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ABSTRACT
Model Checking is a well-known and fully automatic tech-
nique for checking software properties, usually given as tem-
poral logic formulae on the program variables. Most model
checkers found in the literature use exact deterministic al-
gorithms to check the properties. These algorithms usu-
ally require huge amounts of computational resources if the
checked model is large. We propose here the use of a new
kind of Ant Colony Optimization (ACO) model, ACOhg, to
refute safety properties in concurrent systems. ACO algo-
rithms are stochastic techniques belonging to the class of
metaheuristic algorithms and inspired by the foraging be-
haviour of real ants. The traditional ACO algorithms can-
not deal with the model checking problem and thus we use
ACOhg to tackle it. The results state that ACOhg algo-
rithms find optimal or near optimal error trails in faulty
concurrent systems with a reduced amount of resources, out-
performing algorithms that are the state-of-the-art in model
checking. This fact makes them suitable for checking safety
properties in large concurrent systems, in which traditional
techniques fail to find errors because of the model size.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—model checking ; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuris-
tic methods; G.1.6 [Numerical Analysis]: Optimization—
Global optimization

General Terms
Verification, Algorithms, Experimentation
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1. INTRODUCTION
From the very beginning of computer research, computer

engineers have been interested in techniques allowing them
to know if a software module fulfills a set of requirements (its
specification). These techniques are especially important in
critical software, such as airplane or spacecraft controllers, in
which people’s lives depend on the software system. In addi-
tion, modern non-critical software is very complex and these
techniques have become a necessity in most software compa-
nies. One of these techniques is formal verification, in which
some properties of the software can be checked much like a
mathematical theorem defined on the source code. Two very
well-known logics used in this verification are predicate cal-
culus and Hoare logic. However, formal verification using
logics is not fully automatic. Although automatic theorem
provers can assist the process, human intervention is still
needed.

Model checking [6] is another well-known and fully auto-
matic formal method. In this case all the possible program
states are analyzed (in an explicit or implicit way) in order
to prove (or refute) that the program satisfies a given prop-
erty. This property is specified using a temporal logic like
Linear Temporal Logic (LTL) or Computation Tree Logic
(CTL). One of the best known explicit model checkers is
SPIN [14], which takes a software model codified in Promela
and a property specified in LTL as inputs. SPIN trans-
forms the model and the negation of the LTL formula into
Büchi automata in order to perform the synchronous prod-
uct of them. The resulting product automaton is explored
to search for a cycle of states containing an accepting state
reachable from the initial state. If such a cycle is found, then
there exists at least one execution of the system not fulfilling
the LTL property (see [15] for more details). If such kind
of cycle does not exist then the system fulfills the property
and the verification ends with success.

The amount of states of the product automaton is very
high even in the case of small systems, and it increases ex-
ponentially with the size of the model. This fact is known as
the state explosion problem and limits the size of the model
that a model checker can verify. This limit is reached when
it is not able to explore more states due to the absence
of free memory. Several techniques exist to alleviate this
problem. They reduce the amount of memory required for
the search by following different approaches. On one hand,
there are techniques which reduce the number of states to
explore, such as partial order reduction [20] and symme-
try reduction [19]. On the other hand, we find techniques
that reduce the memory required for storing one state, such
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as state compression, minimal automaton representation of
reachable states, and bitstate hashing [15]. Symbolic model
checking [5] is another very popular alternative to the ex-
plicit state model checking that can reduce the amount of
memory required for the verification by means of a compact
representation for set of states. However, although it is pos-
sible to check larger models with symbolic model checking,
this technique also suffers from state explosion.

In this work we propose the use of a new model of Ant
Colony Optimization (ACO) [7] for finding counterexamples
(refuting) of LTL formulae in concurrent systems. ACO al-
gorithms belong to the metaheuristic class of algorithms [4],
which are able to find near optimal solutions using a rea-
sonable amount of resources. For this reason, they can be
suitable for searching accepting states in the graph of large
system models, for which traditional exploration algorithms
fail. However, existing ACO models cannot be applied to the
problem of finding error trails in concurrent systems due to
the large size of the corresponding Büchi automata and thus
a new ACO model was proposed in [2].

The paper is organized as follows. In the next section
we present previous algorithms used for state explicit model
checking. The heuristic search is carefully analyzed because
our proposal is based on it and we dedicate Section 3 to
show some previously used heuristics. In Section 4 the
ACO model used in this paper, ACOhg, is described. In
Section 5 we present some experimental results comparing
the ACOhg-based algorithms against traditional exact algo-
rithms for explicit state model checking. We also compare
one ACOhg algorithm against a Genetic Algorithm (GA),
which has been previously used for this task. Finally, Sec-
tion 6 outlines the conclusions and future work.

