
ACOhg: Dealing with Huge Graphs

Enrique Alba
GISUM Group, Dpto. Lenguajes y

Ciencias de la Computación
E.T.S. Ingeniería Informática
University of Málaga, Spain

eat@lcc.uma.es

Francisco Chicano
GISUM Group, Dpto. Lenguajes y

Ciencias de la Computación
E.T.S. Ingeniería Informática
University of Málaga, Spain
chicano@lcc.uma.es

ABSTRACT
Ant Colony Optimization (ACO) has been successfully ap-
plied to those combinatorial optimization problems which
can be translated into a graph exploration. Artificial ants
build solutions step by step adding solution components that
are represented by graph nodes. The existing ACO algo-
rithms are suitable when the graph is not very large (thou-
sands of nodes) but is not useful when the graph size can be
a challenge for the computer memory and cannot be com-
pletely generated or stored in it. In this paper we study a
new ACO model that overcomes the difficulties found when
working with a huge construction graph. In addition to the
description of the model, we analyze in the experimental
section one technique used for dealing with this huge graph
exploration. The results of the analysis can help to under-
stand the meaning of the new parameters introduced and to
decide which parameterization is more suitable for a given
problem. For the experiments we use one real problem with
capital importance in Software Engineering: refutation of
safety properties in concurrent systems. This way, we fos-
ter an innovative research line related to the application of
ACO to formal methods in Software Engineering.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; D.2.4 [Software
Engineering]: Software/Program Verification—model check-
ing ; G.1.6 [Numerical Analysis]: Optimization—Global
optimization

General Terms
Algorithms, Experimentation, Verification

Keywords
Ant colony optimization, metaheuristics, SPIN

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

1. INTRODUCTION
Ant Colony Optimization is a kind of population based

metaheuristic algorithm [2] whose foundation is based on the
foraging behaviour of real ants [5]. The problems that can
be solved with ACOs are those whose tentative solutions can
be represented with a sequence of components. ACO models
found in the literature for combinatorial optimization prob-
lems work over graphs with a known number of nodes that
is small enough to store in memory the pheromone trails
associated to the arcs (or nodes). In addition, these mod-
els consider that paths traversed by the ants have a known
maximum length. These considerations of the traditional
ACO models are also a limitation for the set of problems
that can be solved with them. In particular, existing ACO
models cannot be applied to problems having an underlying
graph with an a priori unknown size and/or whose solutions
are paths for which no small enough upper bound is known.

An example of this kind of problems is the refutation of
safety properties in concurrent systems. The objective of
this problem can be formulated as searching a path between
an initial node and a node fulfilling a given condition (ob-
jective node). The graph size depends on the concurrent
system model and usually it grows in an exponential way
with respect to the system size. The number of nodes of
the graph is usually unknown and the graph itself normally
does not fit in memory. The objective nodes are also un-
known and, thus, a useful upper bound for the paths length
cannot be estimated1. Other two examples of this kind of
problems are optimal movements in games and automatic
theorem proving. These problems can be translated into an
exploration of unknown huge graphs. The amount of possi-
ble states in a game (chess for example) is really high and
usually it is impossible to store or explore all of them in or-
der to decide the next move. With respect to the automatic
theorem proving, some automatic provers break the theo-
rem down into clauses and they use the resolution method
in order to get an empty clause. On each step these provers
have to select a clause among the available ones to apply the
resolution rule. These clauses can be viewed as arcs that end
in a new state in the proof. This way, the problem is defined
as a search in an upper abstraction graph (the objective is to
find a state including the empty clause). For this particular
problem the number of states of the graph can be infinity.

1Actually, it can be estimated a theoretical upper bound for
the number of nodes of the graph, namely, the product of the
cardinalities of all variables domain. This is also an upper
bound for the paths length, but it will usually be very far
from the minimal upper bound and it will not be practical.

10

In this paper we study a new ACO model, ACOhg (ACO
for huge graphs), that overcomes the limitations of the ex-
isting ones and can deal with graphs of unknown size and/or
too big to fit in memory. For this reason, it can be applied
to a larger set of combinatorial optimization problems. In
particular, our model can be applied to the problem of refu-
tation of safety properties in concurrent systems, which we
detail in the experimental section.

The paper is organized as follows. Section 2 presents a
brief overview of ACO algorithms. ACOhg model is detailed
in Section 3. In Section 4 we show some results obtained
with ACOhg. Finally, the conclusions and future work are
depicted in Section 5.

2. BRIEF REVIEW OF ACO
A combinatorial optimization problem can be represented

by a triplet (S, f, Ω), where S is the set of candidate solu-
tions, f is the fitness function that assigns a real value to
each candidate solution related to its quality, and Ω is a set
of constraints that the final solution must fulfill. The ob-
jective is to find a solution minimizing or maximizing the
function f (in the following we assume that we deal with
minimization problems). A candidate solution is represented
by a sequence of components chosen from a set C.

