PSO) for the
purpose of training fixed-architecture neural networks to
classify a real-world data set of seismological data. Instead
of the ring or fully-connected neighborhoods that are typ-
ically used with PSOs, or even more complex graph struc-
tures, this work uses directed graphs that are randomly
generated using size and uniform out-degree as parameters.
Furthermore, the graphs are subjected to dynamism dur-
ing the course of a run, thereby allowing for varying infor-
mation exchange patterns. Neighborhood re-structuring is
applied with a linearly decreasing probability at each iter-
ation. Several experimental configurations are tested on a
training portion of the data set, and are ranked according to
their abilities to generalize over the entire set. Comparisons
are performed with standard PSOs as well as several static
non-random neighborhoods.
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1.2 [Artificial Intelligence]: Applications and Expert Sys-
tems
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Algorithms
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1. INTRODUCTION

Particle Swarm Optimization (PSO) [5] is a robust evolu-
tionary algorithm that continues to be studied both for its
intrinsic properties as well for applications. The basic PSO
algorithm has undergone many modifications and one area
of research that has accelerated recently is neighborhood
structures [7, 11, 9]. This paper uses the idea of randomly
generated neighborhoods that are dynamically altered dur-
ing the run of the algorithm [13, 12] to solve to the real-world
problems of classifying seismological strong ground motion
data.

Earthquake activity is particularly important in Trinidad
and Tobago where there are critical economic assets such
as liquid natural gas (LNG) plants that are subject to a
significant hazard level [15]. Damage to structures caused
by earthquakes is most often the result of strong ground
motion [17], and monitoring this type of effect is crucial. A
large set of strong motion data for the Trinidad and Tobago
region has been procured for use in this research from the
Seismic Research Unit. The goal was to develop a neural
network that correctly classifies each data entry as either an
earthquake or not.

PSOs were used to evolve weights for several fixed neu-
ral network (NN) architectures. Each particle represented
a set of weights for a particular architecture and evaluation
was done by applying the resulting NN on half of the data
set. After all PSO configurations were run, a final ranking
of the evolved NNs was done by applying them to the full
data set, thus testing their generalization capabilities. Ini-
tial experiments were conducted using single runs, due to
long function evaluation times, and subsequently, promis-
ing candidates were tested more rigorously. It was found
that the standard PSOs were not competitive on this task,
whereas random dynamic neighborhood PSOs generated the
best NNs (best generalization accuracy: 96.5%) and some
non-random static neighborhoods also performed well.

This paper demonstrates that there is potential for ran-
dom dynamic neighborhood PSOs as a tool for finding high-
quality solutions for a real-world problem. In view of its use
of graph parameters, the method can adapt to other prob-
lems that may respond better to different neighborhoods.



2. STRONG GROUND MOTION

When an earthquake occurs, part of the energy released
takes the form of elastic waves (called seismic waves) that
propagate through the Earth. There are two types of seis-
mic waves: body and surface, and two types of body waves:
primary (P) waves which involve compression and rarefac-
tion of Earth materials, and secondary (S) waves which are
essentially rotational waves. P waves travel faster than S,
and surface waves are the slowest of the three. Instruments
recording these waves produce plots that sometimes clearly
show the P and S waves, which are hallmarks of an earth-
quake. However, such instruments often record waves origi-
nating from other sources. Seismic waves can be caused by
natural or man-made events. Natural events include phe-
nomenon such as tectonic earthquakes, volcanic tremors,
rock falls, collapses of karst cavities and storm microseisms.
Man-made events include explosions and vibrations from
controlled sources, reservoir-induced earthquakes, mining-
induced rock bursts, collapses, and cultural noise, for exam-
ple traffic and industrial practices [1].

Seismic waves are recorded by two basic types of sensor:
inertial seismometers which measure ground motion rela-
tive to an inertial reference, such as a suspended mass, and
strainmeters which measure the motion of one point on the
ground relative to another. An inertial seismometer is more
sensitive to an earthquake signal than a strainmeter [1]. A
short-period inertial seismometer works on the principle that
ground motion produces an inertial force that deflects the
reference from its equilibrium position and this displacement
can be converted to an electrical signal. The reference is re-
turned to its equilibrium position by a mechanical or a elec-
tromagnetic restoring force. A long period seismometer is
based on the force-balance principle: The inertial mass does
not move considerably from its equilibrium position, rather
it is balanced as far as possible by an electrically generated
force. A force-balance accelerometer works on the same prin-
ciple with minor adjustments. At specific frequencies, the
reference moves with the ground through the generation of
a feedback force proportional to the ground acceleration.

