
Characterizing the Dynamics of Symmetry Breaking in
Genetic Programming

Jason M. Daida
 The University of Michigan

2455 Hayward Avenue
Ann Arbor, Michigan USA 48109-2143

daida@umich.edu

ABSTRACT

This paper introduces a metric that measures symmetry in tree
graphs, which allows for a statistical characterization of GP
solutions by their architectural “shapes.” A case study is given
that applies this metric to 80.4 million trees to identify trends in
GP runs. Results provide a first quantitative look at the dynamics
of symmetry breaking.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming –
program synthesis; D.2.11 [Software Engineering]: Software
Architectures – patterns; F.m [Theory of Computation]:
Miscellaneous.

General Terms

Algorithms, Measurement, Experimentation, Theory, Languages

Keywords

Symmetry breaking, design patterns, graphics techniques, tree,

data structures, computational geometry, analysis methods.

1. INTRODUCTION
A quantitative understanding has been emerging about the
dynamics that occur as genetic programming derives a solution.
For example, analyses of how GP assembles solutions from

building blocks have been initially described in [24], with
subsequent analyses in [2, 33, 34, 36]. Of building blocks, those
that include the root node of a tree have been studied in detail for
a variety of case studies [18, 29, 35]. Steps toward quantifying the
dynamics of how content changes within a population over time
(i.e., over the course of a GP trial) have also been studied in [5,
14, 32].

Of such investigations, the quantitative characterization of

changes to the architectures of its solutions has received a fair
amount of attention. For example, Koza [25] measured and
described the emergence of solution architectures to suit a

particular problem. Related to the concept of architecture is a
solution’s shape, of which a substantial amount of work has been
done concerning the size and depth of solution trees [13, 25-27,
38]. Langdon [28] made detailed observations concerning the

dynamics of changes to a solution’s size and depth, as well as
characterized the mean growth trends of solutions.

Unfortunately, size and depth can only go so far in describing the
changes to architectures associated with GP solutions.
Subsequently, this paper describes the derivation of a metric that
can characterize the symmetry breaking associated with
architecture that may occur over the course of a GP run.

In particular, Section 2 reviews work in computer science that

discusses patterns and symmetry in software architectures, which
is relevant but is not commonly used in the analysis of GP
dynamics. Section 3 describes qualitative observations of
structural patterns that occur during a GP run. Section 4
introduces a statistical metric that can characterize the structural
changes that were observed. Sections 5 and 6 then cover the
application of this metric to a case study that strongly indicates
the existence of phases and transition regions involving the

evolution of structure within a GP trial. Section 7 concludes.

2. ARCHITECTURES AND PATTERNS
Software architecture can be defined as the “conceptual structure
and logical organization” of computer programs (Oxford
American). The concept of software architecture is mainstream

and appropriate for describing large complex programs, such as
those created under object-oriented programming. By itself, the
term does not convey any additional insight towards an analysis of
GP dynamics, particularly since GP solutions are typically orders
of magnitude smaller and less complex than the kinds of programs
that a developer team would produce.

However by the late-1980s, the object-oriented programming
community was looking for broader methodologies that could

assist in the design of large, complex programs. One of the results
of that search was a co-opting of design methodologies from
architecture (as in buildings and urban planning). The particular
set of methodologies that were adopted is now associated with the
term design patterns, which is based on work initiated in the
1960s by architect Charles Alexander (see [3, 7, 8]), and
popularized in the computer science community by [17]. A design
pattern is “a general repeatable solution to a commonly-occurring
problem in software design. A design pattern isn’t a finished

design that can be transformed directly into code. It is a
description or template for how to solve a problem that can be
used in many different situations. [41]”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
GECCO 2006, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

799

Of interest to those in the genetic programming community are
the “other” GPs that have become associated with design patterns:
generic programming and generative programming. (See [1, 4].)
Generic programming is a style of programming that uses generic
(polymorphic) datatypes and is supported by languages like C++.

Generative programming is a style of programming that combines
automated code generation (typically using generic-style code)
and human code generation. (See [41]). These methods are
common and mainstream in large-scale software development
(e.g., Visual Studio support of .NET).

