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ABSTRACT
Delay in the nervous system is a serious issue for an organism
that needs to act in real time. For example, during the time
a signal travels from a peripheral sensor to the central ner-
vous system, a moving object in the environment can cover
a significant distance which can lead to critical errors in the
effect of the corresponding motor output. This paper pro-
poses that facilitating synapses which show a dynamic sen-
sitivity to the changing input may play an important role
in compensating for neural delays, through extrapolation.
The idea was tested in a modified 2D pole-balancing prob-
lem which included sensory delays. Within this domain, we
tested the behavior of recurrent neural networks with facil-
itatory neural dynamics trained via neuroevolution. Analy-
sis of the performance and the evolved network parameters
showed that, under various forms of delay, networks utilizing
extrapolatory dynamics are at a significant competitive ad-
vantage compared to networks without such dynamics. In
sum, facilitatory (or extrapolatory) dynamics can be used
to compensate for delay at a single-neuron level, thus allow-
ing a developing nervous system to stay in touch with the
present environmental state.

General Terms
Experimentation, Algorithm, Performance

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

Keywords
Neural delay, delay compensation, facilitating synapses,
extrapolation, pole balancing, evolutionary neural networks
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1. INTRODUCTION
Delay is an unavoidable problem for a living organism,

which has physical limits in the speed of signal transmission
within its system. Such a delay can cause serious problems
as shown in Fig. 1. During the time a signal travels from a
peripheral sensor (such as the photoreceptor) to the central
nervous system (e.g. the visual cortex), a moving object in
the environment can cover a significant distance which can
lead to critical errors in the motor output which was based
on that input. For example, the neural latency between
visual stimulus onset and the motor output can be no less
than 100 ms up to a couple of hundred milliseconds [31]:
An object moving at 40 mph can cover about 9 m in 500 ms
(Fig. 1b).

However, the problem can be overcome if the central ner-
vous system can take into account the neural transmission
delay (∆t) and generate action based on the estimated cur-
rent state S(t+∆t) rather than that in its periphery at time
t (S(t), Fig. 1c). Such a compensatory mechanism can be
built into a system at birth, but such a fixed solution is not
feasible because the organism grows in size during develop-
ment, resulting in gradually increased delay. For example,
consider that the axons are stretched to become longer dur-
ing growth. How can the developing nervous system cope
with such a problem? This is the main question investigated
in this paper.

Psychophysical experiments such as flash-lag effect (FLE)
showed that extrapolation can take place in the nervous sys-
tem. In visual flash-lag effect, the position of a moving ob-
ject is perceived to be ahead of a briefly flashed object when
they are in fact physically co-localized at the time of the
flash [25, 34, 4, 18]. One interesting hypothesis arising from
the flash-lag effect is that of motion extrapolation: Extrap-
olation of state information over time can compensate for
delay, and flash-lag effect may be caused by such a mecha-
nism [25, 10, 7].

According to the motion extrapolation model, a moving
object’s location is extrapolated so that the perceived lo-
cation of the object at a given instant is the same as the
object’s actual location in the environment at that precise
moment, despite the delay. The perceptual effect demon-
strated in the flash-lag effect indicates that the human ner-
vous system performs extrapolation to align precisely its in-
ternal perceptual state with the environmental state.

The question that arises at this point is, how can such
an extrapolatory mechanism be implemented in the nervous
system? It is possible that recurrently connected networks
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Figure 1: Interaction between agent and environ-
ment under internal delay. (a) The state S(t) of a
moving object (solid circle) in the environment is re-
ceived at the sensors in an agent (e.g., an animal) at
time t. (b) Delay (∆t) in the central nervous system
causes error in the resulting action A(S(t)), if state
S(t) is not extrapolated. (c) No error if the action is
based on a predicted (or extrapolated) state of the
object, S(t + ∆t).

of neurons in the brain can provide such a function, since re-
currence makes available the history of previous activations
[6]. However, such historical data alone may not be suf-
ficient to effectively compensate for neural delay since the
evolving dynamics of the network may not be fast enough.
Our hypothesis is that for fast extrapolation, the mechanism
has to be implemented at a single neuron level.