Strong ground motion is defined as ground accelerations in
the range of 1-2 g (where g is the gravitational acceleration
of 9.8m/s®) [3]. The Kinemetrics Inc. (California USA)
K2 strong motion instrument, shown in Figure 1 contains
an internal triaxial force-balance accelerometer and a built-
in GPS timing system. This is the instrument that was
used to collect the data used in this paper. The Seismic
Research Unit (SRU) at the University of the West Indies is
dedicated to, among other things, the monitoring of strong
motion activity in Trinidad and Tobago. This is done using
K2 accelerometers, each configured as a four-channel digital
recorder that continuously monitors seismic signals. When
a signal surpasses a threshold duration magnitude of 2 [§],
the signal data (called an event) is recorded.

Technicians and researchers subsequently classify and an-
alyze events. This paper focuses on the classification of an
event as being caused by a bona fide earthquake or not. The
existing method for classification is based on visual inspec-
tion and is performed as follows: Obvious non-earthquakes
are immediately discarded. Other events are first checked
for clear P and S phases, which indicate an earthquake ori-
gin. If the P wave is inconspicuous but there is a strong
S wave component, the event is flagged for future analysis.
If an event possesses ambiguous P and S waves, the date
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Figure 1: The K2 Strong Motion Digital Recorder

and time the event occurred is matched against weak mo-
tion seismometer recordings obtained from other stations in
the seismic network, in the vicinity in which the earthquake
occurred. If no match is found then the data file is discarded.

3. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization algorithm is inspired by
observations of social interaction [5, 6]. A PSO operates
on a population of particles, evolving them over a num-
ber of iterations with the goal of finding a solution to an
optimization function f : R™ — R. Each particle, P =
(x,v,pv, fz, fp,), carries several pieces of information: a po-
sition vector x € R", a velocity vector v € R™, a previous
best position p, € R", a fitness value f, = f(x) and a pre-
vious best fitness value fp, = f(ps).

Particles in a population, POP = {Py,...,Pn_1}, are
interconnected independent of their positions in the search
space. Each particle P has a neighborhood N(P) C POP
and each element of N(P) is called a neighbor of P. The set
N = {N(P),...,N(Pmn-1)} of neighborhoods of all par-
ticles can be represented by a neighborhood graph (or
neighborhood structure) defined by Gy = (V, E) where
V={0,1,...,m—1} and E = {(¢,5)|P; € N(P)}.

The operation of a PSO is given in Figure 2 and the sub-
routine find neighborhood_best () is given in Figure 3. K1
and K are called individual and social constants.

One very important aspect of the algorithm is the velocity
update equation: v = v+¢1(pp—x)+¢2(p« —x) Modified ver-
sions of this basic equation are common. Clerc and Kennedy
[2] introduced the constriction factor x making the equation
v = x4+ ¢1(pp — x) + ¢d2(p« — x)). Typical values used
in experimental work are x=0.729 and ¢1, ¢2 ~ U(0,2.05).
Mendes altered the equation so that the particle is influ-
enced by all of its neighbors, not just the best one [10, 11,
9]. This scheme, called the Fully Informed Particle Swarm
(FIPS) operates as follows. For a particle P, letting

¢m(lfl:
~U|{0 vk e N(P
o~ (0, sy v < (P
P — > ken W(k)rk.py
e > ken Wi(k)or

the equation becomes v = x (v + @(Pfips — )). Pmaz is
usually set to 4.1 and x to 0.729. W (k) is a weighting func-
tion that scales the contributions of the neighbors. It may
be desired to weight neighbors’ contributions in proportion



set t=0
initialize_population(m,n,Zmaz)
initialize_neighborhoods (m)

while ( NOT termination-condition ) {
for (i=1; i < m; i++){
p« = find neighborhood_best (N(i))
for (d=1; d < n; d++){
¢1 = Ki * random(0,1)
¢2 = K2 * random(0,1)

for particle P;:

vd = va + $1(Pod — Td) *+ P2(Ped — Ta)
enforce maximum velocity(FP;.vq, VUmaz)