In ACO, there is a set of artificial ants (colony) that
build the solutions using a stochastic constructive proce-
dure. In the construction phase, ants walk randomly on a
graph G = (C, L) called construction graph, where L is the
set of connections (arcs) among the components (nodes) of
C. In general, the construction graph is fully connected (is
complete), however, some of the problem constraints (el-
ements of Ω) can be modelled by removing arcs from L.
Each connection lij has an associated pheromone trail τij

and can also have an associated heuristic value ηij . Both
values are used to guide the stochastic construction phase
that ants perform. However, pheromone trails are modified
by the algorithm along the search whilst heuristic values are
established from external sources (the designer). Pheromone
trails can also be associated to graph nodes (solution compo-
nents) instead of arcs (component connections). This varia-
tion is especially suitable for problems in which the order of
the components is not relevant (e.g. subset problems [10]).

In Figure 1 we reproduce a general ACO pseudo-code
found in [5]. It consists of three procedures executed during
the search: ConstructAntsSolutions, UpdatePheromones,
and DaemonActions. They are executed until a given stop-
ping criterion is fulfilled, such as finding a solution or reach-
ing a given number of steps. In the first procedure each
artificial ant follows a path in the construction graph. The
ant starts in an initial node and then it selects the next node
according to the pheromone and the heuristic value associ-
ated with each arc (or the node itself). The ant appends
the new node to the traversed path and selects the next
node in the same way. This process is iterated until a candi-
date solution is built. In the UpdatePheromones procedure
pheromone trails associated to arcs are modified. A partic-
ular pheromone trail value can increase if the correspond-
ing arc has been traversed by an ant and it can decrease
due to evaporation (a mechanism that avoids the prema-
ture convergence of the algorithm). The amount in which a
pheromone trail is increased usually depends on the quality
of the candidate solution built by the ants traversing the arc.
Finally, the last (and optional) procedure DaemonActions

performs centralized actions that are not performed by in-
dividual ants. For example, a local optimization algorithm
can be implemented in this procedure in order to improve
the tentative solution held in every ant.

procedure ACOMetaheuristic
ScheduleActivities

ConstructAntsSolutions
UpdatePheromones
DaemonActions // optional

end ScheduleActivities
end procedure

Figure 1: Pseudo-code of ACO Metaheuristic.

2.1 ACO Details
The scheme presented above is very abstract and short. It

is general enough to match with the different models of ACO
algorithms we can find in the literature. These models differ
in the way they schedule the three main procedures and in
how they update pheromone trails. Some examples of these
models are Ant Systems (AS), Elitist Ant Systems (EAS),
Ranked-Based Ant Systems (Rank AS), Max-Min Ant Sys-
tems (MMAS), and so on. The interested reader can see
the book by Dorigo and Stützle [5] for a description of all
these ACO variants. The new model ACOhg extends the
existing ACO models by introducing new ideas and mech-
anisms for working with unknown and huge graphs. That
is, an ACOhg algorithm can be based on any existing ACO
algorithm such as AS, MMAS, and so on, thus yielding
the corresponding AShg, MMAShg, etc. algorithms. The
ACOhg algorithm used in this paper is based on an ACO
algorithm that combines several features belonging to dif-
ferent of these existing models. In the rest of this section we
explain the details of this underlying ACO algorithm.

2.1.1 Construction Phase
As we mentioned above, ants stochastically select the fol-

lowing node in the construction graph during the construc-
tion phase. In particular, when ant k is in node i it selects
node j with probability

pk
ij =

[τij]
α[ηij]

β

P

l∈Ni
[τil]α[ηil]β

, if j ∈ Ni, (1)

where Ni is the set of successor nodes for node i, and α
and β are two parameters of the algorithm determining the
relative influence of the heuristic value and the pheromone
trail on the path construction, respectively.

2.1.2 Pheromone Update
During the construction phase the pheromone trails asso-

ciated to the arcs that ants traverse are updated using the
expression

τij ← (1− xi)τij (2)

where xi controls the evaporation of the pheromone dur-
ing the construction phase and it holds 0 ≤ xi ≤ 1. This
mechanism increases the exploration of the algorithm, since
it reduces the probability that an ant follows the path of a
previous ant.

After the construction phase pheromone trails are up-
dated again in order to take into account the quality of

11

the candidate solutions built by the ants. In this case the
pheromone update follows the expression

τij ← ρτij + ∆τ bs
ij , ∀(i, j) ∈ L, (3)

where ρ is the pheromone evaporation rate and it holds
that 0 ≤ ρ ≤ 1. On the other hand, ∆τ bs

ij is the amount
of pheromone that the best ant path ever found deposits on
arc (i, j). This quantity is usually in direct relation with
the quality of the solution. For example, in a maximization
problem, it can be the fitness value of the solution. In a
minimization problem (like ours) it can be the inverse of the
fitness function.

