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ABSTRACT 

This paper introduces a metric that measures symmetry in tree 
graphs, which allows for a statistical characterization of GP 
solutions by their architectural “shapes.” A case study is given 
that applies this metric to 80.4 million trees to identify trends in 
GP runs. Results provide a first quantitative look at the dynamics 
of symmetry breaking. 

Categories and Subject Descriptors 

I.2.2 [Artificial Intelligence]: Automatic Programming – 
program synthesis; D.2.11 [Software Engineering]: Software 
Architectures – patterns; F.m  [Theory of Computation]: 
Miscellaneous. 

General Terms 

Algorithms, Measurement, Experimentation, Theory, Languages 

Keywords 

Symmetry breaking, design patterns, graphics techniques, tree, 

data structures, computational geometry, analysis methods. 

1. INTRODUCTION 
A quantitative understanding has been emerging about the 
dynamics that occur as genetic programming derives a solution. 
For example, analyses of how GP assembles solutions from 

building blocks have been initially described in [24], with 
subsequent analyses in [2, 33, 34, 36]. Of building blocks, those 
that include the root node of a tree have been studied in detail for 
a variety of case studies [18, 29, 35]. Steps toward quantifying the 
dynamics of how content changes within a population over time 
(i.e., over the course of a GP trial) have also been studied in [5, 
14, 32].  

Of such investigations, the quantitative characterization of 

changes to the architectures of its solutions has received a fair 
amount of attention. For example, Koza [25] measured and 
described the emergence of solution architectures to suit a 

particular problem. Related to the concept of architecture is a 
solution’s shape, of which a substantial amount of work has been 
done concerning the size and depth of solution trees [13, 25-27, 
38]. Langdon [28] made detailed observations concerning the 

dynamics of changes to a solution’s size and depth, as well as 
characterized the mean growth trends of solutions. 

Unfortunately, size and depth can only go so far in describing the 
changes to architectures associated with GP solutions. 
Subsequently, this paper describes the derivation of a metric that 
can characterize the symmetry breaking associated with 
architecture that may occur over the course of a GP run.  

In particular, Section 2 reviews work in computer science that 

discusses patterns and symmetry in software architectures, which 
is relevant but is not commonly used in the analysis of GP 
dynamics. Section 3 describes qualitative observations of 
structural patterns that occur during a GP run.  Section 4 
introduces a statistical metric that can characterize the structural 
changes that were observed. Sections 5 and 6 then cover the 
application of this metric to a case study that strongly indicates 
the existence of phases and transition regions involving the 

evolution of structure within a GP trial. Section 7 concludes. 

2. ARCHITECTURES AND PATTERNS 
Software architecture can be defined as the “conceptual structure 
and logical organization” of computer programs (Oxford 
American). The concept of software architecture is mainstream 

and appropriate for describing large complex programs, such as 
those created under object-oriented programming. By itself, the 
term does not convey any additional insight towards an analysis of 
GP dynamics, particularly since GP solutions are typically orders 
of magnitude smaller and less complex than the kinds of programs 
that a developer team would produce. 

However by the late-1980s, the object-oriented programming 
community was looking for broader methodologies that could 

assist in the design of large, complex programs. One of the results 
of that search was a co-opting of design methodologies from 
architecture (as in buildings and urban planning). The particular 
set of methodologies that were adopted is now associated with the 
term design patterns, which is based on work initiated in the 
1960s by architect Charles Alexander (see [3, 7, 8]), and 
popularized in the computer science community by [17]. A design 
pattern is “a general repeatable solution to a commonly-occurring 
problem in software design. A design pattern isn’t a finished 

design that can be transformed directly into code. It is a 
description or template for how to solve a problem that can be 
used in many different situations. [41]”  
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Of interest to those in the genetic programming community are 
the “other” GPs that have become associated with design patterns: 
generic programming and generative programming. (See [1, 4].) 
Generic programming is a style of programming that uses generic 
(polymorphic) datatypes and is supported by languages like C++.   

Generative programming is a style of programming that combines 
automated code generation (typically using generic-style code) 
and human code generation. (See [41]). These methods are 
common and mainstream in large-scale software development 
(e.g., Visual Studio support of .NET).  