Pi.xg = Pixg + Pivg
}
P»Lfm = f(P;.x)
if (Pifz < P»;.fpb){
Pi~pb = sz
Pi.fp, = Pi.fz

Figure 2: Pseudocode for a basic PSO algorithm

find_neighborhood_best(/N){

idx = a € N, where o is arbitrary.
for each j € (N —{a})
if (Pj.fpb < Pidac~fpb)
idx = j
return idx

}

Figure 3: Finding the nbr’hood best of a particle.

to their fitnesses, or their distances from the current par-
ticle. Alternatively, with W (k)=1, all neighbors contribute
equally to the velocity update equation; in this case, Pfips
is given by:

ZkeN Prk.py

Pfips = ¢

where, ¢ = Z bk

keEN

In [10], it was concluded, counter-intuitively, that weighting
neighbors’ contributions based on fitness does not help the
algorithm. In this paper FIPS with equal weighting is used.

3.1 Time Varying Neighborhoods in PSO

In some PSO research, a particle’s neighborhood changes
with time. In some cases the changes are dependent on the
state of other particles, and in other cases it is independent.
The goal of changing a particle’s neighborhood with time
is to manipulate the partners with which it exchanges in-
formation. Doing this can affect the overall behavior of the
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PSO. This subsection gives a brief review of some such work,
finishing with more recent approaches that are used in this

paper.
3.1.1 Cluster Neighborhoods

Kennedy [4] proposed using clusters as an alternative to
using an individual’s previous best p, and its neighborhood
previous best p.. A cluster is a set of individuals that are lo-
cated nearby in the search space (example: Figure 4). Clus-
ters are re-determined at each iteration.

Replace | Replace
py by p« by
1. Db P
2. | clus(pp) D+
3.y [ clus(pe)
4. | clus(py) clus(p«)

Figure 4: An Illustration of Clustering and Experi-
mental Settings

Experiments were performed with the conditions shown in
the right of Figure 4, where clus(z) represents the center of
the cluster to which x belongs. It was found that conditions
involving clus(py) performed well, in particular condition #2
in the table.

3.1.2  Gradually adding neighbors

Suganthan [16] suggested gradually changing the focus
of the PSO from exploration to exploitation by using a
neighborhood operator. A particle P’s neighborhood starts
empty and near the end of the algorithm, consists of the en-
tire population. N(P) is determined as a function of the
current iteration ¢ as follows. A threshold fraction f
(3.0t + 0.6tmaz)/tmax is computed, where tmaqs is iteration
limit. If f <0.9, then the N(P) is set to the entire popula-
tion, otherwise, it is taken to consist of all particles whose
distance d from P satisfies d/dmae < f, Were dmae be the
maximum distance between P and any other particle.

3.1.3 Large Ring to Small Global

Richards and Ventura [14] proposed a version of the PSO
that starts with a relatively large ring population, and over
time removes some of the worst particles and adds additional
connections between the remaining particles. A maximum
number of function evaluations are allocated to a PSO run,
some are reserved for use with the initial ring structure con-
sisting of size; nodes; this is the first phase. Some are re-
served for use with the fully connected structure on sizey
nodes; this is the last phase. The remainder is allocated to a
dynamic phase, in which after each iteration of the PSO, the
population size is reduced and increasingly dense L-Best-k
structures are used. If f is the fraction of evaluations used
so far in the dynamic phase, then the population size is re-
duced to size = (sizey — size;)(1 — f)? + sizes by deleting
the worst particles. The connection density is increased to
k =1+ f(size — 1) and the new population structure is set
to L-Best-k, except that P € N(P).

3.2 Random Dynamic Neighborhoods

Mobhais et al [13, 12] used random neighborhoods in PSO,
together with dynamism operators. This is the method that
will be used for the application problem in this paper.



Their method for creating a random graph uses two pa-
rameters, the number of nodes (n) and the uniform out-
degree (k). For node n;, N(n;), is randomly chosen so that
N(n;) = {nbi,nba,...,nbx} where nb;j, # nbj, for all dis-
tinct 1 < ji,72 < n. A directed edge is added from the n;
to each neighbor nb; and this is taken to mean that n; has
nb; in its neighborhood, but not vice versa.