2.1.3 Trail Limits
In MMAS there is a mechanism to avoid the premature

convergence of the algorithm. The idea is to keep the value
of pheromone trails in a given interval [τmin, τmax] in order
to maintain the probability of selecting one node above a
given threshold. We adopt here this idea. The values of the
trail limits are

τmax =
Q

1− ρ
(4)

τmin =
τmax

a
(5)

where Q is the highest fitness value found if the problem
is a maximization problem or the inverse of the minimum
fitness if the problem is a minimization one. The parameter
a controls the size of the interval.

When one pheromone trail is greater than τmax it is set
to τmax and, in a similar way, when it is lower than τmin it
is set to τmin. Each time a new better solution is found the
interval limits are updated consequently and all pheromone
trails are checked in order to keep them inside the interval.

3. THE NEW MODEL: ACOhg
The ACO models we found in the literature can be applied

(and they have been) to problems with a number of nodes
n of several thousands. In these problems the construction
graph has a number of arcs of O(n2), that is, several mil-
lions of arcs, and hence the pheromone trails require several
megabytes of memory in a computer to be stored. These
models are not suitable in problems in which the construc-
tion graph has 106 nodes (i.e. 1012 arcs). They are also
not suitable when the amount of nodes is not known before-
hand and the nodes and arcs of the construction graph are
dynamically generated as the search progresses.

Let us discuss the issues that prevent existing ACO mod-
els from solving such kind of problems. First, in the con-
struction phase, ants of a regular ACO walk until a can-
didate solution is completed. However, if we would allow
the ants to walk on the huge unknown graph without re-
peating a node until they find an objective node they can
reach a dead end (a node without non-visited successors).
Even although they find an objective node they can wander
in the graph for a long time requiring a lot of memory to
build a candidate solution since the objective nodes can be
very far from the initial node. Thus, in general it is not
viable to work with complete candidate solutions as cur-
rent models do. We must allow the construction of partial
candidate solutions. We want to stress that we are not deal-
ing with an implementation detail, but with applications

inherently having huge graphs. Second, some ACO models
assign to the initial pheromone trails a value that depends
on the number of graph nodes. This kind of initialization
of the pheromone trails is not suitable when we work with
unknown sized graphs. We must be also careful of course
with the implementation of pheromone trails. In most ACO
models pheromone trails are usually stored in arrays, but
this requires to know the number of nodes. In our case, even
if we would know that number we could not store pheromone
trails in arrays due to the great amount of memory required
(often not available).

The main ideas that ACOhg introduces are related to the
length of the ant paths, the fitness function and the memory
consumption of pheromone trails. We tackle these points in
the following paragraphs.

3.1 Length of the Ant Paths
In order to avoid the, in general unviable, construction

of complete candidate solutions we limit the length of the
paths traversed by ants in the construction phase. That is,
when the path of an ant reaches a given maximum length
λant, the ant is stopped. In this way, the construction phase
can be performed in a bounded time and with a bounded
amount of memory. However, the limitation of the ant path
length implies that most (if not all) of the paths are partial
solutions and therefore we need a fitness function that can
evaluate partial solutions.

The limitation in the ant path length solves the problem of
the “wandering ants” but introduces a new one. There is a
new parameter for the algorithm (λant) whose optimal value
is not easy to establish a priori. If we select a value smaller
than the depth2 of all the objective nodes, the algorithm will
not find any solution to the problem. Thus, we must select a
value larger than the depth of one objective node (if known).
This is not difficult when we know where the objective node
is, but the usual situation is the opposite one. In the last
case, two alternatives are proposed. In Figure 2 we show
graphically the way in which the two alternatives work.

Initial Node

Exploration Region

Construction Graph

Initial Node

Exploration Region

Construction Graph

Initial Node

Exloration Region

Construction Graph

Initial Node

Exploration Region

Construction Graph

Initial Node

Exploration Region

Construction Graph

Initial Node

Exploration Region

Construction Graph

Missionary Technique

Expansion Technique

Figure 2: Two alternatives for reaching objective
nodes of unknown depth: expansion and mission-
ary techniques. We show snapshots of different mo-
ments of the search.

The first consists in dynamically increasing λant during
the search if no objective node is found. At the beginning,

2The depth of a node in the construction graph is the length
of the shortest path from an initial node to it.

12

a low value is assigned to λant and it is increased in a given
quantity δl every certain number of steps σi. In this way, the
length will be hopefully high enough to reach at least one
objective node. This is called expansion technique. This
mechanism can be useful when the depth of the objective
nodes is not very high. Otherwise, the length of the ant
paths will increase a lot and the same happens with the
time and the memory required to build the paths, since it
will approach the behaviour of a regular ACO incrementally.