In this paper, we developed a recurrent neural network
with facilitatory neural dynamics (Facilitating Activity Net-
work, or FAN), where the rate of change in the activity level
is used to calculate an extrapolated activity level (Fig. 2a).
The network was tested in a modified nonlinear two-degree-
of-freedom (2D) pole-balancing problem (Fig. 3) where var-
ious forms of input delay were introduced. To test the util-
ity of the facilitatory dynamics, we compared the network
against recurrent neural networks without any single neu-
ron dynamics (i.e. the control). The network parameters
such as connection weight and dynamic activation rate were
found using the Enforced Subpopulation algorithm (ESP), a
neuroevolution algorithm by Gomez and Miikkulainen [16].
This method allowed us to analyze the results in two ways:
(1) task performance and (2) degree of utilization of the dy-
namic activation rate, under delayed input conditions. Also,
input blank-out experiments were conducted to test whether
such a delay compensation mechanism can be directed out-
ward to handle environmental (or external) delay and un-
certainty. In all cases, FAN outperformed the control, and it
turned out that high-fitness neurons in FAN evolved extrap-
olating dynamics by utilizing dynamic activation parameter
in its chromosome more than the low-fitness neurons.

Our overall results suggest that neurons with facilitatory
activity can effectively compensate for neural delays, thus
allowing the central nervous system to be in touch with the
environment in the present, not in the past. In the follow-
ing, first, the facilitating neural dynamics will be derived
(Sec. 2). Next, the modified 2D pole-balancing problem
will be outlined (Sec. 3) and the results from the modified
cart-pole balancing problem will be presented and analyzed
(Sec. 4). Finally, discussion and conclusion will be presented
(Sec. 5 and 6).

2. FACILITATING AND DECAYING
NEURAL DYNAMICS

There are several different ways in which temporal infor-
mation can be processed in a neural network. For example,
decay and delay have been used as learnable parameters in
biologically motivated artificial neural networks for tempo-
ral pattern processing [32]. Several computational models
also include neural delay and decay as an integral part of
their design [8, 3]. However, in these works, the focus was
more on utilizing delay for a particular functional purpose
such as sound localization [12], rather than recognizing neu-
ral transmission delay as a problem to be solved in itself.
We introduce delay in the arrival of sensory input to hidden
neurons so that each internal neuron generates its activa-
tion value based on the outdated input data (i.e. put the
network in the same condition as the nervous system, which
has neural delay).

Recent neurophysiological experiments have uncovered neu-
ral mechanisms that can potentially contribute to delay com-
pensation. Researchers have shown that different dynamics
exist at the synapse, as found in depressing or facilitating
synapses [22]. In these synapses, the activation level (the
membrane potential) of the postsynaptic neuron is not only
based on the immediate input at a particular instant but is
also dependent on the rate of change in the activation level
in the near past. These synapses have been studied to find
the relationship between synaptic dynamics and temporal
information processing [9, 11, 29]. However, to our knowl-
edge, these mechanisms have not yet been investigated in
relation to delay compensation.

Such a mode of activation found in these experiments is
quite different from conventional artificial neural networks
(ANNs) where the activation level of the neurons are solely
determined by the current input and the connection weight
values. For example, in conventional ANNs, activation value
Xi(t) of a neuron i at time t is defined as follows:

Xi(t) = g

 ∑
j∈Ni

wijXj(t)

 , (1)

where g(·) is a nonlinear activation function (such as the
sigmoid function), Ni the set of neurons sending activation
to neuron i (the connectivity graph should be free of cycles),
and wij the connection weight from neuron j to neuron i.
As we can see from the equation, the past activation values
of Xi are not available, thus the activation value cannot be
updated based on the rate of change in Xi. An exception
to this is recurrent neural networks where past activation
in the network can also have an effect on the current activ-
ity [5]. However, in our experimental results, it turns out
that such recurrent dynamics alone is not sufficient to effec-
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Figure 2: Facilitating or decaying neural activity.

tively counter the effects of delay (see Sec. 4.2 for details).
There are at least two ways in which we can introduce

temporal dynamics at a single neuron level. The activity
Xi(t) can be either decayed or facilitated based on its past
activation. Let us denote this modified activity as Ai(t) to
distinguish it from Xi(t). With this, we can now define the
decaying and facilitating dynamics in a continuous-valued
neuron (i.e. a firing-rate neuron).