Design patterns have been introduced into the GP communities on
a number of occasions, although more in the context of extending
GP than in analyzing it. (e.g., [16, 30]). There are also works that

strongly complement many of the principles of design patterns,
but that have been developed more or less independently from the
work in object-oriented design (e.g., [20, 21]). That there may be
many areas of complementary development in design patterns
might not be surprising, since a big picture view of pattern design
does share many (independent) commonalities with the big picture
view of GP as a design-engine (c.f., [11]).

Of particular relevance to this paper are the attempts in pattern

design to formalize the concept of pattern [9, 10]. The particular
formalism that Coplien has chosen to quantify patterns is largely a
geometric one—symmetry. “Good” software architectures have
some amount of symmetry breaking; too much symmetry is
typically reflective of poor architectures.

The idea of symmetry breaking as a desirable characteristic also
has some precedence in the GP community as well. One of the
GEC principals, John Holland, discusses the necessity of

symmetry breaking in [19] as one of the essential attributes of a
complex adaptive system. Streeter, Keane, and Koza also mention
it in their works (such as [39]).

Neither in design patterns nor in GP are the concepts of symmetry
and symmetry breaking formalized to the degree that a
quantitative analysis could be conducted. Unlike GP, there has
been a growing and significant body of work in design patterns
that capture best practices of human developers. The case for the
significance of symmetry breaking to understanding software

architectures should be understood in that light.

What GP has to offer is a system that can take random programs
with presumably poor architectures and transform them into a
solution that works. True, the solutions that GP creates are not of
the size or complexity of programs that are considered at the level
of design patterns. However, any formalism that purports to
analyze symmetry breaking for software architectures should be
able to show symmetry breaking in the evolution of simple

programs (like those produced by GP).

3. OBSERVATIONS (SINGLE TRIAL)
In spite of not having a formal means of measuring symmetry in
either design patterns or GP, there have been recent developments
that have indicated that it might be possible to do so. Specifically,

the method [15] for visualizing whole populations of trees in GP
does suggest such a possibility.

Figure 1 shows the structural evolution of a GP population for a

single trial for an example problem. This figure is a reprint of an
example that appeared in [15] (i.e., Figure 14 in that citation).

In this figure, each circular graphic represents a summary of
population structure for one generation. Each summary can be
thought as a composite view of many individual trees that overlay
each other. Each tree (binary in this case) is stretched out on a
circular lattice, where the center corresponds to the root node of a
tree. Consequently, if many trees occupy the same position in this

lattice, the composite view of all of them is dark. Likewise, if only
a few trees occupy the same position in this lattice, the composite
view of all of them is light gray.

The 12 circular graphics correspond to 12 time samples of a GP
run. This particular run was sampled at every-other generation,
starting from generation 1, which appears in the upper left corner.
(Generation 0 represents the initial population.) The sequence
progresses from left to right for each row starting from the top.
The first row of graphs corresponds to samples at generation 1, 3,
5, and 7; the last row, to samples at generations 17, 19, 21, and 23.

There are at least two observations that one can make:

• The overall structure of a random population corresponds to
a graphic that is radially symmetric. Intuitively, this would
make sense for a ramped half-and-half method of creating an
initial population. Although the structure of an initial
population individual might not be symmetrical, the structure

of an aggregate of randomly generated individuals turns out
to be symmetrical.

• As time progresses, population structure transitions from a

radially symmetric one to an asymmetrical one. The
difference in population structure between generation 1
(upper-left corner) and generation 23 (lower-right corner) is
pronounced. It is also in keeping with what one would expect
if symmetry breaking happens in GP.

At least in this case, the visual representation of symmetry
breaking is clear and intuitive. It is insufficient as proof of
symmetry breaking.

Somehow, there needs to be a way to summarize the amount of
symmetry that the graphics convey, so that a quantitative
comparison can be made not just from time sample to time
sample, but also from run to run. The difficulty, as [15] shows, is
that GP can evolve structural asymmetries that look nothing like
each other from run to run.

Figure 1. An example of how population structure changes

over time. Shown are 12 samples from the first 23

generations of a run.

800

Subsequently, the following section describes the derivation of
metrics that would allow for such comparisons.