The second alternative consists in starting the path con-
struction of the ants from different nodes during the search.
That is, at the beginning the ants are placed on the initial
nodes of the graph and the algorithm is executed during a
given number of steps σs (called stage). If no objective node
is found, the last nodes of the paths constructed by the ants
are used as starting nodes for the next ants. In the next
steps (the second stage) of the algorithm the new ants tra-
verse the graph starting in the last nodes of paths computed
in the first stage. In this way, the new ants start at the end
of previous ant paths trying to go beyond in the graph. This
mechanism is called missionary technique. The length of the
ant paths (λant) is kept always constant and the pheromone
trails can be discarded from one stage to another in order to
keep almost constant the amount of computational resources
(memory and CPU time) in all the stages. The assignment
of ants to starting nodes at the beginning of one stage is per-
formed in several phases. First, we need to select the paths
of the previous stage whose last visited nodes will be used as
starting points in the new stage. For this, we store the best
paths (according to the fitness value) found in the previous
stage. We denote with s the number of paths stored. Once
we have the set of starting nodes we need to assign the new
ants to those nodes. For each new ant we select its starting
node using roulette selection; that is, the probability of se-
lecting one node is proportional to the fitness value of the
solution associated with it.

3.2 Fitness Function
The objective of ACOhg is to find a low cost path between

an initial node and an objective one. For the problem that
we solve in the experimental section, the cost of a solution is
its length, but, in general, cost and length (number of com-
ponents) of a solution can be different, and for this reason it
is safer to talk about cost. Considering a minimization prob-
lem, the fitness function of a complete solution can be the
cost of the solution. However, as we said above, the fitness
function must be able to evaluate partial solutions. In this
case the partial solution cost is not a suitable fitness value
since a low cost partial solution can be considered better
than one high cost complete solution. This means that low
cost partial solutions are awarded and the fitness function
will not suitably represent the quality of the solutions. In
order to avoid this problem we penalize the partial solutions
by adding a fixed quantity pp to the cost of the solutions.

Another way of solving the problem of awarded partial
solutions consists in changing the fitness function in such
a way that it be a lower bound of the fitness value of a
complete solution that is an extension of the partial solution.
If the estimation is very precise the fitness function will be
a good measure of the solution quality. However, in some
problems it is not easy to get a precise estimation of this
lower bound. The alternative of adding a penalty value is
general to all the combinatorial problems.

When the cost of a solution (partial or complete) grows
with its length, we can add an additional term to the solu-
tion cost that can help in the search. During the construc-
tion phase, when an ant builds its path, it can stop due
to three reasons: the maximum ant length λant is reached,
the last node of the ant path is an objective node, or the
following nodes are in the ant path (visited nodes). This
last condition, which is used in order to avoid the construc-
tion of paths with cycles, has an undesirable side effect: it
awards paths that form a cycle. In effect, this mechanism
favors ants with short paths and, consequently, with lower
cost and fitness values. In order to avoid this situation we
penalize those partial solutions whose path length is shorter
than λant. The total penalty expression is

p = pp + pc

λant − l

λant − 1
(6)

where pp is the penalty due to the incompleteness of the
solutions, pc is a penalty constant related to the cycle for-
mation, and l is the ant path length. The second term in
(6) makes the penalty higher in shorter cycles. The intuition
behind this is that longer cycles are nearer of a path without
a cycle. For this reason we add to pp the maximum cycle
penalty (pc) when the ant length is the minimum (l = 1) and
no cycle penalty is added when there is no cycle (l = λant).

3.3 Pheromone Trails
In ACOhg, the pheromone trails are stored in a hash ta-

ble where only the pheromone values of the edges traversed
by the ants are stored. However, as the search progresses
the memory required by pheromone trails can increase until
inadmissible values. We can avoid this by removing from
the hash table the pheromone trails with a low influence on
the ant construction, that is, the values τij with a low asso-
ciated pheromone trail. We define τθ as the threshold value
for removing pheromone trails. All the values τij below τθ

are removed from the hash table.
The removing step can be applied when some condition is

fulfilled, i.e., when the free memory is below a given thresh-
old or a predefined number of iterations has been reached
since the last pheromone removing step. It can also be ap-
plied continuously each time a pheromone trail is updated.
That is, the pheromone trails below τθ are automatically
removed in any update step. This way, the search for low
pheromone trails in the hash table (that can be a very time
consuming task) is avoided.

4. EXPERIMENTAL SECTION
In this section we show some experimental results ob-

tained with ACOhg in order to study its behaviour. In
particular, we apply ACOhg to the problem of refutation of
safety properties in concurrent systems (see details below).
This problem is of a great interest in software engineering
and theoretical computer science. We use it because the ap-
plication of ACOhg to this problem is innovative and the
results are very promising from the domain point of view,
outperforming the results obtained by the state-of-the-art
techniques in model checking.