The activity of a neuron with facilitating synapses can be
defined as follows (for the convenience of notation, we will
drop the index i):

A(t) = X(t) + rf(X(t)−A(t− 1)), (2)

where A(t) is the facilitated activation level at time t, X(t)
the instantaneous activation solely based on the instanta-
neous input at time t, and rf the facilitation rate (0 ≤ rf ≤
1). The basic idea is that the instantaneous activation X(t)
should be augmented with the rate of change X(t)−A(t−1)
modulated by facilitation rate rf . For later use, we will call
this rate of change ∆a(t):

∆a(t) = X(t)−A(t− 1). (3)

Note that Eq. 2 is similar to extrapolation using forward
Euler’s method where the continuous derivative A′(·) is re-
placed with its discrete approximation ∆a(·) [26] (p. 710).
Fig. 2a shows how facilitatory activity is derived from the
current and past neural activity. Basically, the activation
level A(t) at time t (where t coincides with the environmen-
tal time) is estimated using the input X(t−∆t) that arrived
with a delay of ∆t. If the facilitation rate rf is close to 0,
A(t) reduces to X(t), thus it represents old information com-
pared to the current environmental state. If rf is close to 1,
maximum extrapolation is achieved.

A neuron’s activity with decaying synapses can be calcu-
lated as follows:

A(t) = rdA(t− 1) + (1− rd)X(t), (4)

where A(t) is the decayed activation level at time t, X(t) the
instantaneous activation solely based on the current input
at time t, and rd the decay rate (0 ≤ rd ≤ 1). Thus, if rd is
close to 0, the equation will reduce to X(t), becoming iden-
tical to Eq. 1 as in conventional neural networks. However,
if rd approaches 1, the activation at time t will be close to
A(t − 1). It is important to note that the decay rate rd,
as defined above, represents how much the decay dynamics
is utilized, and not how fast previous activity decays over
time. Fig. 2b shows an example of decaying activation value
when rd = 0.5. Note that the equation is essentially the
same as Eq. 2, since A(t) = rdA(t − 1) + (1 − rd)X(t) =

X(t) + r′(X(t)−A(t− 1)), where r′ = −rd. So, both equa-
tions, Eq.2 and Eq.4, can be written as:

A(t) = X(t) + r∆a(t), (5)

where −1 ≤ r ≤ 1. The parameter r, which we will call the
dynamic activation rate, introduces a facilitating dynamic
to a neuron when the r value is positive and a decaying
dynamic when r is negative. Thus, the neural activation
values in the facilitating or the decaying neurons falls within
the range of X(t)−∆a(t) ≤ A(t) ≤ X(t) + ∆a(t).

The basic idea behind the facilitating and decaying ac-
tivity dynamics described above is very simple, but it turns
out that such a small change can significantly improve the
ability of the neural network in compensating for delay.

3. EXPERIMENTS

3.1 2D Pole-Balancing Problem with Input
Delay

The main domain we tested our idea of facilitatory neural
dynamics was the pole-balancing problem, which has been
established as a standard benchmark for adaptive control
systems [1, 30]. In the standard task, a cart is allowed to
move along a straight line while trying to keep balanced the
pole attached to it.

A more difficult task than this is the 2D version, where
the cart is allowed to move on a 2D plane (Fig. 3). The
goal of a controller here is to produce a sequence of force
to be applied to the cart to make the pole balanced (within
15o from the up-right position) and to maintain the cart
position within the 2D plane for a certain amount of time.
The state of the cart-environment system at a given instant
can be fully described by the cart’s location (cx, cy), their
derivatives over time (ċx, ċy), the configuration of the pole
relative to the z and the x axes (θz, θx), and their derivatives

over time (θ̇z, θ̇x). The standard problem without delay can
be solved by feedforward neural networks when such a full
state information is available. However, if the derivatives
(velocity) are not available (i.e. only cx, cy, θz, and θx are
given), a recurrent neural network is needed: The recurrent
dynamics of the network can serve as a form of memory from
which the velocity information can be recovered [14].

For our simulations, we made the 2D pole-balancing prob-
lem even harder by introducing delay in the four state inputs
cx, cy, θz, and θx (again, without the velocity information)
in different combinations and with different durations. The
purpose of doing this was to simulate conditions where neu-
ral conduction delay existed within a system that is inter-
acting with the environment in real time.