4. MEASURING SYMMETRY
Although Figure 1 and other examples in [15] show a transition

from symmetry to asymmetry during a GP run, measuring this
transition has required the development of new metrics. As it
turns out, much of the work in the measurement of shape and
symmetry in graphs is not well suited for this application.

4.1 Previous Work
Part of the difficulty in identifying a metric for symmetry has to
do with the degree of abstraction needed to do what is essentially
a comparison of shapes. Unfortunately, as Veltkamp states [40],
“There is no universal definition of shape.” For example, given
the graph structures shown in Figures 1 and 2, shape can be
defined by a hull that encloses all the leaves of a tree graph. A
hull can alternately be defined by enclosing those lattice points
that have a specified cumulative density. Furthermore, one is not
restricted just to hulls. One can count the number of dendrites

away from the center to define a shape. Nuances that involve
dendrites would include defining what exactly is a dendrite that
contributes to an overall shape, since technically all of the
structures in those graphs are dendrites.

Veltkamp surveys a broad variety of methods used in the
comparison of shapes with graphs [40]. Although none
specifically apply to the problem of tracking symmetry changes,
the work discusses the nuances and challenges involved in
comparing shapes.

A sampling of current work that is relevant would include [6, 22,
23, 31, 37]. In general, such methods are specific to a particular
application (e.g., object tracking in scenes). Methods such as
those by [6] look promising, but the class of trees considered (i.e.,
unrooted) overly complicate their use for this work’s application.

4.2 Derivation of Metrics
This paper proposes a metric that is analogous to computing for a
center of mass given a particular graph (like those shown in

Figure 1). In this analogy, each node in a graph is treated as a
point mass. The amount of mass associated with a point is a
function of the cumulative distribution of the number of trees in a
population that have a vertex. To clarify what is meant by this
analogy, it would help to review how a graph of population

structure is constructed according to [15].

A graph of population structure is a superposition of all the graphs
that correspond to individuals in a population. It is presumed
(both in this paper and in [15]) that an individual can be described
by a plane binary tree. An arbitrary binary tree A can be mapped

to a circular lattice LC by showing that a set of labels k

corresponding to A is a subset of LC. To do so, one can traverse A

in preorder and label each node visited in the following manner:

• The root node of tree A is designated as k = 1 and at depth

level 0.

• The root node of the left subtree is labeled 2l, where l is the

label of that node’s parent.

• The root node of the right subtree is labeled 2l+1, where l is

the label of that node’s parent.

A node label maps to a position in a circular lattice LC by the

following two polar coordinate equations for radius and angle,

respectively: (k) and (k).

The mapping of node label k to a ring radius r is specified as (k):

k r, where k +, r +, and

k() =
0, k = 1.

log2 k k > 1.

 (1)

The mapping of node label k to an angular position is specified

as (k): k , such that k +, r , , and

1

3

8 9 10 11

2

4 5

1 32

5

4

11

10

9

8
(a) (b)

1

32 1 32

1 32

5

4

11

10

9

8
(c)

Figure 2. Example of constructing a population graph to compute for rsymmetry. (a) Two individuals with labeled nodes.

(b) Same two individuals placed on a circular lattice. (c) Population graph from which rsymmetry. is computed.

801

k() =

0, k = 1.

1
2

+
1

2
k()

+
k mod 2

k()

2
k() 1

, k > 1.

 (2)

The superposition of graphs of individual trees can be described

by computing the cumulative distribution on LC for an entire

population, i.e.,

L P = L A

A P

, (3)

where A is a tree in a population P, LP LC and Li is a vector

corresponding to Li such that

L i i a
a Li

. (4)

Note that ia specifies a unit component vector and that a is a label
in Li.

Given a graph that is constructed in this way, one can compute a
quantity that is analogous to the center of mass if we treat each
node in LP as a point mass. In particular, the x- and y-components
of the centroid analog are defined as

x
1

M
m j r j cos j

j P

, (5)

y
1

M
m jrj sin j

i P

, (6)

where ri and i are the polar coordinates that correspond to a node

i in LP; mi denotes the cumulative distribution of LP at that
particular node; and

M m j

i P

. (7)

Given Equations 6 and 7, a metric that measures for symmetry
would correspond to the radial component that is associated with
those components. In other words,

rsymmetry x 2 + y 2 .
 (8)

Using rsymmetry as a measure of symmetry, values that are closer to

zero would indicate a population structure that is more radially
symmetric. (Note: This is not a perfect measure of symmetry,
since it is possible to have asymmetric shapes that have a null

value for rsymmetry. That being said, rsymmetry is intended for use as a

statistical measure, and the random growth of trees makes
unlikely that such asymmetric shapes are common.)