In the following sections we first introduce the problem of
refutation of safety properties in concurrent systems, then
we give some details about the parameters used in the exper-
iments. Next, we compare ACOhg against exact algorithms

13

previously used for this problem and, finally, we empirically
analyze the missionary technique mentioned in Section 3.1.

4.1 Systems Verification
From the very beginning of computer research, computer

engineers have been interested in techniques allowing them
to know if a software module fulfills a set of requirements (its
specification). Modern software is very complex and these
techniques have become a necessity in most software com-
panies. One of these techniques is model checking [3], which
consists in analyzing (in a direct or indirect way) all the pos-
sible states of a concurrent system in order to prove or refute
that the program satisfies a given property. This property is
specified using a temporal logic like Linear Temporal Logic
(LTL) or Computation Tree Logic (CTL). One of the best
known model checkers is SPIN [9], which takes a software
model codified in Promela and a property specified in LTL
as inputs. SPIN transforms the model and the negation of
the LTL formula into Büchi automata in order to perform
the synchronous product of them. The resulting product
automaton is explored to search for a cycle of states con-
taining an accepting state reachable from the initial state.
If such a cycle is found, then there exists at least one execu-
tion of the system not fulfilling the LTL property (see [9] for
more details). If such kind of cycle does not exist then the
system fulfills the property and the verification ends with
success. The main drawback of a model checking approach
is the so-called state explosion: when the size of the program
increases, the amount of required memory also increases but
in an exponential way. Even for really small programs the
number of states is very large. This phenomenon limits the
size of the models to be checked.

The properties that can be specified with LTL formulae
can be classified into two groups: safety and liveness prop-
erties [12]. Safety properties can be expressed as assertions
that must be fulfilled by all the states of the model, while
liveness properties refer to assertions that must be fulfilled
by execution paths in the model. Safety properties of a
model can be checked by searching for a single accepting
state in the product Büchi automaton. That is, when safety
properties are checked, it is not required to find an additional
cycle containing an accepting state. This means that safety
properties verification can be transformed into a search for
one objective node (one accepting state) in a graph. Fur-
thermore, the path from one initial node to an objective
node represents an execution of the concurrent system in
which the given safety property is violated.

This fact has been used in previous works to verify safety
properties using classical algorithms in the graph explo-
ration domain, such as depth first search, breadth first search,
A∗ or Weighted A∗ [7]. The main drawback of an exact al-
gorithm is that it requires a lot of memory and it can need a
lot of time to get an error trail in a big concurrent system. In
these situations metaheuristic algorithms have proved to be
very effective finding good quality solutions in a reasonable
time. In this sense, genetic algorithms have been applied
to this problem in the past [1, 8]. If the algorithm is able
to find a path to an objective node the property is refuted
and the path is a counterexample, but verifying that the
system has a property requires the exploration of all the
possible paths in order to ensure that there is no objective
node. Most of the canonical metaheuristic algorithms, due
to their approximate nature, cannot ensure that the system

fulfills the property, but they can refute it. For this reason
we talk about a problem of properties refutation instead of
verification. In order to guide the search, one heuristic value
is associated to each automaton state. This value is a lower
bound of the distance to an objective node. The computa-
tion of this value can be based on the LTL formula [6] or on
the objective node (if it is known beforehand) [11].

For the experiments we seek to find deadlock states in the
Edsger Dijkstra Dining Philosophers problem. We use this
model because it is simple and scalable. Thus, we can use a
version of the model as large as we want. Its simplicity al-
lows us to study it from a theoretical point of view. The ver-
sion with n philosophers has 3n states and only one deadlock
state. Furthermore, the optimal error trail has length n+1.
For all the following experiments we use n = 20 philoso-
phers. This means a graph with approximately 3.5 · 109

nodes where there is only one objective node.

4.2 Algorithms and Parameters
It is worth mentioning that a traditional ACO algorithm

cannot be even implemented because the construction graph
has 3.5·109 nodes and it would be necessary memory enough
to store up to 1.2 · 1019 pheromone trails (9.1 · 1010 GB of
memory), very far from the current computers capacity. For
the experiments we use an ACOhg algorithm with the base
configuration shown in Table 1. The missionary technique is
used and the technique of removing useless pheromone trails
is not enabled (that is, τθ = −∞).