2. BACKGROUND
For the verification of a general LTL formula in explicit

state model checking it is necessary to search for a cycle in
the state graph with at least one accepting state. Further-
more, such a cycle must be reachable from the initial state.
For this task, SPIN uses the Nested Depth First Search al-
gorithm (Nested-DFS) [16]. The algorithm first tries to find
an accepting state using Depth First Search. When found, it
tries to reach the same state starting on it, that is, it searches
for a cycle including the found accepting state. If this cycle
is not found, it searches for another accepting state start-
ing on the initial node and repeat the process. As we said
before, if the cycle is found, it represents a counterexample
for the LTL formula. Otherwise, there is no counterexample
and the checked model fulfills the LTL formula. The reason
is that Nested-DFS is an exhaustive algorithm: if it does
not find an accepting reachable cycle, there is no such kind
of cycle. On the contrary, most of the canonical metaheuris-
tic algorithms [4], due to their approximate nature, cannot
ensure that the system fulfills the property, but they can
refute it. For this reason we talk about a problem of prop-
erties refutation instead of verification when metaheuristic
algorithms are used.

The properties that can be specified with LTL formulae
can be classified into two groups: safety and liveness prop-
erties [21]. Safety properties can be expressed as assertions
that must be fulfilled by all the states of the model, while
liveness properties refer to assertions that must fulfilled by
execution paths in the model. Safety properties of a model
can be checked by searching for a single accepting state in

the product Büchi automaton. That is, when safety proper-
ties are checked, it is not required to find an additional cycle
containing the accepting state. This means that safety prop-
erties verification can be transformed into a search for one
objective node (one accepting state) in a graph (Büchi au-
tomaton). Furthermore, the path from one initial node to
one objective node represents an execution of the concur-
rent system in which the given safety property is violated:
an error trail. Short error trails in faulty system models are
preferred to long ones. The reason is that a human pro-
grammer analyzing the error trail can understand a short
trail in less time than a long one.

The simplification of the graph exploration when deal-
ing with safety properties has been used in previous works
to verify safety properties using classical algorithms in the
graph exploration domain. Edelkamp, Lluch-Lafuente, and
Leue [8, 9, 10] apply Depth First Search (DFS) and Breadth
First Search (BFS) to the problem of verifying safety prop-
erties using SPIN. Furthermore, they use heuristic search
for this task in their own tool called HSF-SPIN, an exten-
sion of SPIN. In order to perform a heuristic search they
assign to every state a heuristic value that depends on the
property to verify. They apply classical algorithms for graph
exploration such as A∗, Weighted A∗ (WA∗), Iterative Deep-
ening A∗ (IDA∗), and Best First Search (BF). The results
show that, by using heuristic search, the length of the coun-
terexamples can be shortened and the amount of memory
required to obtain an error trail is reduced, allowing the ex-
ploration of larger models. In addition, they show that the
use of heuristic search can be combined with partial order
reduction [20] and symmetry reduction [19]. They also use
heuristic search to guide the search for counterexamples of
liveness properties [8, 10].

Genetic Algorithms (GAs) have also been applied to the
problem of refuting safety properties in concurrent systems.
In an early proposal, Alba and Troya [3] used GAs for de-
tecting deadlocks, useless states, and useless transitions in
communication protocols. In their work, one path in the
state graph is represented by a finite sequence of numbers.
For the evaluation of a solution, a protocol simulator fol-
lows the suggested path and accounts for the number of
states and transitions not used in the Finite State Machines
during the simulation. To the best of our knowledge, this is
the first application of a metaheuristic algorithm to model
checking. Later, Godefroid and Kurshid [12, 13], in an in-
dependent work, applied GAs to the same problem using a
similar encoding of the paths in the chromosome. Their GA
is integrated with VeriSoft [11] and it can check C programs.

In the present work we propose the utilization of another
metaheuristic algorithm: Ant Colony Optimization. Unlike
GA, ACO is a metaheuristic designed for searching short
paths in graphs. This makes it very suitable for the prob-
lem at hand. In order to guide the search we use the same
heuristic functions defined by Edelkamp et al. [8]. In fact,
we have extended their tool, HSF-SPIN, in order to include
our ACO algorithm. In this way, we can use all the heuristic
functions implemented in HSF-SPIN and, at the same time,
all the existing work related to parsing Promela models and
interpreting them.

3. HEURISTIC FUNCTIONS
In order to guide the search, a heuristic value is associated

to every automaton state. The computation of this value can
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be based on the LTL formula [9] or in the objective node (if
known beforehand) [19]. Formula-based heuristics are a kind
of heuristic functions that can be applied when the objective
state is not known. Using the logic expression that must
be false in an objective node, these heuristics estimate the
number of transitions required to get an objective node from
the current one. Given a logic formula ϕ (without temporal
operators), the heuristic function for that formula Hϕ is
defined using its subformulae. Table 1 shows the recursive
definition of a formula-based heuristic.