Of interest, however, is symmetry breaking, which implies a
quantity that varies as a function over time. Furthermore, it is also
recognized that more asymmetry is not in and of itself an indicator

of better performance. For example, asymmetry in the latter part
of a run may be driven by code growth that has little to do with

performance. Symmetry breaking would constitute the transition
from symmetry to asymmetry, which can be captured by the

derivative of rsymmetry as a function of time. Since “time” in a GP

system is discrete (either in steady-state or in generational modes),
this derivative can be approximated by the following difference

equation:

rsymmetry x t()
2

+ y t()
2

x t 1()
2

+ y t 1()
2
,
 (9)

where t denotes a time during a GP run. Consequently, if this were
a generational system, time t would denote a generation.

4.3 Examples
This section offers three different examples of working with the
Equations 1 – 7.

The first example gives an example of computing rsymmetry for a

population of two individuals, which is depicted in Figure 2a.
Each node in a tree is labeled using the conventions for
determining k at the beginning of Section 4.2. Each tree is then

Generation 0

Generation 15

Figure 3. Example of a centroid calculation for two

different generations. Centroids are depicted as large

black dots. Each population graph shows the structure

for 500 individuals, where darker lines indicate more

individuals that had the same structure.

802

registered to a circular lattice LC (as shown in Figure 2b). The

population graph, which is shown in Figure 2c, is the
superposition of the graphs shown in Figure 2b. In this case, the

dark-gray nodes in Figure 2c each have a value of 2, while the
white nodes have a value of 1. Consequently, the x-component of

rsymmetry computes to

x

1

12
0 + 2 1()cos0 + 2 1()cos + 1 2()cos

3

4
+

1 2()cos
5

4
+ 1 3()cos

5

8
+ 1 3()cos

7

8
+ 1 3()cos

9

8
+

1 3()cos
11

8

 ,

which is approximately equal to -0.88. Likewise, the y-component

calculates to 0. Therefore for this example, rsymmetry = 0.88.

The second example, which is shown in Figure 3, illustrates the
location of the centroid analog for two different time samples for
a given run in GP. The analog is overlain on its corresponding

population graph and is indicated by a large black dot. At
generation 0, the centroid analog started off in the center of its
corresponding graph, which is not surprising because the graph is
radially symmetric. As time progressed, the centroid drifted
farther away from the center, which corresponds to the asymmetry
of the population graph for generation 15.

The third example, which is shown in Figure 4, illustrates the
location of the centroid analog for 12 different runs. For each of
these runs, the population graph is removed and only the location
of the centroid is indicated with a dot. Each plot in Figure 5 shows
the path that the centroid analog took for 200 generations.

5. CASE STUDY
The utility of a metric like rsymmetry lies in its ability to condense

significant amounts of data so that large-scale trends can be
identified. The following case study is an extended example of

how rsymmetry would apply to a computational experiment to identify

trends in symmetry breaking.

5.1 Procedure
A well-documented, tunably-difficult test problem was used (i.e.,
binomial-3). The problem has been designed as a probe for
understanding GP dynamics and is representative of the kinds of
problems found in data modeling. Consequently, the procedure for

this case study is identical to that used in [14] to facilitate
comparison in future work.

In brief, the problem is an instance taken from symbolic
regression and involves solving for the function f(x) = 1 + 3x + 3x

2
+ x

3. Fitness cases are 50 equidistant points generated from f(x)
over the interval [-1, 0). The function set is {+, –, , ÷}, which

corresponds to arithmetic operators of addition, subtraction,

multiplication, and protected division. The terminal set is {X, R},

where X is the symbolic variable and R is the set of random

constants that are distributed uniformly over the interval [- ,].