Table 1: Parameters for ACOhg
Parameter Value
Steps 10
Colony size 5
Ant path length (λant) 10
Steps per stage (σs) 2
Stored paths (s) 10
Constr. phase evaporation (xi) 0.8
Trail limit control (a) 5
Pheromone evaporation rate(ρ) 0.4
Pheromone value exponent (α) 1.0
Heuristic value exponent (β) 1.0
Partial solution penalty (pp) 1000
Cyclic solution penalty (pc) 1000

These parameters are not set in an arbitrary way, they
are the result of a previous study aimed at finding the best
configuration for tackling the Dining Philosophers problem.
That is, we performed a factorial experimental design using
a set of values for each parameter and we selected the con-
figuration for which the algorithm obtains the best trade-off
between efficacy and quality of solution. The cost of a solu-
tion is the length of the path, and due to this we use pc > 0
as recommended in Section 3.2. In this problem, obtaining
a complete solution is a difficult task which has interest by
itself since it constitutes a counterexample (error trail) of
the property checked. For this reason, the stop criterion
used in our ACOhg algorithm is to find a complete solution
or to reach the maximum number of allowed steps (10). We
are not interested here in optimizing the solution length,
finding it is harder enough. With respect to the heuristic
information, we use ηij = 1/(1 + Hap(j)), where Hap(j) is
the number of active processes in state j.

14

Since ACOhg is an stochastic algorithm, we need to per-
form several independent runs in order to get a well-founded
conclusion of the behaviour of the algorithm. In the special-
ized literature it is well established that a minimum of 30
independent runs is required to get statistical confidence of
the results [4]. In our experiments we perform 100 indepen-
dent runs in order to get a high statistical confidence. The
machine used for the experiments is a Pentium IV at 2.8GHz
with 512 MB of RAM.

4.3 Comparison against Exact Techniques
In this section we briefly show the results obtained with

ACOhg using the parameterization shown in Table 1 and we
compare them against the results obtained with exact algo-
rithms that are the state-of-the-art in model checking and
can be found in most model checkers. In Table 2 we show
the hit rate3, the length of the solutions (quality), the max-
imum memory used, and the CPU time of ACOhg, Depth
First Search (DFS), Breadth First Search (BFS), and Best
First Search (BF). For the exact algorithms only one execu-
tion is performed since they are deterministic algorithms.

Table 2: Comparison of ACOhg against exact algo-
rithms

Hit (%) Length Mem. (KB) Time (ms)
ACOhg 64 35.88 8467.06 271.56

DFS 0 - - -

BFS 0 - - -

BF 100 101.00 15360.00 60.00

The first observation is that ACOhg finds an error trail
in 64 out of the 100 independent runs. This contrast with
the classical algorithm used in SPIN for this problem (DFS),
which is not able to find any error trail in the model because
it requires more than 512 MB. If we compare the results of
ACOhg against the other exact algorithms (recently applied
to this problem by Edelkamp et al. [7]), we observe that
ACOhg outperforms the results of BFS (that is not able to
find errors) and BF. Although BF always finds an error trail,
ACOhg finds almost 3 times shorter (better) error trails us-
ing only half of the memory required by BF. Although a se-
rious study on this topic is required, we can say that ACOhg
is a promising algorithm for the problem of refuting safety
properties in concurrent systems.

4.4 Analyzing the Missionary Technique
As we mentioned in Section 3.1, there are three param-

eters that govern this technique: s, σs, and λant. We try
different values for these parameters in order to investigate
their influence on the results. Due to room problems we
cannot show all the results, so we select the more interest-
ing ones, that is, those in which s is kept fixed to 10 (as
in the base configuration) and σs, λant are changed. The
hit rate, the length of the solutions, the maximum memory
used, and the CPU time are shown in Tables 3, 4, 5, and 6,
respectively (average values over the 100 independent runs).

From the results in Table 3 we conclude that the hit rate
is higher when the number of steps per stage σs is small,
that is, when more stages are performed. This was expected,
because in this way ants can reach deeper nodes in the graph
and they can find more paths reaching the objective node.

3Hit rate is defined as the percentage of runs in which a
complete solution is found

Table 3: Missionary technique: hit rate
λant

σs 5 10 15 20 25
1 38 91 99 100 100
2 10 64 95 99 100
3 0 41 89 99 100
4 0 39 84 98 100
5 0 0 63 84 99
6 0 0 61 85 97
7 0 0 51 84 96
8 0 0 40 76 95
9 0 0 17 53 82

10 0 0 0 0 60

We also observe that the hit rate increases with λant due to
the same reason.

Table 4: Missionary technique: length
λant

σs 5 10 15 20 25
1 36.58 51.73 56.64 58.20 55.28
2 22.60 35.88 41.84 41.57 42.20
3 - 26.95 32.33 35.10 34.36
4 - 25.31 28.90 31.08 33.96
5 - - 24.68 28.19 30.98
6 - - 23.75 29.05 30.44
7 - - 25.31 28.57 27.79
8 - - 24.80 27.95 27.99
9 - - 24.76 26.58 27.63

10 - - - - 22.87

Concerning the length of error trails (Table 4) we observe
that it increases when a large number of stages are per-
formed (σs small) and when λant is large. A statistical test
(not shown) supports this conclusion. A large number of
stages implies the exploration of deeper nodes in the con-
struction graph and, thus, longer paths to the objective node
are found with higher probability. The same happens when
λant is increased. In general, small values of σs and large
values of λant imply higher hit rate but longer error trails. A
user of these techniques must select a value for these param-
eters in order to find the desired trade-off between efficacy
and quality of solution.