Table 1: Formula-based heuristic function
ϕ Hϕ(s) Hϕ(s)

true 0 ∞
false ∞ 0

p if p then 0 else 1 if p then 1 else 0
a⊗ b if a⊗ b then 0 else 1 if a⊗ b then 1 else 0

¬ψ Hψ(s) Hψ(s)

ψ ∨ ξ min{Hψ(s), Hξ(s)} Hψ(s) +Hξ(s)

ψ ∧ ξ Hψ(s) +Hξ(s) min{Hψ(s), Hξ(s)}
full(q) capa(q) − len(q) if full(q) then 1 else 0

empty(q) len(q) if empty(q) then 1 else 0

q?[t]
minimal prefix of q if head(q) �= t then 0 else

without t maximal prefix of t’s
i@s Di(pci, s) if pci = s then 1 else 0

ψ, ξ: formulae without temporal operators
p: logic proposition
a, b: variables or constants
⊗: relational operator (=, �=, <,≤,≥, >)
q: queue
capa(q): capacity of queue q
len(q): length of queue q
head(q): message in the head of queue q
t: tag of a message
i: process
s: state of a process automaton
pci: current state of process i in its corresponding automaton
Di(u, v): minimum number of transitions for reaching

v from u in the local automaton of process i

Formula-based heuristic functions can be used to guide the
search for safety LTL properties. For searching deadlocks
several heuristic functions can be used. On one hand, the
number of active processes can be used as heuristic value of
a state. We denote this heuristic as Hap. On the other hand,
the number of executable (enabled) transitions in a state can
also be used as heuristic value, denoted with Hex. Another
option consists in approximating the deadlock situation with
a logic predicate and deriving the heuristic function of that
predicate using the rules of Table 1 (see [9]).

From the heuristic functions that can be used when the
objective node is known we can highlight the Hamming dis-
tance and the Finite State Machines (FSM) distance. In the
first case the heuristic value is computed as the Hamming
distance between the binary representations of the current
and the objective state. In the latter, the heuristic value is
the sum of the minimum number of transitions in the local
transition graphs of the processes required to reach the local
objective state from the local current state [19]. As we will
see in the experimental section, in this paper we search for
unknown objective states, so we do not use any of these two
last heuristic functions.

4. ANT COLONY OPTIMIZATION
The ACO Metaheuristic is inspired by the foraging be-

haviour of real ants. The main idea consists of simulating
the ants’ behaviour in a graph (the so-called construction
graph) in order to search for the lowest cost path from an

initial node to an objective one. The cooperation among the
different simulated ants is a key factor in the search. This
cooperation is performed indirectly by means of pheromone
trails, which is a model of the chemicals the real ants use for
their communication.

procedure ACOMetaheuristic
ScheduleActivities

ConstructAntsSolutions
UpdatePheromones
DaemonActions // optional

end ScheduleActivities
end procedure

Figure 1: Pseudo-code of the ACO Metaheuristic.

In Figure 1 we reproduce a general ACO pseudo-code
found in [7]. It consists of three procedures executed during
the search: ConstructAntsSolutions, UpdatePheromones,
and DaemonActions. They are executed until a given stop-
ping criterion is fulfilled, such as finding a solution or reach-
ing a given number of steps. In the first procedure each
artificial ant follows a path in the construction graph. The
ant starts in an initial node and then it stochastically selects
the next node according to the pheromone and the heuristic
value associated with each arc (or the node itself). The ant
appends the new node to the traversed path and selects the
next node in the same way. This process is iterated until
a candidate solution is built. In our case, when ant k is in
node i it selects node j with probability

pk
ij =

[τij ]
α[ηij ]

β

P
l∈Ni

[τil]α[ηil]β
, if j ∈ Ni, (1)

where Ni is the set of successor nodes for node i, and α
and β are two parameters of the algorithm determining the
relative influence of the heuristic value and the pheromone
trail on the path construction, respectively.