Design patterns have been introduced into the GP communities on 
a number of occasions, although more in the context of extending 
GP than in analyzing it. (e.g., [16, 30]). There are also works that 

strongly complement many of the principles of design patterns, 
but that have been developed more or less independently from the 
work in object-oriented design (e.g., [20, 21]). That there may be 
many areas of complementary development in design patterns 
might not be surprising, since a big picture view of pattern design 
does share many (independent) commonalities with the big picture 
view of GP as a design-engine (c.f., [11]). 

Of particular relevance to this paper are the attempts in pattern 

design to formalize the concept of pattern [9, 10]. The particular 
formalism that Coplien has chosen to quantify patterns is largely a 
geometric one—symmetry. “Good” software architectures have 
some amount of symmetry breaking; too much symmetry is 
typically reflective of poor architectures. 

The idea of symmetry breaking as a desirable characteristic also 
has some precedence in the GP community as well. One of the 
GEC principals, John Holland, discusses the necessity of 

symmetry breaking in [19] as one of the essential attributes of a 
complex adaptive system. Streeter, Keane, and Koza also mention 
it in their works (such as [39]). 

Neither in design patterns nor in GP are the concepts of symmetry 
and symmetry breaking formalized to the degree that a 
quantitative analysis could be conducted. Unlike GP, there has 
been a growing and significant body of work in design patterns 
that capture best practices of human developers. The case for the 
significance of symmetry breaking to understanding software 

architectures should be understood in that light. 

What GP has to offer is a system that can take random programs 
with presumably poor architectures and transform them into a 
solution that works. True, the solutions that GP creates are not of 
the size or complexity of programs that are considered at the level 
of design patterns. However, any formalism that purports to 
analyze symmetry breaking for software architectures should be 
able to show symmetry breaking in the evolution of simple 

programs (like those produced by GP).   

3. OBSERVATIONS (SINGLE TRIAL) 
In spite of not having a formal means of measuring symmetry in 
either design patterns or GP, there have been recent developments 
that have indicated that it might be possible to do so. Specifically, 

the method [15] for visualizing whole populations of trees in GP 
does suggest such a possibility.  

Figure 1 shows the structural evolution of a GP population for a 

single trial for an example problem. This figure is a reprint of an 
example that appeared in [15] (i.e., Figure 14 in that citation).  

In this figure, each circular graphic represents a summary of 
population structure for one generation. Each summary can be 
thought as a composite view of many individual trees that overlay 
each other. Each tree (binary in this case) is stretched out on a 
circular lattice, where the center corresponds to the root node of a 
tree. Consequently, if many trees occupy the same position in this 

lattice, the composite view of all of them is dark. Likewise, if only 
a few trees occupy the same position in this lattice, the composite 
view of all of them is light gray. 

The 12 circular graphics correspond to 12 time samples of a GP 
run. This particular run was sampled at every-other generation, 
starting from generation 1, which appears in the upper left corner. 
(Generation 0 represents the initial population.) The sequence 
progresses from left to right for each row starting from the top. 
The first row of graphs corresponds to samples at generation 1, 3, 
5, and 7; the last row, to samples at generations 17, 19, 21, and 23. 

There are at least two observations that one can make: 

• The overall structure of a random population corresponds to 
a graphic that is radially symmetric. Intuitively, this would 
make sense for a ramped half-and-half method of creating an 
initial population. Although the structure of an initial 
population individual might not be symmetrical, the structure 

of an aggregate of randomly generated individuals turns out 
to be symmetrical. 

• As time progresses, population structure transitions from a 

radially symmetric one to an asymmetrical one. The 
difference in population structure between generation 1 
(upper-left corner) and generation 23 (lower-right corner) is 
pronounced. It is also in keeping with what one would expect 
if symmetry breaking happens in GP. 

At least in this case, the visual representation of symmetry 
breaking is clear and intuitive. It is insufficient as proof of 
symmetry breaking.  

Somehow, there needs to be a way to summarize the amount of 
symmetry that the graphics convey, so that a quantitative 
comparison can be made not just from time sample to time 
sample, but also from run to run. The difficulty, as [15] shows, is 
that GP can evolve structural asymmetries that look nothing like 
each other from run to run.  

 

Figure 1. An example of how population structure changes 

over time. Shown are 12 samples from the first 23 

generations of a run.  
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Subsequently, the following section describes the derivation of 
metrics that would allow for such comparisons. 