Table 5: Missionary technique: max. memory (KB)
λant

σs 5 10 15 20 25
1 4016.89 6436.65 8310.70 9719.76 10280.96

2 5507.40 8467.06 11210.11 13229.25 14399.85

3 - 10364.88 15118.38 18245.82 19191.94

4 - 13180.72 18834.29 23071.35 24465.29

5 - - 22641.78 27928.38 28289.27

6 - - 26523.28 32635.48 31614.64

7 - - 30378.67 37388.19 33507.68

8 - - 34124.80 42213.05 37339.66

9 - - 37827.76 46930.11 40800.35

10 - - - - 32902.08

If we take a look to the amount of memory required by
the algorithm we notice that it increases with σs. That is,
as in the hit rate, small values of σs are preferred in order
to get small values in the amount of required resources. A
statistical test supports this statement. The explanation is

15

related to the memory required in the first stage. We show
a trace of the required memory along the different steps of
the algorithm in Figures 3 and 4. During one stage the
amount of memory required increases linearly. When the
next stage begins, the pheromone trails are discarded and
the memory fall down to a small value. We can observe
this on the figures. The slope of the memory consumption
is higher in the first stage, because the number of paths
starting from the initial node is higher than the one found
in other nodes. This means that the maximum memory
required by the algorithm is the memory used in the first
stage and this value grows with σs. On the other hand,
when λant increases the same happens with the increment
of memory per step. For this reason the slope of the curve
is larger for λant = 20 (4765) than for λant = 10 (2417).
Thus, the memory required in the fist stage, which is also
the maximum required memory, increases with λant.

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11

Step

M
e

m
o

ry
 (

K
B

)

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10

y = 2417 x - 493

Figure 3: Trace of memory consumption (λant = 10).

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10

Step

M
e

m
o

ry
 (

K
B

)

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10

y = 4765 x - 2178

Figure 4: Trace of memory consumption (λant = 20).

Concerning the CPU time, the influence of σs follows a
clear trend. When σs is small the probability of finding a
solution is higher and it is found faster. The only exception
is that of σs = 10, explained by the low hit rate obtained,
which reveals that more time is required to find a complete
solution. With respect to the influence of λant, there are
two opposite trends. On one hand, when λant increases
more time is required to build the ant paths. This can be
observed in columns 1 to 4 of Table 6. But, in this case, the
probability of finding a solution is higher and the average

Table 6: Missionary technique: CPU time (ms)
λant

σs 5 10 15 20 25
1 96.05 147.03 176.46 207.60 221.40
2 168.00 271.56 321.16 382.42 395.30
3 - 381.95 470.79 580.20 565.50
4 - 520.51 653.81 810.20 820.40
5 - - 837.14 1093.81 1023.54
6 - - 1070.00 1406.47 1258.66
7 - - 1317.45 1741.55 1411.46
8 - - 1578.75 2135.39 1653.47
9 - - 1872.35 2555.66 1967.20

10 - - - - 953.67

time required to find it is reduced. Although this is shown
in the 5th column of Table 6, a statistical test reveals that
the differences are not significant, so we conclude that the
CPU time required increases with λant.

In conclusion, from a practical point of view we can state
the following: if an error trail is required fast and/or using
a small amount of memory, then a small value of σs must
be used; but if a short error trail is preferred, a large value
must be assigned to σs. With respect to λant, a large value
can increase the probability of finding a solution but it also
increases the amount of resources required.

Finally, we want to check whether the pheromone reset
among stages has influence on the results. In order to check
this we compare one version of the algorithm in which the
pheromone reset is performed against one in which no reset
is performed. We set λant = 25 to get high hit rate and
s = 2 to get good solutions (previous results not shown in
this paper point out that a low value of s is preferable for
obtaining short error trails). The hit rate, the length of the
solutions, and the memory required are shown in Table 7
(average values over 100 independent runs).