Typically, reinforcement learning is used to solve such con-
trol tasks, and neuroevolution is a good example. (See [36]
for reviews) One effective reinforcement learning method us-
ing neuroevolution is the Enforced Subpopulation algorithm
(ESP, see [13] for details), which showed successful perfor-
mance in nonlinear control problems [16]. In ESP, the con-
nection weights in a recurrent neural network are determined
through evolutionary learning. Instead of full networks, sin-
gle neurons are evolved so that best neurons from each sub-
population can be put together to form a complete network.
To test our hypothesis (i.e., for fast extrapolation, extrapola-
tion has to be implemented at a single-neuron level), we used
ESP as the basis of our simulations. With ESP, the neu-
rons in each subpopulation could evolve independently, and
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Figure 3: 2D pole-balancing problem.

rapidly specialize into good network sub-functions. With
this setup, we can effectively observe how a single neuron,
located in a particular position in the network, develops ex-
trapolatory capability. It turns out that two output neurons
which generate force to be applied to the cart (i.e. fx and
fy in Fig. 4) greatly evolve dynamic activation rate while
the other neurons do not (cf. Sec. 4.4).

3.2 Experimental Setup
To control the pole cart, we used a recurrent neural net-

work with five neurons (Fig. 4). The neurons were fully
recurrently connected, all neurons received input from four
sources: cx, cy, θz, and θx, as introduced earlier in Sec.
3.1 (Fig 3); and generated activation values by using the
sigmoid function. Two output neurons generated the force
in the x and the y direction. The optimal values for the
configurable parameters in each neuron were found through
neuroevolution using the Enforced Subpopulation algorithm
(ESP). Each neuron was assigned a chromosome containing
the connection weights (both control and FAN) and option-
ally the dynamic activation rate r (FAN only). The neu-
rons were drawn from five populations, each consisting of
forty neurons, to randomly construct a controller network.
In each generation, 400 randomly combined networks were
evaluated (each individual in a subpopulation participated
in the task 10 times), and the number of generations was
limited to 70 for each trial. After the fitness evaluation (fit-
ness defined as the number of steps the pole is balanced),
the neurons showing high fitness were mated using crossover,
and then mutated (mutation rate = 0.7, i.e., 70% of neurons
in subpopulation were mutated) to produce new offsprings.
The controller was considered successful if it succeeded in
balancing the pole for 10000 steps (i.e. 100 seconds) within
the 70 generations. The physical parameters for the cart-
pole system were as follows: pole length 0.1 m, pole mass
0.02 kg, tracking area 3 m × 3 m, and applied force limited
to the range [−10, 10] N.

We compared the performance of two different network
types: (1) Facilitating Activity Network (FAN), where dy-
namic activation rate r (−1 ≤ r ≤ 1) was included as
an evolvable parameter as well as the standard connection
weights. Notice that, depending on the value of r, FAN
can also utilize decaying dynamics as well as facilitating dy-
namics; (2) control network, which was the baseline ESP
implementation where only the weights were evolvable. To
compare fairly the performance of the two networks, we set
parameters other than those in the chromosome to be equal
(e.g. number of neurons, mutation rate, etc.; see above). All

fx fy

Cy z xCx

Figure 4: Recurrent neural network for pole balanc-
ing.

weight values and the dynamic activation rate values were
uniformly randomly initialized. We tested these two net-
works (FAN, control), as well as the baseline case without
delay, under different internal delay conditions. The results
from each experiment are reported in the following section.

4. RESULTS

4.1 Neural Activation and Internal States
First, we compared the neural activity in the two networks

to generally characterize the effects of adding facilitation (or
decaying) in the neural dynamics in the network. In these
experiments, all four inputs were given with a 1-step (10 ms)
delay beginning from 50 and lasting at 150 evaluation steps
within each individual run.

Fig. 5 shows the neural activities of the output neurons
(fx in Fig. 4) from the two different networks. The results
from the two networks are from successful trials. However,
the activity traces are markedly different. Control network
produced an on-going, noisy, and high-amplitude oscillation
in its neural activity (Fig. 5a). FAN, on the other hand,
initially showed a large fluctuation, but quickly settled to
a very stable low-amplitude oscillation, and maintained the
stability (Fig. 5b). (The results were similar for other delay
conditions.) These results suggest that even though extrap-
olation is generally known to be unstable, if used in a short
term and sparingly, it can help faster convergence to a stable
state in tasks with delay.

Fig. 5c, d show the internal states of the two networks.
The principal components derived from five neurons’ acti-
vation values represent that FAN kept relatively continuous
and stable internal states whereas control network endured
discrete and scattered internal states under input delay con-
ditions.