4. MEASURING SYMMETRY 
Although Figure 1 and other examples in [15] show a transition 

from symmetry to asymmetry during a GP run, measuring this 
transition has required the development of new metrics. As it 
turns out, much of the work in the measurement of shape and 
symmetry in graphs is not well suited for this application. 

4.1 Previous Work 
Part of the difficulty in identifying a metric for symmetry has to 
do with the degree of abstraction needed to do what is essentially 
a comparison of shapes. Unfortunately, as Veltkamp states [40], 
“There is no universal definition of shape.” For example, given 
the graph structures shown in Figures 1 and 2, shape can be 
defined by a hull that encloses all the leaves of a tree graph. A 
hull can alternately be defined by enclosing those lattice points 
that have a specified cumulative density. Furthermore, one is not 
restricted just to hulls. One can count the number of dendrites 

away from the center to define a shape. Nuances that involve 
dendrites would include defining what exactly is a dendrite that 
contributes to an overall shape, since technically all of the 
structures in those graphs are dendrites. 

Veltkamp surveys a broad variety of methods used in the 
comparison of shapes with graphs [40]. Although none 
specifically apply to the problem of tracking symmetry changes, 
the work discusses the nuances and challenges involved in 
comparing shapes. 

A sampling of current work that is relevant would include [6, 22, 
23, 31, 37]. In general, such methods are specific to a particular 
application (e.g., object tracking in scenes). Methods such as 
those by [6] look promising, but the class of trees considered (i.e., 
unrooted) overly complicate their use for this work’s application. 

4.2 Derivation of Metrics 
This paper proposes a metric that is analogous to computing for a 
center of mass given a particular graph (like those shown in 

Figure 1). In this analogy, each node in a graph is treated as a 
point mass. The amount of mass associated with a point is a 
function of the cumulative distribution of the number of trees in a 
population that have a vertex. To clarify what is meant by this 
analogy, it would help to review how a graph of population 

structure is constructed according to [15]. 

A graph of population structure is a superposition of all the graphs 
that correspond to individuals in a population. It is presumed 
(both in this paper and in [15]) that an individual can be described 
by a plane binary tree. An arbitrary binary tree A can be mapped 

to a circular lattice LC by showing that a set of labels k 

corresponding to A is a subset of LC. To do so, one can traverse A 

in preorder and label each node visited in the following manner: 

• The root node of tree A is designated as k = 1 and at depth 

level 0. 

• The root node of the left subtree is labeled 2l, where l is the 

label of that node’s parent. 

• The root node of the right subtree is labeled 2l+1, where l is 

the label of that node’s parent. 

A node label maps to a position in a circular lattice LC by the 

following two polar coordinate equations for radius and angle, 

respectively: (k) and (k). 

The mapping of node label k to a ring radius r is specified as (k): 

k  r, where k  +, r  +, and 

k( ) =
0, k = 1.

log2 k k > 1.

 
 
 

 (1) 

The mapping of node label k to an angular position  is specified 

as (k): k  , such that k  +, r  ,   , and 
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Figure 2. Example of constructing a population graph to compute for rsymmetry. (a) Two individuals with labeled nodes.  

(b) Same two individuals placed on a circular lattice. (c) Population graph from which rsymmetry. is computed. 
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The superposition of graphs of individual trees can be described 

by computing the cumulative distribution on LC for an entire 

population, i.e., 

      
L P = L A

A P

,  (3) 

where A is a tree in a population P, LP  LC and Li is a vector 

corresponding to Li such that 

L i i a
a Li

. (4) 

Note that ia specifies a unit component vector and that a is a label 
in Li. 

Given a graph that is constructed in this way, one can compute a 
quantity that is analogous to the center of mass if we treat each 
node in LP as a point mass. In particular, the x- and y-components 
of the centroid analog are defined as 

x 
1

M
m j r j cos j

j P

,  (5) 

y 
1

M
m jrj sin j

i P

, (6) 

where ri and i are the polar coordinates that correspond to a node 

i in LP; mi denotes the cumulative distribution of LP at that 
particular node; and  

M m j

i P

.  (7) 

Given Equations 6 and 7, a metric that measures for symmetry 
would correspond to the radial component that is associated with 
those components. In other words,  

rsymmetry x 2 + y 2 .
 (8) 

Using rsymmetry as a measure of symmetry, values that are closer to 

zero would indicate a population structure that is more radially 
symmetric. (Note: This is not a perfect measure of symmetry, 
since it is possible to have asymmetric shapes that have a null 

value for rsymmetry. That being said, rsymmetry is intended for use as a 

statistical measure, and the random growth of trees makes 
unlikely that such asymmetric shapes are common.) 