The tuning parameter is , which is a real number that controls

problem difficulty. The binomial-3 can be tuned from a relatively

easy problem to a difficult one by adjusting the range over which
these random constants occur. In general, values of that are

farther from unity result in settings that increase the difficulty for
GP to solve this problem.

Table 1 lists the parameter settings considered in this paper. Most
of the GP parameters were similar to those mentioned in [24],
Chapter 7.

Four different experimental configurations were used, given two
different selection methods and two different difficulty settings.
These settings were chosen because they bracket the conditions

under which GP finds this problem either “hard” or “easy.”
Although the difference in settings seems fairly innocuous, the
difference in the likelihood that GP would identify a successful
solution was chosen to be unambiguous (i.e., GP would likely be
able to identify successful solutions twice as many times under
“easy” conditions than under “hard” ones). There were 200 runs
taken per configuration for a total of 800 runs.

5.2 Results
Figure 5 shows the first set of results as a six-variable
visualization for all 800 runs. It summarizes the measurement of

symmetry for approximately 80.4 million trees.

Figure 4. Path of centroid for 12 different runs. As in Figures

1 and 3, a gray circle that corresponds to depth 26 is shown

for reference. Each plot shows 200 dots, with each dot

depicting the location of the centroid for a given generation.

Table 1. Parameter settings

Parameter Setting

Selection Tournament m=7 or Proportionate
Population Size M 500
Initialization Method Ramped Half-and-Half
Initialization Depths 2–6 Levels

Max Generations G 200

Maximum Depth 26

Internal Node Bias 90% internal, 10% terminals

Termination Criteria Run reaches G

Binomial-3 1 or 1000

Number of Runs 200

803

Each density plot in Figure 5 shows four variables (i.e., t, rsymmetry,

cumulative distribution, and measured problem difficulty). The x-
axis corresponds to time t (in generations), while the y-axis

corresponds to rsymmetry. Tone in the density plot is correlated to

cumulative distribution: the darker the tone, the greater the

number of runs that have had that particular value of rsymmetry at that

particular time. Measured success-rate is represented as a
thermometer graphic: higher values on the thermometer mean that
GP solved the problem more frequently. For example, a
thermometer value of 100% means that GP found a successful
solution in all of its runs.

The remaining two variables—selection method and difficulty
setting —were portrayed by arranging the four density plots as

elements of a two dimensional matrix. Each density plot
subsequently corresponds to a variation of one of these two

remaining variables. In particular, the top row corresponds to
proportionate selection; the bottom row, tournament selection.
The left column corresponds to = 1 (“easy”); the right column,

 = 1000 (“hard”).

Figure 6 shows the next set of results as a five-variable
visualization for all 800 runs. It represents a reduction of the data
depicted in the previous visualization.

Each scatter plot in Figure 6 shows three variables: t,

abs(rsymmetry), and measured problem difficulty. The x-axis

corresponds to time t (in generations), while the y-axis

corresponds to abs(rsymmetry). As in the previous figure, measured

success rate is represented as a thermometer graphic.

Also as in the previous figure, the remaining two variables—
selection method and difficulty setting —were portrayed by

arranging the four scatter plots as elements of a two dimensional
matrix. The arrangement parallels that given in Figure 5.

Figure 7 shows the next set of results as a four-variable
visualization. It represents a further reduction of the data depicted
in the previous visualization.

Each plot in Figure 7 shows three variables: t, abs(rsymmetry), and

the selection method. The x-axis corresponds to time t (in

generations), while the y-axis corresponds to abs(rsymmetry). Each

curve denotes the upper-quartile envelope for abs(rsymmetry) as a

function of time. Each curve is derived by identifying a boundary

where at least 75% of all measured points for abs(rsymmetry) exist at

each generation and then by fitting those identified upper-quartile
boundaries with a nonlinear equation. The form of the fitted
equation is given as

rsymmetry fit
= a1 exp a2 ln a3t()

2

 + bn t

n

n=1

4

. (10)

Each plot in Figure 7 corresponds to a difficulty setting , where

the left plot corresponds to = 1 (“easy”); the right plot, = 1000

(“hard”). The dashed lines in either plot correspond to tournament
selection; the solid lines, proportionate selection.