4.2 Performance under Different Input Delay
Conditions

To test the ability of the two networks in delay compensa-
tion, we conducted experiments under different delay condi-
tions: (1) without delay, (2) with a uniform amount of delay
for all input sources (cx, cy, θz, and θx) for a fixed limited
period of time during each run, (3) delay in θz, and (4) de-
lay in θx throughout the entire duration of each run. Fig. 6
summarizes the results under these different experimental
conditions.
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Figure 5: Activation level of an output neuron and
internal state of hidden neurons.

In experiment 1, the base case, we tested the standard
task without any delay. Under this condition, FAN had an
average success rate of 0.76 (average of success rates from 5
sets, each set consisting of 50 trials), a better performance
than the control network (t-test, p < 0.001, n = 5 sets). The
control did fairly well (success rate 0.62) in no-delay case.
It is interesting to note that even without delay, FAN out-
performed the control. These results establish a benchmark
against which the more difficult tasks below can be assessed.

In experiment 2, all sensor inputs were delivered with one
step delay (10 ms) in the middle of the run, beginning from
50 iterations and lasting until 150. Note that this is a dif-
ficult task because all the inputs are delayed. If the delays
were introduced from the beginning or if they lasted longer
than 100 iterations, performance in all controllers signifi-
cantly degraded. For this delay condition, again, FAN did
the better (t-test, p < 0.005, n = 5).

In experiment 3 and 4, one step delay in either θz or θx

was introduced throughout each trial (Fig. 6, 3rd and 4th
experiments from the left). Note that in these experiments,
the delay in these two inputs persisted over the entire trial,
unlike in experiment 2. Since all inputs except for one of
θz or θx were received on time, the controllers were able to
maintain some balance. As for the successful controllers,
FAN significantly outperformed the control under both con-
ditions (t-test, p < 0.002, n = 5). An interesting trend in
these results is that the delay in θz had a more severe ef-
fect on the performance than the other input did. This was
somewhat expected, because θz is the angle from the verti-
cal axis, and that angle was used to determine whether the
pole fell or not (pole is considered down if θz > 15o).

Another interesting question is how fast these networks
learn to balance the pole. For this we compared the number
of generations each of the two controllers took to successfully
balance the pole for the first time. For each controller, 250
evolutionary trials (5 sets of 50 trials each) were run where
each trial was limited to 70 generations beyond which the
controller was treated as failed. The results are summarized
in Fig. 7 for experiments 1 to 4. FAN required the least
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number of generations before successfully balancing the pole
in all cases (t-test, p < 0.0002, n = 5) except for experiment
3 (delay in θz) where no significant difference was found
between FAN and the control (p = 0.84).

In summary, dynamic activation (especially facilitating
dynamics, see Sec. 4.4 for details) in single neurons signifi-
cantly improved the ability of cart controllers to compensate
for transmission delay within the system. Also, such a facil-
itatory dynamics allowed for faster learning.

4.3 Blank-out Test: External Uncertainty
An interesting question arising here is whether facilitatory

activity can counteract delay in the external environment.
Suppose a moving object goes behind another object (i.e.
occluding). Until that moving object comes out again, the
input may be unavailable. In fact, humans are known to be
good at dealing with such a “blank out” of input in the ex-
ternal environment. Mehta and Schaal conducted “virtual
pole” experiments where human subjects were asked to bal-
ance the pole on the computer screen where the input was
blanked out for up to 600 ms at a time [23]. They proposed
that internal forward model exists in the central nervous
system, which can extrapolate the current input into the
future state based on the past input (see Sec. 5 for more
discussion). It is conceivable that facilitatory dynamics can
also help in this kind of situation as well. To test if this
is the case, we conducted another experiment where input
was blanked out for a short period of time, analogous to an
occlusion event as described above.

We assumed that the neurons would maintain steady-state
firing during the blank-out so that the neurons will remain
signaling their last-seen state. Thus the input data last seen
immediately before the blank-out were fed into the neurons
during the blank-out period.