Of interest, however, is symmetry breaking, which implies a 
quantity that varies as a function over time. Furthermore, it is also 
recognized that more asymmetry is not in and of itself an indicator 

of better performance. For example, asymmetry in the latter part 
of a run may be driven by code growth that has little to do with 

performance. Symmetry breaking would constitute the transition 
from symmetry to asymmetry, which can be captured by the 

derivative of rsymmetry as a function of time. Since “time” in a GP 

system is discrete (either in steady-state or in generational modes), 
this derivative can be approximated by the following difference 

equation: 

rsymmetry x t( )
2

+ y t( )
2

x t 1( )
2

+ y t 1( )
2
,
 (9) 

where t denotes a time during a GP run. Consequently, if this were 
a generational system, time t would denote a generation. 

4.3 Examples 
This section offers three different examples of working with the 
Equations 1 – 7. 

The first example gives an example of computing rsymmetry for a 

population of two individuals, which is depicted in Figure 2a. 
Each node in a tree is labeled using the conventions for 
determining k at the beginning of Section 4.2. Each tree is then 

Generation 0

Generation 15

 

Figure 3. Example of a centroid calculation for two 

different generations. Centroids are depicted as large 

black dots. Each population graph shows the structure 

for 500 individuals, where darker lines indicate more 

individuals that had the same structure. 
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registered to a circular lattice LC (as shown in Figure 2b). The 

population graph, which is shown in Figure 2c, is the 
superposition of the graphs shown in Figure 2b. In this case, the 

dark-gray nodes in Figure 2c each have a value of 2, while the 
white nodes have a value of 1. Consequently, the x-component of 

rsymmetry  computes to 

x 

1

12
0 + 2 1( )cos0 + 2 1( )cos + 1 2( )cos

3

4
+

 

 
 

1 2( )cos
5

4
+ 1 3( )cos

5

8
+ 1 3( )cos

7

8
+ 1 3( )cos

9

8
+

1 3( )cos
11

8

 

 
 ,  

which is approximately equal to -0.88. Likewise, the y-component 

calculates to 0. Therefore for this example, rsymmetry = 0.88. 

The second example, which is shown in Figure 3, illustrates the 
location of the centroid analog for two different time samples for 
a given run in GP. The analog is overlain on its corresponding 

population graph and is indicated by a large black dot. At 
generation 0, the centroid analog started off in the center of its 
corresponding graph, which is not surprising because the graph is 
radially symmetric. As time progressed, the centroid drifted 
farther away from the center, which corresponds to the asymmetry 
of the population graph for generation 15. 

The third example, which is shown in Figure 4, illustrates the 
location of the centroid analog for 12 different runs. For each of 
these runs, the population graph is removed and only the location 
of the centroid is indicated with a dot. Each plot in Figure 5 shows 
the path that the centroid analog took for 200 generations. 

5. CASE STUDY 
The utility of a metric like rsymmetry lies in its ability to condense 

significant amounts of data so that large-scale trends can be 
identified. The following case study is an extended example of 

how rsymmetry would apply to a computational experiment to identify 

trends in symmetry breaking. 

5.1 Procedure 
A well-documented, tunably-difficult test problem was used (i.e., 
binomial-3). The problem has been designed as a probe for 
understanding GP dynamics and is representative of the kinds of 
problems found in data modeling. Consequently, the procedure for 

this case study is identical to that used in [14] to facilitate 
comparison in future work. 

In brief, the problem is an instance taken from symbolic 
regression and involves solving for the function f(x) = 1 + 3x + 3x

2 
+ x

3. Fitness cases are 50 equidistant points generated from f(x) 
over the interval [-1, 0). The function set is {+, –, , ÷}, which 

corresponds to arithmetic operators of addition, subtraction, 

multiplication, and protected division. The terminal set is {X, R}, 

where X is the symbolic variable and R is the set of random 

constants that are distributed uniformly over the interval [- , ]. 