Two methods of dynamism called Random FEdge Migra-
tion and Total Re-Structuring are given in [13, 12]. These
operators works on a neighborhood graph by re-arranging
edges, either very little or a lot, while the number of nodes
remains fixed, i.e. there is no change in the number of par-
ticles in the swarm. The operators are probabilistically ap-
plied at the end of each iteration, according to a parameter
Pdayn called the dynamism application probability. pay» con-
trols how frequently dynamism is used. If pgy,=1.0, then
it is assured that at the end of each iteration of the PSO,
dynamism would be applied. If pgy,=0.1, dynamism would
only be applied about 10% of the time.

3.2.1 Random Edge Migration

Random edge migration removes a randomly selected edge
(ni,n;) and inserts a randomly selected replacement edge
(nk,n;). This is interpreted as removing n; from the N(n;)
and placing it into N(ny). It is ensured that n; is such that
[N (ni)| > 1 so that upon removing the neighbor n;, n; does
not become isolated. It is also ensured that |N(ng)| # n,
i.e. that ng does not already have a full neighborhood. As
edge migrations are performed, the uniform out-degree k
characteristic is changed, the distribution of out-degrees be-
comes varied. Edge migration is illustrated in Figure 5. The
edge (1, 2) is randomly selected for removal, and is replaced,
again randomly, by (3, 2).

O

.‘A

Figure 5: An illustration of random edge migration.

3.2.2 Total Re-Structuring

Total re-structuring is the complete re-positioning of the
edges in the neighborhood graph. It is effectively a re-
initialization of the random graph based on the parameters
n and k. This operation results in a drastically new con-
figuration in which it is unlikely that any of the previous
neighborhoods still exist. It is expected that this operation
can quickly halt a decline towards premature convergence.
An illustration of total re-structuring is shown in Figure 6
using a random graph with n = 7 and k = 2. After re-
structuring, n and k£ remain the same, but the edges are
quite different.

-

Figure 6: An illustration of total re-structuring.
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4. THE PSO/NN STRONG-MOTION APP.
4.1 The Data Set

Once a K2 recorder is triggered, it begins recording a time
series of amplitude measurements. The recording is stopped
when the motion subsides. Events last for different amounts
of time and so the time series vary in length. Figure 7
shows amplitude time series recordings for a short and a long
earthquakes. Figure 8 shows two examples of events whose
recordings are considered obvious non-earthquakes. Some-
times a non-earthquake event can be ambiguous to classify
at first glance, such as in Figure 9.

000 o000 o ) 0 w00 00 o000

Figure 7: Strong Motion Data for Short and Long
Duration Earthquakes

Figure 8:
Earthquakes

Strong Motion Data for Clear Non-

Figure 9: Strong Motion Data for an Ambiguous
Non-Earthquake

The SRU maintains recording stations at five locations
throughout Trinidad. These locations are shown in the
left of Figure 10. The stations regularly capture data from
events originating on the island of Trinidad, in the waters
off of Trinidad, as well as from much farther away such as
in the regions of Barbados, Grenada, St. Vincent and the
Grenadines, St. Lucia and Dominica.

The SRU provided a data set of all events recorded at the
Brigand Hill station during the year 2004. This data set con-
sisted of 1503 events, of which 113 were actual earthquakes
and 1390 were due to other sources. The right of Figure 10
shows a map of the southermost part of the Caribbean with
a representative sample of the earthquake events from the
data set marked by cross-hairs.



15N

N
14N—| 0
of
13N )
." +
¢
oco . d
+ + =
Brigand il 11N +:t + 4+ 4
NP
10N - -
83W 62W 61W 80W

Figure 10: Left: Locations of the Strong Motion
Recording Stations in Trinidad. Right: Locations of
the Events from the 2004 Data Set.

For the purposes of training and generalization testing,
the data set of 1503 events was randomly split into roughly
equal halves:

Set 1 | Set 2
# of Earthquakes 56 57
# of Non-earthquakes | 695 695

Set 1 was used as a training set for the PSO that evolves
neural networks to classify the events. After a neural net-
work was evolved, it was judged by its performance on the
entire data set (Sets 1 and 2 together).