5.3 Discussion
For a number of years, symmetry breaking was suspected of
occurring in systems like GP. This modest case study has
demonstrated that symmetry breaking occurs not just as isolated

stories (as Figures 1, 4 and 5 show), but as a statistically
measurable and quantifiable trend that applies to ensembles of
trials.

If symmetry breaking occurs in a run, these results suggest that it
appears as a transient near that run’s beginning. At generation 0,
GP started with a more or less symmetrically distributed

population, which corresponds to rsymmetry having a near-zero value

0 50 100 150 200
0

5

10

15

20

0 50 100 150 200
0

5

10

15

20

0 50 100 150 200
0

5

10

15

20

0 50 100 150 200
0

5

10

15

20

Time (Generations) Time (Generations)

Time (Generations) Time (Generations)

r sy
m

m
et

ry

r sy
m

m
et

ry
r sy

m
m

et
ry

r sy
m

m
et

ry

(a) Proportionate, α = 1.

(b) Tournament (m =7), α = 1.

(c) Proportionate, α = 1000.

(d) Tournament (m =7), α = 1000.

70% 34%

37%
1%

Figure 5. Density plots of rsymmetry v. time for two different problem-difficulty settings and two different selection methods. Each density

plot shows the results for 200 trials, where each trial was run for 200 generations . Darker tones correspond to more runs that had a

particular measurement of rsymmetry.

804

in Figure 6 not just for a single trial, but for all 800 trials involved
in this case study. The transition, which was marked by a rapid

rise in rsymmetry,, indicated that a population went from symmetric to

asymmetric in a relatively short time (between 0 and 50

generations). After 50 generations, the rate of change in rsymmetry

slowed considerably. It was presumed that by that point, the depth
limit associated with the binomial-3 problem also had the effect of

serving to limit rsymmetry. This overall trend was robust, in spite of

varying settings of problem difficulty associated with this tunable
problem.

That this case study did feature several bracketing configurations
with a tunably difficult problem does raise additional questions.

For example, the plots in Figure 7 show noticeably different

nuances in the rate of change associated with rsymmetry. Of particular

interest are various correspondences of the shape of the rate
change envelopes with the configurations given. These
correspondences raise questions such as: How different are the

causes that drive the dynamics under proportionate selection and
tournament selection? Is the width of a peak an indicator of
likelihood of GP obtaining a solution? Are there different

taxonomies of dynamic behavior that are subsumed under these
curves? How transferable are these results to other problems?

Could this metric be leveraged to derive increasingly complex
solutions?

It is beyond the scope of this paper to address these questions.

However, in problems where program semantics do not play a
role in determining a solution, it is known that the overall
structure of a population remains relatively symmetrical (e.g.,
[12]). It is expected then, that symmetry breaking — as defined by

rsymmetry — is not likely to occur. Nevertheless, even that expected

negative result raises still further questions, such as: What is the
transition in semantics needed to result in symmetry breaking? Is
there a minimum set of semantics that could bring about
symmetry breaking?

Addressing these and other questions is left to future work.

6. CONCLUSIONS
This paper identified a metric that has been shown to characterize
the dynamics of symmetry breaking in GP. This metric, called

rsymmetry, is based on a method of graph construction that was

Figure 6. Scatter plots of | rsymmetry | v. time for two different problem-difficulty settings and two different selection methods. Note

that | rsymmetry | corresponds to the magnitude of the rate of change in symmetry.

0 50 100 150 200
0

0.25

0.5

0.75

1

1.25

1.5

0 50 100 150 200
0

0.25

0.5

0.75

1

1.25

1.5

Time (Generations) Time (Generations)

| ∆
 r s

ym
m

et
ry

 |

| ∆
 r s

ym
m

et
ry

 |

Difficulty Setting α = 1 Difficulty Setting α = 1000

Tournament (m =7)
Proportionate

Tournament (m =7)
Proportionate

Figure 7. Curve fits that describe the outer envelope of the scatter plots of | rsymmetry | v. time for two different problem-difficulty

settings and two different selection methods. These plots summarize the data shown in the previous figure.

805

originally designed as a method for visualizing populations of tree
structures in GP.