The tuning parameter is , which is a real number that controls 

problem difficulty. The binomial-3 can be tuned from a relatively 

easy problem to a difficult one by adjusting the range over which 
these random constants occur. In general, values of  that are 

farther from unity result in settings that increase the difficulty for 
GP to solve this problem. 

Table 1 lists the parameter settings considered in this paper. Most 
of the GP parameters were similar to those mentioned in [24], 
Chapter 7. 

Four different experimental configurations were used, given two 
different selection methods and two different difficulty settings. 
These settings were chosen because they bracket the conditions 

under which GP finds this problem either “hard” or “easy.” 
Although the difference in settings seems fairly innocuous, the 
difference in the likelihood that GP would identify a successful 
solution was chosen to be unambiguous (i.e., GP would likely be 
able to identify successful solutions twice as many times under 
“easy” conditions than under “hard” ones). There were 200 runs 
taken per configuration for a total of 800 runs. 

5.2 Results 
Figure 5 shows the first set of results as a six-variable 
visualization for all 800 runs. It summarizes the measurement of 

symmetry for approximately 80.4 million trees.  

 

Figure 4. Path of centroid for 12 different runs. As in Figures 

1 and 3, a gray circle that corresponds to depth 26 is shown 

for reference. Each plot shows 200 dots, with each dot 

depicting the location of the centroid for a given generation. 

Table 1. Parameter settings 

Parameter Setting 

Selection Tournament m=7 or Proportionate 
Population Size M 500 
Initialization Method Ramped Half-and-Half 
Initialization Depths 2–6 Levels 

Max Generations G 200 

Maximum Depth 26 

Internal Node Bias 90% internal, 10% terminals 

Termination Criteria Run reaches G 

Binomial-3  1 or 1000 

Number of Runs 200 
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Each density plot in Figure 5 shows four variables (i.e., t, rsymmetry, 

cumulative distribution, and measured problem difficulty). The x-
axis corresponds to time t (in generations), while the y-axis 

corresponds to rsymmetry. Tone in the density plot is correlated to 

cumulative distribution: the darker the tone, the greater the 

number of runs that have had that particular value of rsymmetry at that 

particular time. Measured success-rate is represented as a 
thermometer graphic: higher values on the thermometer mean that 
GP solved the problem more frequently. For example, a 
thermometer value of 100% means that GP found a successful 
solution in all of its runs. 

The remaining two variables—selection method and difficulty 
setting —were portrayed by arranging the four density plots as 

elements of a two dimensional matrix. Each density plot 
subsequently corresponds to a variation of one of these two 

remaining variables. In particular, the top row corresponds to 
proportionate selection; the bottom row, tournament selection. 
The left column corresponds to  = 1 (“easy”); the right column, 

 = 1000 (“hard”). 
 

Figure 6 shows the next set of results as a five-variable 
visualization for all 800 runs. It represents a reduction of the data 
depicted in the previous visualization. 

Each scatter plot in Figure 6 shows three variables: t, 

abs( rsymmetry), and measured problem difficulty. The x-axis 

corresponds to time t (in generations), while the y-axis 

corresponds to abs( rsymmetry). As in the previous figure, measured 

success rate is represented as a thermometer graphic. 

Also as in the previous figure, the remaining two variables—
selection method and difficulty setting —were portrayed by 

arranging the four scatter plots as elements of a two dimensional 
matrix. The arrangement parallels that given in Figure 5. 

Figure 7 shows the next set of results as a four-variable 
visualization. It represents a further reduction of the data depicted 
in the previous visualization. 

Each plot in Figure 7 shows three variables: t, abs( rsymmetry), and 

the selection method. The x-axis corresponds to time t (in 

generations), while the y-axis corresponds to abs( rsymmetry). Each 

curve denotes the upper-quartile envelope for abs( rsymmetry) as a 

function of time. Each curve is derived by identifying a boundary 

where at least 75% of all measured points for abs( rsymmetry) exist at 

each generation and then by fitting those identified upper-quartile 
boundaries with a nonlinear equation. The form of the fitted 
equation is given as 

rsymmetry fit
= a1 exp a2 ln a3t( )

2 
 
  

 
 + bn t

n

n=1

4

. (10) 

Each plot in Figure 7 corresponds to a difficulty setting , where 

the left plot corresponds to  = 1 (“easy”); the right plot,  = 1000 

(“hard”). The dashed lines in either plot correspond to tournament 
selection; the solid lines, proportionate selection. 