4.1.1 Normalization of the Data

Data collected by the strong motion instrument could
vary widely in terms of the magnitudes of the accelera-
tions. Thus, two different data files may both represent
earthquakes, but the amplitudes of their data points can be
of very different magnitudes. This can happen for exam-
ple, if one of the earthquakes occurred relatively near to the
recording instrument and so produced relatively large am-
plitudes, whereas the other occurred very far away and thus
produced relatively small amplitudes. In order to simplify
the type of neural network needed, each data file was first
normalized so that the mean of all of its points was 0, and
the standard deviation 1. This was accomplished using the
transformation formula given in equation (1) where in the
original data set, p is the mean, o is the standard deviation,
and z is a data point; x’ is the normalized data point.

)

Tr =
g

(1)
4.1.2  Standardization of Data Length

The events from the data set varied greatly in length,
ranging from 2000 to 14000. The distributions of event
sizes for the entire data set, as well as for earthquake events
and non-earthquake events separately are given in Figure
11 (the scale of the plot for the earthquake events is much
smaller than that of the others). Based on these distribu-
tions, heuristics could be used to eliminate some data from
consideration outright, but this is not done here; effort is
spent exclusively developing a neural network capable of
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making the correct classification based on the input data
without any kind of analysis of that data.

Again, in order to simplify the structure of the neural net-
work required to classify these data, all data files were stan-
dardized to a common length before being loaded into the
PSO. This length, called the input length was a variable in
the experiments performed to obtain the best possible neu-
ral network. In all cases considered, the standardized length
was smaller than the length of the smallest data file. The
standardization was done by using an averaging window to
replace a set of adjacent data points by a single averaged
point. The algorithm for doing this is given in Figure 12,
this algorithm assumes that the new set of data points is
smaller than the original set. An example of an event at its
original length of and at a shortened length of 500 is shown
in Figure 13; the general shape of the data is preserved.

strquake Data Langehs

Frauency
% 8 8 8 8 B 8 & & B
rency

.......

Froquancy
8 5 8 8 8 8 8 8 8 %

2050 000 o0 000 000

Figure 11: Distribution of earthquake data sizes for
entire data set.

shorten_data_length(data[], shortened_size){

averaging window = data.length/shortened_size;
for (i = 0; i < shortened_size; i++){

start = i * averaging window;

stop = start + averaging window;

sum = datal[start];

for (j = start + 1; j < stop; j++)

sum += datalj];
shortened_datal[i] =

}

return shortened_data;

}

sum / averaging window;

Figure 12: Shortening a collection of data points.

4.2 The PSO/NN Setup

4.2.1 Representing a Neural Network as a Particle

Given a fixed network architecture (i.e. number of in-
put, hidden and output nodes), a PSO is set up in which
a particle’s position represents a possible set of weights for
that architecture. Weights for the input to hidden layer are
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Figure 13: 2600 data points reduced to 500

placed in the first part of the position vector, and are fol-
lowed by the weights for the hidden to output nodes. This
mapping is illustrated in Figure 14.

Output node

Input nodes

Hidden—to—output weights

PSO Particle l
Position x =

Input—to-hidden weights

Figure 14: Neural network weights mapped to the
position vector of a PSO particle.

4.2.2  Defining the Optimization Function

To evaluate a particle, the neural network that it repre-
sents is applied to the first half of the partitioned data set
(Set 1). A direct approach would be to take the number
of correctly classified events as the particle’s fitness value;
this would be in the interval [0,1503]. However the data
set has a severe imbalance between the number of positive
(113) and negative (1390) examples, and so adopting this ap-
proach would likely cause a rush into a region of the search
space in which the positive examples are all misclassified.
Instead, it was decided to weight the positive examples so
as to compensate for their small number, whence fitness was
calculated using:

(2)

Npos and nneq are the number of correctly classified pos-
itive and negative examples respectively and wpos is the
compensatory weight assigned to positive examples, wpos =
M = 85 A negative sign is used in the fit-
positive examples 56
ness formula make the problem one of minimization. The
goal of the PSO is thus to find a set of neural network
weights, which when used on an appropriate architecture
to classify the training data, yields a 100% correct classi-
fication. Such a set of weights would have a fitness value

—1-(56- 28 +695) = —1390.

fitness = —1 % (Npos * Wpos + Nneg)