In the UpdatePheromones procedure, pheromone trails as-
sociated to arcs are modified. In our case, the pheromone
trails associated to the arcs that ants traverse are updated
during the construction phase using the expression

τij ← (1− xi)τij (2)

where xi controls the evaporation of the pheromone during
the construction phase, where 0 ≤ xi ≤ 1. This mechanism
increases the exploration of the algorithm, since it reduces
the probability that an ant follows the path of a previous ant.
After the construction phase pheromone trails are updated
again in order to take into account the quality of the candi-
date solutions built by the ants. In this case the pheromone
update follows the expression

τij ← ρτij + Δτ bs
ij , ∀(i, j) ∈ L, (3)

where ρ is the pheromone evaporation rate and it holds
that 0 ≤ ρ ≤ 1. On the other hand, Δτ bs

ij is the amount
of pheromone that the best ant path ever found deposits on
arc (i, j). This quantity is usually in direct relation with the
quality of the solution. In our case, we try to minimize an
objective function (also called fitness function) and thus we
set Δτ bs

ij to the inverse of the minimum fitness value found.
In addition, we adopt here the idea introduced in Max-Min
Ant Systems (MMAS) of keeping the value of pheromone
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trails in a given interval [τmin, τmax] in order to maintain
the probability of selecting one node above a given thresh-
old. The values of the trail limits are

τmax =
Q

1− ρ
(4)

τmin =
τmax

a
(5)

where Q is the inverse of the minimum fitness value. The
parameter a controls the size of the interval. When one
pheromone trail is greater than τmax it is set to τmax and,
in a similar way, when it is lower than τmin it is set to
τmin. Each time a new better solution is found the interval
limits are updated consequently and all pheromone trails are
checked in order to keep them inside the interval.

Finally, the last (and optional) procedure DaemonActions

performs centralized actions that are not performed by in-
dividual ants. For example, a local optimization algorithm
can be implemented in this procedure in order to improve
the tentative solution held in every ant.

4.1 Modifications to the basic models: ACOhg
The ACO models we found in the literature can be applied

(and they have been) to problems with a number of nodes
n of several thousands. In these problems the construction
graph has a number of arcs of O(n2), that is, several mil-
lions of arcs, and hence the pheromone trails require several
megabytes of memory in a computer to be stored. These
models are not suitable in problems in which the construc-
tion graph has more than 106 nodes (i.e. 1012 arcs). They
are also not suitable when the amount of nodes is not known
beforehand and the nodes and arcs of the construction graph
are dynamically generated as the search progresses. We
tackle here such a kind of problem. In effect, the number
of states of a concurrent system is usually very large even
in small models. For example, the number of states of the
dining philosophers model used in Section 5 is 3n, where n
is the number of philosophers. That is, the number of states
grows in an exponential way with respect to the size of the
model.

Let us discuss the issues that prevent existing ACO mod-
els from solving such kind of problems. First, in the con-
struction phase, ants of a regular ACO walk until a candi-
date solution is completed. However, if we would allow the
ants to walk on the huge unknown graph without repeating a
node until they find an objective node they can reach a dead
end (a node without non-visited successors). Even although
they find an objective node they can wander in the graph
for a long time requiring a lot of memory to build a candi-
date solution since the objective nodes can be very far from
the initial node. Thus, in general it is not viable to work
with complete candidate solutions as current models do. We
must allow the construction of partial candidate solutions.
Second, some ACO models assign to the initial pheromone
trails a value that depends on the number of graph nodes.
This kind of initialization of the pheromone trails is not
suitable when we work with unknown sized graphs.

In order to solve these obstacles that arise when working
with large graphs, we use here a new ACO model called
ACOhg (ACO for huge graphs) presented in [2] that is able
to tackle combinatorial optimization problems with an un-
derlying construction graph of unknown size that is built as
the search progresses. The main ideas this model introduces
aim at exploring the construction graph with a small amount

of memory. We detail the ideas in the following paragraphs.
In order to avoid the, in general unviable, construction

of complete candidate solutions we limit the length of the
paths traversed by ants in the construction phase. That is,
when the path of an ant reaches a given maximum length
λant, the ant is stopped. In this way, the construction phase
can be performed in a bounded time and with a bounded
amount of memory. However, the limitation of the ant path
length implies that most (if not all) of the paths are partial
solutions and therefore we need a fitness function that can
evaluate partial solutions (what, in some cases, can be far
from trivial).

The limitation in the ant path length solves the problem of
the “wandering ants” but introduces a new one. There is a
new parameter for the algorithm (λant) whose optimal value
is not easy to establish a priori. If we select a value smaller
than the depth1 of all the objective nodes, the algorithm
will not find any solution to the problem. Thus, we must
select a value larger than the depth of one objective node
(if known). This is not difficult when we know where the
objective node is, but the usual situation is the opposite one.
In the last case, two alternatives are proposed. In Figure 2
we show graphically the way in which the two alternatives
work.

Initial Node

Exploration Region

Construction Graph

Initial Node

Exploration Region

Construction Graph

Initial Node

Exloration Region

Construction Graph

Initial Node

Exploration Region

Construction Graph

Initial Node

Exploration Region

Construction Graph

Initial Node

Exploration Region

Construction Graph

M issionary Technique

Expansion Technique

Figure 2: Two alternatives for reaching objective
nodes of unknown depth: expansion and mission-
ary techniques. We show snapshots of different mo-
ments of the search.