Table 7: Analysis of the pheromone reset
No reset Reset

σs Hit Len. Mem.(KB) Hit Len Mem.(KB)
1 100 43.68 11519.17 100 41.52 10112.95

2 100 33.88 16555.47 100 35.72 14171.23

3 100 31.76 20146.70 100 33.56 19660.60

4 100 28.60 24442.83 100 30.00 23982.08

5 100 27.00 28595.77 99 29.85 27962.86

6 100 27.68 33315.26 100 28.88 30155.75

7 99 27.10 36525.46 100 28.20 35313.72

8 99 26.37 38855.26 97 27.23 40044.09

9 93 25.52 39883.61 95 26.64 40853.95

10 50 23.24 30753.10 56 23.07 31547.95

We can observe in the table that the fact of discarding the
pheromone trails after one stage has only a negligible influ-
ence on the hit rate or the solution length. There are only
three cases in which the difference of the average lengths is
statistically significant: when σs takes values 3, 5, and 9.
In these cases, the best results (lower length) are obtained
when pheromone trails are not discarded (no reset) between
the stages. The reason is that pheromone trails of previous
stages can help sometimes the search in the following ones.
We can observe also a slight influence on the required mem-
ory, which is lower when the pheromone trails are discarded
at the end of the stages. This difference is statistically signif-
icant for σs ≤ 7. However, the extra required memory when

16

no reset is performed is not very large. This fact supports
again the observation that most of the memory consumption
is performed in the first stage. In order to illustrate this we
show in Figures 5 and 6 the trace of the memory required
on each step when the reset is performed and when it is not,
respectively. In Figure 5 we observe that the slope of the
curve decreases when the algorithm begins the second stage
in all the cases.

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11

Steps

M
e

m
o

ry
 (

K
B

)

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10

Figure 5: Trace of memory consumption without
pheromone reset.

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11

Steps

M
e

m
o

ry
 (

K
B

)

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10

Figure 6: Trace of memory consumption with
pheromone reset.

5. CONCLUSIONS AND FUTURE WORK
In this paper we describe a new ACO model, ACOhg,

that can solve problems with a huge underlying graph con-
structed during the search. This model overcomes the limi-
tations that other ACO models have and that prevent them
from working with this kind of problems.

In order to illustrate the behaviour of the model we apply
it to a problem with a great interest in software engineering:
the refutation of safety properties in concurrent systems.
We studied in depth one of the techniques used by ACOhg
for exploring the unknown graph: the missionary technique.
The results show that hit rate increases with the length of
ant paths and with the frequency of the stages. The same
happens with the average length of the error trails found.
In addition, memory and CPU time required decrease when
the frequency of the stages increases.

This paper is part of a recently open research line. We
need to study the behaviour of the new ACO model. We
have to explore the different alternatives mentioned in the
paper and study their advantages and drawbacks in order
to fast identify which is the best option depending on the
problem at hand. In addition, we can apply the ideas pre-
sented on Section 3 to other metaheuristic algorithms: al-
though they were thought for ACO, these ideas are exten-
sible to other algorithms. The application of metaheuristic
algorithms to the formal methods domain in software engi-
neering and, in particular, to formal verification has not yet
been extensively explored. Previous work on this topic is
scarce and based only on genetic algorithms.

6. ACKNOWLEDGEMENTS
This work has been partially funded by the Ministry of

Education and Science and FEDER (contract TIN2005-08818-
C04-01, OPLINK project). Francisco Chicano is supported
by a grant (BOJA 68/2003) from the Junta de Andalućıa.

7. REFERENCES
[1] E. Alba and J. Troya. Genetic algorithms for protocol

validation. In Proc. of the PPSN IV International
Conference (LNCS 1141), pages 870–879, Berlin,
1996. Springer.

[2] C. Blum and A. Roli. Metaheuristics in combinatorial
optimization: Overview and conceptual comparison.
ACM Computing Surveys, 35(3):268–308, 2003.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, January 2000.

[4] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[5] M. Dorigo and T. Stützle. Ant Colony Optimization.
The MIT Press, 2004.

[6] S. Edelkamp, A. Lluch-Lafuente, and S. Leue.
Protocol verification with heuristic search. In
AAAI-Spring Symposium on Model-based Validation
Intelligence, pages 75–83, 2001.

[7] S. Edelkamp, S. Leue, and A. Lluch-Lafuente.
Directed explicit-state model checking in the
validation of communication protocols. International
Journal of Software Tools for Technology Transfer,
5:247–267, 2004.

[8] P. Godefroid and S. Khurshid. Exploring very large
state spaces using genetic algorithms. In LNCS, 2280,
pages 266–280. Springer, 2002.

[9] G. J. Holzmann. The SPIN Model Checker.
Addison-Wesley, 2004.

[10] G. Leguizamón and Z. Michalewicz. A new version of
Ant System for subset problems. In P. A. et al.,
editor, Proc. of the 1999 Congress on Evolutionary
Computation, pages 1459–1464, Piscataway, New
Jersey, USA, 1999. IEEE Computer Society Press.

[11] A. Lluch-Lafuente. Symmetry reduction and heuristic
search for error detection in model checking. In
Workshop on Model Checking and Artificial
Intelligence, August 2003.

[12] Z. Manna and A. Pnueli. The temporal logic of
reactive and concurrent systems. Springer-Verlag New
York, Inc., New York, NY, USA, 1992.

17