5. PSO/NN TRAINING EXPERIMENTS
5.1 Experimental Setup

Experiments were conducted in an attempt to find a neu-
ral network that would correctly generalize over the entire
data set. A FIPS-based PSO with re-structuring and a lin-
early decreasing dynamism probability, from pgy,=1.0 down
to 0.0 over a run, was used. Different neighborhood param-
eters, i.e. number of particles (m) and uniform out-degree
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(k), and NN architectures, i.e. number of input nodes (n;)
and hidden nodes (np), were tested. The choice of archi-
tecture parameters was based on probing experiments. The
parameters were:

e n; € {200,210, 220,...,350}
e ny, €{15,16,...,20}

e m € {20,30}

o ke{l,2,...,10}

For comparison, the static neighborhoods L-Best-1/2/3/4
and von Neumann, were tested with the same parameters
as above, except for £ which has no meaning in this con-
text. Because of the nature of this real-world application,
evaluating the fitness of a particle takes a very long time.
Thus, to maintain a feasible experiment, only a single run
of each configuration was executed. Each run was allowed
a maximum of 25000 evaluations. Subsequently, for special
cases, multiple-trial experiments were performed to obtain
statistically valid comparisons. This approach was consid-
ered acceptable since the objective of the experiment was to
obtain a NN that could correctly classify, not necessarily to
be able to reproduce experimental runs. For each configu-
ration, the best particle at the end of the PSO run was kept
and evaluated on both the test set and the entire data set.

5.2 Results

Tables 1 and 2 show the top 10 results (11 shown due to a
tie) for the random dynamic PSOs and for the static ones re-
spectively. These tables present two separate sets of results
for training and generalization. In each category, Npos, Nneg
and nqo: refer to the number of correctly classified positive
(earthquakes), negative (non-earthquakes) and total events
(sum of the previous two) respectively. The tables are sorted
on n¢et for generalization. In each class the best results are
highlighted in gray. Training results alone would not have
been enough to differentiate the performances of the various
configurations and furthermore, the NNs that obtained the
best training results did not also generalize best.

The standard PSO neighborhood (L-Best-1) was not in
Table 2 and so was clearly out-performed. However the
von Neumann neighborhood produced an impressive per-
formance in comparison to the random dynamic neighbor-
hoods. This is in contrast to results on many typical research
problems where it is out-performed [12]. Nevertheless, the
best random dynamic neighborhood configuration from Ta-
ble 1 produced a better generalizer than the best from Table
2, and further experiments confirmed this statistically.

Figure 15 shows how generalization performance behaved
in relation to k for both levels of n (20 and 30) for the top-4
NN architectures from Table 1. There is a peak in perfor-
mance in the region of k=4,5. This is further evidenced in
Table 3, which shows the k values at which the best NNs
were obtained for each architecture. Even though the data
represents single runs of each configuration, it is striking
that the values of k are mostly 4 or 5. Based on this ob-
servation, neighborhoods using k=4,5 were examined to see
how generalization performance behaved in response to ar-
chitecture. This is shown in the contour plots of Figure
16, where darker shades represent better performance. The
scattered dark patches suggest that when k=45, there is no
range of architectures that is particularly better. However,
there are more architectures that perform well with k=4,
than with 5.



Testing Generalization
nq Nh m k Npos  Mneg Ntot Npos Nneg Ntot
340 | 19 | 30 | 4 56 688 744 85 1366 1451
350 | 16 | 30 | 5 55 690 745 86 1362 1448
320 | 18 | 30 | 4 55 686 741 86 1360 1446
320 | 15 | 20 | 4 52 687 739 76 1370 1446
350 | 15 | 30 | 4 56 688 744 88 1357 1445
350 | 20 | 30 | 4 54 685 739 78 1367 1445
290 | 19 | 30 | 5 56 692 748 7 1367 1444
310 | 15 | 30 | & 56 690 746 81 1361 1442
340 | 17 | 30 | 4 56 687 743 79 1363 1442
320 | 18 | 20 | 4 56 689 745 82 1359 1441
300 | 19 | 30 | 6 55 690 745 78 1363 1441

Table 1: Best neural networks obtained using random dynamic neighborhoods.