The first consists in dynamically increasing λant during
the search if no objective node is found. At the beginning,
a low value is assigned to λant and it is increased in a given
quantity δl every certain number of steps σi. In this way, the
length will be hopefully high enough to reach at least one
objective node. This is called expansion technique. This
mechanism can be useful when the depth of the objective
nodes is not very high. Otherwise, the length of the ant
paths will increase a lot and the same happens with the
time and the memory required to build the paths, since it
will approach the behaviour of a regular ACO incrementally.

The second alternative consists in starting the path con-
struction of the ants from different nodes during the search.
That is, at the beginning the ants are placed on the initial
nodes of the graph and the algorithm is executed during a
given number of steps σs (called stage). If no objective node

1The depth of a node in the construction graph is the length
of the shortest path from an initial node to it.
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is found, the last nodes of the paths constructed by the ants
are used as starting nodes for the next ants. In the next
steps (the second stage) of the algorithm the new ants tra-
verse the graph starting in the last nodes of paths computed
in the first stage. In this way, the new ants start at the end
of previous ant paths trying to go beyond in the graph. This
mechanism is called missionary technique. The length of the
ant paths (λant) is kept always constant and the pheromone
trails are discarded from one stage to another in order to
keep almost constant the amount of computational resources
(memory and CPU time) in all the stages. The assignment
of ants to starting nodes at the beginning of one stage is
performed in several phases. First, we need to select the so-
lutions of the previous stage whose last visited nodes will be
used as starting points in the new stage. For this, we store
the best solutions (according to the fitness value) found in
the previous stage. We denote with s the number of so-
lutions stored. Once we have the set of starting nodes we
need to assign the new ants to those nodes. For each new
ant we select its starting node using roulette selection; that
is, the probability of selecting one node is proportional to
the fitness value of the solution associated with it.

5. EXPERIMENTAL SECTION
In this section we present some results obtained with the

ACOhg algorithms. For the experiments we have selected
5 Promela models that are presented in the following sec-
tion. After that, we discuss the algorithm parameters used
in the experiments in Section 5.2. In Section 5.3 we show the
first results of the ACOhg algorithms and we compare them
against the obtained by exhaustive algorithms. Next, in Sec-
tion 5.4 we compare an ACOhg algorithm against a Genetic
Algorithm, the previous metaheuristic algorithm applied to
find errors in concurrent systems.

5.1 Models
We have selected 5 Promela models previously reported

in the literature by Edelkamp et al. [10]. All these models
violate a safety property. In Table 2 we present the mod-
els with some information about them. They can be found
in http://web.tiscali.it/ikaria/alberto together with
the HSF-SPIN source code.

Table 2: Promela models used in the experiments
Model LoC States Processes Safety prop.
giop22 717 unknown 11 Deadlock
marriers4 142 unknown 5 Deadlock
needham 260 18242 4 LTL formula
phi16 34 ∗43046721 17 Deadlock
pots 453 unknown 8 Deadlock
∗ Theoretical result.

From the models the smallest one is needham. The re-
maining models have a large associated Büchi automaton
that does not fit in the main memory of the machines used
for the experiments (512MB). The first model, giop22, is
an implementation of the CORBA Inter-ORB protocol for
2 clients and 2 servers [18]. The next model, marriers4 is
a protocol solving the stable marriage problem for 4 suit-
ors [22]. The Needham-Schroeder protocol [23] with one
initiatior, one responder, and one intruder is implemented
in needham with the objective of finding the Lowe attack.
The Dijkstra dining philosophers problem is implemented

in phi16 with 16 philosophers. The Plain Old Telephone
Service model is implemented in pots [17].

5.2 Algorithms and Parameters
For the experiments we use ACOhg algorithms with the

configuration shown in Table 3. The missionary technique is
used. These parameters are not set in an arbitrary way, they
are the result of a previous study aimed at finding the best
configuration for tackling the models shown in the previous
section. That is, we selected a configuration that obtains
a good trade-off between efficacy of the algorithm and re-
sources used. It is worth mentioning that one configuration
that is good for one model can be bad for another one. In
fact, this happens here, so the configuration shown in Ta-
ble 3 was selected in order to get a good trade-off between
efficacy and resources in all the models simultaneously.