This metric allowed for a comparison of aggregates of tree shapes
according to degrees of symmetry, which was not possible before
in the field. In particular, the work shown in the paper allowed for
a statistical comparison in shape among some 80.4 million trees.
As far as a visualization method goes, the reduction of a

population graph to a single metric allowed for a visualization of
tree shapes that was almost three orders of magnitude more than
was previously possible.

Finally, the results in this paper have shown that symmetry
breaking occurs in GP as a statistically measurable and
quantifiable trend that applies to ensembles of trials. This result is
significant, given that symmetry breaking has been identified in
the (human) developer community as a distinguishing
characteristic of “good” design in code crafted by humans. The
results given here are the first quantifiable, statistically
meaningful result of symmetry breaking in coding by either
human or automatic code generating systems.

7. ACKNOWLEDGMENTS
Several current and former members from my research group contributed
to this paper: S. Long, A. Hilss, M. Hodges, D. Ward, M. Byom, M.
Samples, J. Thomas, K. Jham, E. Chen. Gratitude is extended to the

reviewers. I thank S. Daida and I. Kristo for their continued support.

8. REFERENCES
[1] Alexandrescu, A., Modern C++ Design: Generic Programming and

Design Patterns Applied. 2001, Boston: Addison–Wesley. 323 pp.
[2] Altenberg, L., The Schema Theorem and Price’s Theorem, in FOGA

3, 1994, Morgan Kaufmann: San Francisco. p. 23–49.
[3] Appleton, B., Accessed 14 January 2006.

http://www.cmcrossroads.com/bradapp/docs/
[4] Budinsky, F., et al., Automatic Code Generation from Design

Patterns. IBM Systems Journal, 1996. 35(2): p. 151–171.
[5] Burke, E., S. Gustafson, and G. Kendall, Diversity in Genetic

Programming. IEEE TEC, 2004. 8(1): p. 47–62.
[6] Chin, K.-W. and H.-C. Yen, The Symmetry Number Problem for

Trees. Information Processing Letters, 2001. 79(2): p. 73–79.
[7] Coplien, J.O., Software Design Patterns: Common Questions and

Answers, in The Patterns Handbook, 1998, Cambridge University
Press: New York. p. 311–320.

[8] Coplien, J.O., Reevaluating the Architectural Metaphor: Towards
Piecemeal Growth. IEEE Software, 1999. 16(5): p. 40–44.

[9] Coplien, J.O. and L. Zhao, Symmetry and Symmetry Breaking in
Software Patterns, in GCSE, 2000: Erfurt, Germany. p. 37–56.

[10] Coplien, J.O. and L. Zhao, Symmetry Breaking in Software Patterns,
in GCSE 2000. Revised 2001, Springer-Verlag: Berlin. p. 37–56.

[11] Coplien, J.O., Patterns of Engineering. IEEE Potentials, 2004. 23(2):
p. 4–8.

[12] Crane, E. and N.F. McPhee, Effect of Size and Depth Limits on
Tree-Based GP, in GPTP III, 2006, Springer: New York.

[13] Daida, J.M. and A.M. Hilss, Identifying Structural Mechanisms in
Standard GP, in GECCO, E. Cantú-Paz, et al., 2003, Springer-
Verlag: Berlin. p. 1639–1651.

[14] Daida, J.M., Towards Identifying Populations that Increase the
Likelihood of Success in Genetic Programming, in GECCO, 2005.

[15] Daida, J.M., et al., Visualizing Tree Structures in GP. GPEM, 2005.
6: p. 79–110.

[16] Eggermont, J., A.E. Eiben, and J.I. van Hemert, Adapting the Fitness
Function in GP for Data Mining, in EuroGP. 1998, Springer-Verlag:
Berlin. p. 193–202.

[17] Gamma, E., et al., Design Patterns: Elements of Reusable Object-
Oriented Software. 1995, Reading: Addison-Wesley Professional.

[18] Hall, J.M. and T. Soule, Does GP Inherently Adopt Structured
Design Techniques? in GPTP II, U.-M. O’Reilly, et al., 2004,
Kluwer Academic: Boston.

[19] Holland, J., Hidden Order: How Adaptation Builds Complexity.
1995, Reading: Addison-Wesley.