5.3 Discussion 
For a number of years, symmetry breaking was suspected of 
occurring in systems like GP. This modest case study has 
demonstrated that symmetry breaking occurs not just as isolated 

stories (as Figures 1, 4 and 5 show), but as a statistically 
measurable and quantifiable trend that applies to ensembles of 
trials. 

If symmetry breaking occurs in a run, these results suggest that it 
appears as a transient near that run’s beginning. At generation 0, 
GP started with a more or less symmetrically distributed 

population, which corresponds to rsymmetry  having a near-zero value 
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Figure 5. Density plots of rsymmetry v. time for two different problem-difficulty settings and two different selection methods. Each density 

plot shows the results for 200 trials, where each trial was run for 200 generations . Darker tones correspond to more runs that had a 

particular measurement of rsymmetry. 
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in Figure 6 not just for a single trial, but for all 800 trials involved 
in this case study. The transition, which was marked by a rapid 

rise in rsymmetry,, indicated that a population went from symmetric to 

asymmetric in a relatively short time (between 0 and 50 

generations). After 50 generations, the rate of change in rsymmetry  

slowed considerably. It was presumed that by that point, the depth 
limit associated with the binomial-3 problem also had the effect of 

serving to limit rsymmetry. This overall trend was robust, in spite of 

varying settings of problem difficulty associated with this tunable 
problem. 

That this case study did feature several bracketing configurations 
with a tunably difficult problem does raise additional questions. 

For example, the plots in Figure 7 show noticeably different 

nuances in the rate of change associated with rsymmetry. Of particular 

interest are various correspondences of the shape of the rate 
change envelopes with the configurations given. These 
correspondences raise questions such as: How different are the 

causes that drive the dynamics under proportionate selection and 
tournament selection? Is the width of a peak an indicator of 
likelihood of GP obtaining a solution? Are there different 

taxonomies of dynamic behavior that are subsumed under these 
curves? How transferable are these results to other problems? 

Could this metric be leveraged to derive increasingly complex 
solutions?  

It is beyond the scope of this paper to address these questions. 

However, in problems where program semantics do not play a 
role in determining a solution, it is known that the overall 
structure of a population remains relatively symmetrical (e.g., 
[12]). It is expected then, that symmetry breaking — as defined by 

rsymmetry — is not likely to occur. Nevertheless, even that expected 

negative result raises still further questions, such as: What is the 
transition in semantics needed to result in symmetry breaking? Is 
there a minimum set of semantics that could bring about 
symmetry breaking? 

Addressing these and other questions is left to future work. 

6. CONCLUSIONS 
This paper identified a metric that has been shown to characterize 
the dynamics of symmetry breaking in GP. This metric, called 

rsymmetry, is based on a method of graph construction that was 

 

Figure 6. Scatter plots of | rsymmetry | v. time for two different problem-difficulty settings and two different selection methods. Note 

that | rsymmetry | corresponds to the magnitude of the rate of change in symmetry. 
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Figure 7. Curve fits that describe the outer envelope of the scatter plots of | rsymmetry | v. time for two different problem-difficulty 

settings and two different selection methods. These plots summarize the data shown in the previous figure. 
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originally designed as a method for visualizing populations of tree 
structures in GP. 

This metric allowed for a comparison of aggregates of tree shapes 
according to degrees of symmetry, which was not possible before 
in the field. In particular, the work shown in the paper allowed for 
a statistical comparison in shape among some 80.4 million trees. 
As far as a visualization method goes, the reduction of a 

population graph to a single metric allowed for a visualization of 
tree shapes that was almost three orders of magnitude more than 
was previously possible.  

Finally, the results in this paper have shown that symmetry 
breaking occurs in GP as a statistically measurable and 
quantifiable trend that applies to ensembles of trials. This result is 
significant, given that symmetry breaking has been identified in 
the (human) developer community as a distinguishing 
characteristic of “good” design in code crafted by humans. The 
results given here are the first quantifiable, statistically 
meaningful result of symmetry breaking in coding by either 
human or automatic code generating systems. 
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