Table 3: Parameters for the ACOhg
Parameter Value
Steps 100
Colony size 10
λant 10
σs 2
s 10
xi 0.5
a 5
ρ 0.8
α 1.0
β 2.0

With respect to the heuristic information, ηij , we use
ηij = 1/(1+Hϕ(j)) where Hϕ(j) is the formula-based heuris-
tic evaluated in state j when the objective is to find a coun-
terexample of an LTL formula (needham). In the case of
deadlock detection, we use ηij = 1/(1 + Hap(j)) where
Hap(j) is the active processes heuristic evaluated in state
j (see Section 3). However, we use two versions of ACOhg:
one not using heuristic information and another one using
it. The fitness value (to minimize) of a solution is the sum of
the solution length, the heuristic value of the last state, and
a penalty term for partial solutions. The stopping criterion
used in our ACOhg algorithms is to find an error trail or to
reach a maximum number of allowed steps (100). The al-
gorithm could follow the search after an error trail is found
in order to optimize the length of the error trail. However,
we are interested here in observing the effort required by
the algorithm for obtaining an error trail, since it points out
an error in the model, and thus reducing the error trails is
deferred for a future work.

Since ACOhg is a stochastic algorithm, we need to per-
form several independent runs in order to get an idea of the
behaviour of the algorithm. In the specialized literature it
is well established that a minimum of 30 independent runs
is required to get statistical confidence of the results. In
our experiments we perform 100 independent runs in order
to get a high statistical confidence. The machine used in
the experiments is a Pentium IV at 2.8 GHz with 512 MB
of RAM. In all the experiments the maximum memory as-
signed to the algorithms is 512 MB: when a process exceeds
this memory it is automatically stopped. We do this in or-
der to avoid a high amount of data flow from/to the swap
area, which could affect significantly the CPU time required
in the search.
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5.3 ACOhg vs. Exact Algorithms
Here we present the first results obtained with ACOhg.

We compare these results against exact algorithms previ-
ously found in the literature. These algorithms are BFS,
DFS, A∗, and BF (see Section 2). BFS and DFS do not use
heuristic information while the other two do. In order to
make a fair comparison we use two different ACOhg algo-
rithms: one not using heuristic information (ACOhg-b) and
another one using it (ACOhg-h). We compare ACOhg-b
against BFS and DFS in Table 4, and ACOhg-h against A∗

and BF in Table 5. In the tables we can see the hit rate
(number of executions that got an error trail), the length
of the error trails found (number of states), the memory re-
quired (in Kilobytes), the number of expanded states, and
the CPU time used (in milliseconds) by each algorithm. For
ACOhg-b and ACOhg-h we show average values over 100
independent runs.

Table 4: Results of the algorithms without heuristic
information

Models Aspects BFS DFS ACOhg-b

giop22

hit rate 0/1 1/1 100/100
len (states) - 112.00 45.80
mem (KB) - 3945.00 4814.12
exp (states) - 220.00 1048.52
cpu (ms) - 30.00 113.60

marriers4

hit rate 0/1 0/1 57/100
len (states) - - 92.18
mem (KB) - - 5917.91
exp (states) - - 2045.84
cpu (ms) - - 257.19

needham

hit rate 1/1 1/1 100/100
len (states) 5.00 11.00 6.39
mem (KB) 23552.00 62464.00 5026.36
exp (states) 1141.00 11203.00 100.21
cpu (ms) 1110.00 18880.00 262.00

phi16

hit rate 0/1 0/1 100/100
len (states) - - 31.44
mem (KB) - - 10905.60
exp (states) - - 832.08
cpu (ms) - - 289.40

pots

hit rate 1/1 1/1 49/100
len (states) 5.00 14.00 5.73
mem (KB) 57344.00 12288.00 9304.67
exp (states) 2037.00 1966.00 176.47
cpu (ms) 4190.00 140.00 441.63

The first observation that we can make from the results
of Table 4 is that ACOhg-b is the only algorithm able to
find an error in all the models. DFS fails in marriers4 and
phi16, while BFS fails in these two models and in giop22.
The reason for these fails is that the memory required by the
algorithms exceeds the memory available on the computer.
Furthermore, ACOhg-b finds an error in all the independent
runs (hit rate of 100%) for 3 out of the 5 models. In view
of these results we can state that ACOhg-b is better than
DFS and BFS in the task of searching for errors.

Concerning the quality of solutions (the length of error
trails), we observe that ACOhg-b obtains almost optimal
(minimal) error trails. The optimal length for error trails
are those obtained by BFS (when it finds an error), since it
is designed to obtain an optimal error trail. The length of
the error trails found by DFS are much longer (bad quality)
than those of the other two algorithms (BFS and ACOhg-b).

Let us discuss now the computational resources used by
the algorithms. With respect to the memory used, ACOhg-b
requires less memory than BFS in all the models. In some
models the difference is very large. For example, in needham

BFS requires more than 4 times the memory of ACOhg-b
(and more than 4 times its CPU time). The memory used by
ACOhg-b is also less than the one required by DFS for 4 out
of 5 with an exception for giop22. The number of expanded
states of ACOhg-b is the minimum in 4 out of 5 models.
Only DFS is able to reduce the number of expanded states
in one model: giop22. Observing the CPU time required
by the algorithms we can notice that BFS is the slowest
algorithm (this is the price of its optimality). DFS is faster
than ACOhg-b in giop22 and pots (between 3 and 4 times
faster) but ACOhg-b is much faster than DFS in needham

(72 times faster).
In general terms, we can state that ACOhg-b is a robust

algorithm that is able to find errors in all the proposed mod-
els with a low amount of memory. In addition, it combines
the two good features of BFS and DFS: it obtains short error
trails, like BFS, while at the same time requires a reduced
CPU time, like DFS.