[20] Hornby, G.S., H. Lipson, and J.B. Pollack, Generative
Representations for the Automated Design of Modular Physical
Robots. IEEE TRA, 2003. 19(4): p. 703–719.

[21] Jacob, C., Genetic L-System Programming, in PPSN III, 1994,
Springer-Verlag: Berlin. p. 334–343.

[22] Klein, P., et al., A tree-edit-distance algorithm for comparing simple,
closed shapes, in ACM-SIAM Symp Discrete Alg, 2000, SIAM:
Philadelphia. p. 696–704.

[23] Klein, P., T.B. Sebastian, and B.B. Kimia, Shape Matching Using
Edit-Distance, in Symp Discrete Alg, 2001, SIAM: Philadelphia. p.
781–790.

[24] Koza, J.R., GP, 1992, Cambridge: The MIT Press.
[25] Koza, J.R., GP II. 1994, Cambridge: The MIT Press.
[26] Koza, J.R., Two Ways of Discovering the Size and Shape of a

Computer Program to Solve a Problem, in ICGA, 1995, Morgan
Kaufmann: San Francisco. p. 287–294.

[27] Langdon, W.B., et al., The Evolution of Size and Shape, in AGP 3,
L. Spector, et al., 1999, The MIT Press: Cambridge. p. 163–190.

[28] Langdon, W.B., Quadratic Bloat in Genetic Programming, in
GECCO, 2000, Morgan Kaufmann: San Francisco. p. 451–458.

[29] Langdon, W.B. and R. Poli, Foundations of GP. 2002, Berlin:
Springer-Verlag.

[30] Lenaerts, T. and B. Manderick, Building a GP Framework, in
EuroGP, 1998, Springer-Verlag: Berlin. p. 196–208.

[31] Liu, T.-L. and D. Geiger, Approximate tree matching and shape
similarity, in IEEE ICCV, 1999, IEEE Computer Society: Los
Alamitos. p. 456–462.

[32] McPhee, N.F. and N.J. Hopper, Analysis of Genetic Diversity
through Population History, in GECCO, 1999, Morgan Kaufmann:
San Francisco. p. 1112 – 1120.

[33] Poli, R., W.B. Langdon, and U.-M. O’Reilly, Analysis of Schema
Variance and Short Term Extinction Likelihoods, in GP, 1998,
Morgan Kaufmann: San Francisco. p. 284–292.

[34] Poli, R., General Schema Theory for Genetic Programming with
Subtree-Swapping Crossover, in Genetic Programming: Proceedings
of EuroGP 2001, April 18–20, 2001, Milan, J.F. Miller, et al., 2001,
Springer-Verlag: Berlin. p. 143–159.

[35] Rosca, J.P., Analysis of Complexity Drift in Genetic Programming,
in Genetic Programming 1997: Proceedings of the Second Annual
Conference, July 13-16, 1997, Stanford University, J.R. Koza, et al.,
1997, Morgan Kaufmann Publishers: San Francisco. p. 286–94.

[36] Sastry, K., U.-M. O’Reilly, and D.E. Goldberg, Population Sizing
for GP Based on Decision Making, in GPTP II, 2004, Kluwer
Academic: Boston. p. 49–65.

[37] Sebastian, T.B. and B.B. Kimia, Curves vs. Skeletons in Object
Recognition. Signal Processing, 2005. 85(2): p. 247–263.

[38] Soule, T., J.A. Foster, and J. Dickinson, Code Growth in GP, in GP,
1996, The MIT Press: Cambridge. p. 215 – 223.

[39] Streeter, M.J., M.A. Keane, and J.R. Koza, Routine Duplication of
Post-2000 Patented Inventions by Means of GP, in EuroGP, 2002,
Springer-Verlag: Berlin. p. 27–36.

[40] Veltkamp, R.C., Shape matching: similarity measures and
algorithms, in Int Conf Shape Model and App, 2001, IEEE Computer
Society: Los Alamitos. p. 188–197.

[41] Wales, J., Design Pattern (Computer Science), Generative
Programming, Generic Programming. Wikipedia, 2001, accessed 14
January 2006.

806

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