Testing Generalization
nq Nh m nbd Npos  Mneg Ntot Npos Nneg Ntot
350 | 16 | 30 von 56 688 744 82 1354 1436
330 | 19 | 30 von 55 691 746 79 1347 1426
320 | 15 | 30 von 55 679 734 80 1337 1417
320 | 19 | 30 von 55 685 740 74 1341 1415
240 | 18 | 30 von 56 685 741 78 1336 1414
300 | 20 | 30 von 56 676 732 88 1325 1413
290 | 20 | 30 von 56 679 735 84 1329 1413
350 | 17 | 20 | lbest2 55 679 734 88 1324 1412
330 | 18 | 30 von 56 686 742 75 1337 1412
290 | 17 | 30 von 56 675 731 85 1326 1411
290 | 18 | 30 von 56 676 732 81 1329 1410

Table 2: Best neural networks obtained using static neighborhoods.

Inputs: 340, Hidden: 19

Inputs: 350, Hidden: 16

Performance

600

Figure 15: k versus performance plots for the top-
four architectures

5.3 Statistical Comparison of Bests

As a final test, the best configurations of Tables 1 and 2
were put through 100 trial runs so that a statistically sound
conclusion could be drawn. The first configuration is a ran-
dom dynamic FIPS-based PSO using n=30 and k=4 on the
architecture n;=340 and n,=19. The second configuration
is a standard static FIPS-based PSO using a von Neumann
graph with n=30 on the architecture n;=350 and n;,=16.

The results are shown in Table 4 which gives the 95%
confidence intervals for the n:o: values for generalization. It
is clear in both cases that the top results obtained in Tables
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n; [ 15 16 17 18 19 20
2005 4 5 4 6 7
210 4 4 4 4 4 5
22004 5 4 4 5 6
230 4 6 4 5 4 6
240 | 5 4 5 7T 4 4
250 4 4 4 5 6 5
2604 4 5 4 5 4
2101 6 5 5 5 6 5
2014 5 6 5 4 4
2015 5 4 4 5 4
3004 5 5 5 6 5
310 5 5 5 4 4 6
32004 4 5 4 5 6
33014 5 5 5 5 5
3401 4 5 4 6 4 6
350 4 5 4 4 5 4

Table 3: k values at which best NNs were obtained.

1 and 2 happened to be on the high ends of the samples of
results. Nevertheless, the best random dynamic PSO out-
performs the best standard static one decisively.

6. CONCLUSIONS

None of the many configurations tried was able to pro-
duce a neural network capable of generalizing 100% cor-
rectly. The best result was an accuracy of 96.5%, obtained
by a random dynamic neighborhood PSO. At first glance it



‘ n=30, k=4

# Hioden Noges

BN
#Input Nodes

280

300
#Input Nodes.

Figure 16: Performance in relation to architecture
when k=4,5

Standard Static
[1388.868, 1397.872]

Random Dynamic
[1420.910, 1427.370]

Table 4: 95% Confidence intervals of the best ran-
dom dynamic configuration versus that of the best
standard static configuration.

seemed that for this application, the random dynamic PSO
was only marginally better than the standard one using von
Neumann. However a more careful examination demon-
strated that the difference is significant and much larger
than it appeared at first. Many of the top-performing con-
figurations used graphs with out-degree 4 and even the best
standard static PSO used the von Neumann topology which
also has k=4. It seems plausible that k=4 might be near op-
timal for this particular problem. These results corroborate
the suggestion in [9] that k=4 might be an optimal value for
problems that are typically encountered in scientific research
and applications.

A classification accuracy of 96.5% is remarkable for a prac-
tical application. It remains possible that a perfect classifier
could be evolved if a better neural network architecture were
chosen. This is a source of future research. Another expla-
nation exists for the 3.5% deficiency - it is that the Seismic
Research Unit from which the data set was obtained classi-
fies some of the event using secondary data sources, i.e. data
collected from instruments other than the strong motion ac-
celerometers. This external data was not part of the data
set used and thus not accessible to the neural networks. It
is possible that if given access to this additional data, better
accuracy could be attained. Yet other approaches such as
bagging may improve the performance to 100%.

Due to the very large amounts of time required to evaluate
particle fitnesses, the initial experiments were restricted to
single runs. This aspect of the study needs to be improved.
This work is currently being undertaken.
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