Table 5: Results of the algorithms using heuristic
information

Models Aspects A∗ BF ACOhg-h

giop22

hit rate 1/1 1/1 100/100
len (states) 44.00 44.00 44.20
mem (KB) 417792.00 2873.00 4482.12
exp (states) 83758.00 168.00 1001.78
cpu (ms) 46440.00 10.00 112.40

marriers4

hit rate 0/1 1/1 84/100
len (states) - 108.00 86.65
mem (KB) - 41980.00 5811.43
exp (states) - 9193.00 1915.30
cpu (ms) - 190.00 233.33

needham

hit rate 1/1 1/1 100/100
len (states) 5.00 10.00 6.12
mem (KB) 19456.00 4149.00 4865.40
exp (states) 814.00 12.00 87.47
cpu (ms) 810.00 20.00 229.50

phi16

hit rate 1/1 1/1 100/100
len (states) 17.00 81.00 23.08
mem (KB) 2881.00 10240.00 10680.32
exp (states) 33.00 893.00 587.53
cpu (ms) 10.00 40.00 243.80

pots

hit rate 1/1 1/1 99/100
len (states) 5.00 7.00 5.44
mem (KB) 57344.00 6389.00 6974.56
exp (states) 1257.00 695.00 110.48
cpu (ms) 6640.00 50.00 319.49

Let us focus on the results of Table 5. Again, ACOhg-h
is able to find the design errors in all the models (as BF).
We observe that A∗ fails to find an error state in mariers4.
We can state (comparing Tables 5 and 4) that A∗ and BF
outperform the results of BFS and DFS: A∗ and BF can
find errors in almost all the models obtaining shorter error
trails and using less resources than DFS and BFS. The rea-
son is the use of heuristic information in A∗ and BF. We can
say the same for the ACOhg algorithms: ACOhg-h obtains
higher hit rate than ACOhg-b due to the heuristic informa-
tion (we can notice this in mariers4 and pots models, since
for the remaining models 100% of hit rate is obtained using
both algorithms). Thus, we can state that heuristic infor-
mation has a positive influence on the search. In spite of
this fact, most of the current popular model checkers do not
use heuristic information during the search.

With respect to the solution quality, we observe in Table 5
that ACOhg-h obtains almost optimal error trails, similar to
that of the A∗ algorithm (that are optimal since the heuristic
used is admissible). In addition, the error trails of ACOhg-h
are shorter than the ones of BF in 4 out of the 5 models.
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If we focus on the memory required by the algorithms,
ACOhg-h usually requires less memory than A∗ (except for
phi16) but more than BF (except for marriers4). On the
other hand, ACOhg-h expands less states than A∗ and BF
in 2 out of the 5 models. There exists a relationship between
expanded states and memory used in A∗ and BF: the more
the number of expanded states, the more the number of
states stored in main memory. Since the states stored in
memory are the main source of memory consumption, we
expect that the memory required by A∗ and BF be higher
when more states are expanded. We can notice this fact in
Table 5. However, this statement does not necessarily hold
for ACOhg-h, since in this last algorithm there is another
important source of memory consumption: the pheromone
trails. For this reason we can observe that ACOhg-h requires
more memory than BF in phi16 and pots in spite of the fact
that ACOhg-h expands less states (in average) than BF.

In general, we can state that ACOhg-h is the best trade-off
between solution quality and memory required: it obtains
almost optimal solutions with a reduced amount of memory.

In order to summarize the results discussed in this section
we present in Figure 3 the quality of the solutions (length of
error trails) plotted against the memory required by all the
algorithms in all the models. Since different models have dif-
ferent optimal lengths and different memory requirements,
we plot normalized values of the length and the memory
consumption. In this way, we can keep all the points in
the same graph and we can compare the algorithms globally
(without restricting the discussion to a specific model). For
each model we divide the length of the error trails obtained
by all the algorithms by the minimum length value obtained
by any algorithm for this model. The same normalization is
performed for the memory.
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Figure 3: Normalized length of error trails against
normalized memory required by all the algorithms
in all the models.

We can observe in Figure 3 that the results of the ACOhg
algorithms are all focused on the left bottom corner of the
plot. That is, ACOhg algorithms are able to get short error
trails (good quality solutions) with a low amount of mem-
ory. Furthermore, ACOhg algorithms are the only ones that
keep all their points on a good-quality region. The points of
the remaining algorithms are scattered in the plot (in fact,
one point belonging to A∗ has been omitted in the plot be-
cause it is out of the area shown in the figure). This means
that ACOhg algorithms are the most robust algorithms of
the experiments. They have a similar behaviour for all the

models. On the contrary, the behaviour of the exact state-
of-the-art algorithms depends to a large extent on the model
they solve. In view of this fact, we point out the ACOhg
algorithms as very promising techniques for finding errors in
concurrent systems.

5.4 ACOhg vs GA
In this section we compare the ACOhg-h algorithm against

the GA used by Godefroid and Kurshid in [13]. We seek to
find a deadlock in the dining philosophers problem with 17
philosophers and the Lowe attack in the Needham-Schroeder
protocol as they do in their work. The main differences
between their experiments and ours are the machine used,
the programming language of the models (C in their case
and Promela in ours), and the tool used for the verification
(VeriSoft and HSF-SPIN, respectively). In Table 6 we show
the hit rate, CPU time (in seconds), and memory required
(in Kilobytes) by the algorithms in the two models.

Table 6: Comparison of ACOhg-h against a GA
Model Algorithm Hit (%) Time (s) Mem. (KB)

phi17
GA 52 197.00 n/a
ACOhg-h 100 0.28 11274

needham
GA 3 3068.00 n/a
ACOhg-h 100 0.23 4865

We can observe that ACOhg-h is able to find always an
error (100% hit rate) while GA finds an error only in 52%
of the cases in phi17 and 3% in needham. We can state that
ACOhg-h has better efficacy than GA in these two models.
This confirms our hypothesis that ACO metaheuristic is es-
pecially suitable for this problem because it is designed for
searching paths in graphs.

With respect to the execution time we can observe a large
difference between the algorithms. This large difference can-
not be only explained by the different machines used in
the experiments. The GA is executed on a Pentium III at
700 MHz with 256 MB of RAM and the ACOhg-h is exe-
cuted on a Pentium 4 at 2.8 GHz with 512 MB of RAM. The
maximum memory required by ACOhg-h is 11 MB that is
smaller than 256 MB. This means that if ACOhg-h were ex-
ecuted in the machine used in [13] for GA, no virtual mem-
ory would be used and the required CPU time would not
be much more than four times the CPU time required in
the Pentium 4 (since the CPU clock is four times faster in
the Pentium 4). Unlike this, the CPU time required by
ACOhg-h would be less than the time required by GA in
two or three order of magnitude. Thus, we conclude that
ACOhg-h is more accurate and faster than GA for these
models and we conjecture that this can be extended, in gen-
eral, to the problem of refutation of safety properties in con-
current systems.

6. CONCLUSIONS AND FUTURE WORK
We have presented here a novel application of a new Ant

Colony Optimization model, called ACOhg, to the problem
of checking safety properties in concurrent systems. We have
compared the ACOhg algorithms against the state-of-the-
art exhaustive methods and the results show that ACOhg
algorithms are able to outperform the state-of-the-art algo-
rithms in efficacy and efficiency. They require a very low
amount of memory and CPU time and are able to find er-
rors even in models in which the state-of-the-art algorithms
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fail because of the high amount of memory required. The re-
sults also show that ACOhg algorithms are definitely better
than GA, which is, to the best of our knowledge, the only
other metaheuristic previously used in the past for checking
safety properties on real software.

ACOhg algorithms can be used with other techniques for
reducing the amount of memory required in the search such
as partial order reduction, symmetry reduction, or state
compression. As a future work we plan to combine these
techniques with ACOhg. We also plan to extend the appli-
cation of ACOhg to the search for liveness properties viola-
tions. This can be done in two phases. First the algorithm
searches an accepting state and then it tries to find a path to
this state from itself. We can also use the idea of classifying
the strongly connected components of the Büchi automaton
in order to change the way in which the search is performed,
as done in [8]. In the present paper it has been shown that
the way in which ACOhg performs the search is very useful
for finding design errors. However, ACOhg does not ensure
the correctness of the models in which no error is found. We
plan to use ACOhg as the base of an exhaustive stochastic
algorithm that is able to ensure the correctness when no er-
ror is found while at the same time is able to find errors very
fast when they exist.

Model checkers working in parallel on a cluster of ma-
chines are gaining importance in the formal methods com-
munity nowadays. In addition, a lot of work exists stating
the high efficiency and efficacy of parallel metaheuristics [1].
We plan to design a parallel version of ACOhg for reducing
the time required and increasing the available memory, thus
able to work with even larger models. We also want to inte-
grate the algorithm inside Java PathFinder, which is able to
work with programs in Java language, much more familiar
for the computer science community than Promela.
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