For the experiments, first, the two networks were trained
under delay condition (1-step delay in θz from 50 to 150
iterations). When a network succeeded in solving the pole-
balancing problem, the learned parameters such as connec-
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Figure 8: Blank-out test.

tion weights and dynamic activation rates of the neurons
were stored. Then, the successful FAN and control networks
were loaded and tested under blank-out condition, respec-
tively. (Note that 50 successful networks from FAN and
control were tested.) As shown in Fig. 8(a), FAN showed
higher performance than control network and slow decrease
in performance until 600 ms (60 steps), which is surprisingly
similar to the observation in human experiments. Also, the
learning time is significantly faster than control networks as
shown in Fig. 8(b). Note that the control network showed
a steep decrease in performance and could not solve the
problem beyond 70 steps (i.e. 700 ms) blank-out duration
(success rate = 0 in Fig. 8(a)).

Experiments with blank-out test have shown that FAN
can also effectively deal with external delay by utilizing its
extrapolatory neural activity.

4.4 Contribution of Dynamic Activation Rate
The performance results reported in the previous sections

suggest that the dynamic activation rate r coded in the gene
of the FAN controller serves a useful purpose. To verify
if indeed the rate parameters are being utilized and, if it
is, which neural dynamic (facilitating or decaying) is being
developed, we looked at the evolution of these parameters
over the generations. Fig. 9 shows the evolution of the rate
parameters in FAN from successful networks.

The distribution of initial and evolved dynamic activation
rates are shown for a sample subpopulation. Each subpop-
ulation, from which one neuron was drawn to participate
in a network, consisted of 40 neurons. In this experiment,
θz was delivered with delay, beginning from 50 steps and
lasting until 150 steps within each generation. FAN suc-
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Figure 9: Evolved values of activation rate r.

ceeded in 41 trials out of 50 trials (Fig. 9a), and failed in 9
trials (Fig. 9b). Initially, the FAN has uniformly randomly
distributed rate values between -1 and 1. After successful
training, the dynamic activation rate r evolved to highly
positive values (Fig. 9a, 1640 neurons from 41 trials). The
number of neurons that have high r (i.e. between 0.5 and
1.0) increased, while neurons with negative r were reduced.
This means that extrapolation is pushed to the max (Eq. 2),
suggesting that neuroevolution tried to utilize the extrapo-
lating dynamics as much as possible. In failed trials (Fig. 9b,
360 neurons from 9 trials), the neurons failed in evolving
facilitating dynamics. The networks seemed to try to push
down the decaying dynamics. (Notice the decreased number
of neurons which have low r value (below -0.5) in the final
state). However, most neurons maintained negative values
of r. This suggests that decaying activity did not help to
overcome neural delay.

In sum, experiments with various forms of delay have
shown that networks with facilitatory neurons were most ef-
fective in compensating for neural transmission delay. Also,
the convergence of dynamic activation rate to high values
shows that extrapolation is heavily utilized in FAN. Thus,
facilitatory neural dynamics can be an effective way of keep-
ing an organism’s internal state aligned with the environ-
ment, in the present. Finally, these dynamics can also con-
tribute in dealing with external delay and uncertainty as
shown in Fig. 8.

5. DISCUSSION
The main contribution of this paper was to propose a

biologically plausible neural mechanism at a single neuron
level for compensating for neural transmission delay.

We developed a continuous-valued neuron model utilizing
facilitatory dynamics which was able to perform robustly
under internal sensory delay in the 2D pole-balancing task.
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Because facilitation occurs at the cellular level, delay com-
pensation is achieved faster than when it is done at a net-
work level. Our experiments showed that a recurrent neural
network with facilitatory single neuron dynamics took less
time to learn to solve the pole-balancing problem with in-
put delay and showed higher performance than the networks
having only recurrent network dynamics. In the future, it
would be interesting to test the effects of the number of hid-
den neurons and network topology on FAN’s performance.
Another possibility is to use a feedforward network. How-
ever, it was shown that, for control networks, fully recurrent
topology outperforms feedforward structure under limited
input condition (i.e. only four inputs without velocity infor-
mation) [15].

In this paper, we used continuous-valued neurons where
the neural activity was represented as a single real num-
ber. However, biological neurons communicate via spikes,
so the biological plausibility of the simulation results above
may come under question. One potential instrument is the
synaptic dynamics of facilitating synapses found in biolog-
ical neurons (as we briefly mentioned in Sec. 2). These
synapses generate short-term plasticity which shows activity-
dependent decrease (depression) or increase (facilitation) in
synaptic transmission occurring within several hundred mil-
liseconds from the onset of activity (for reviews see [19, 9]).
Especially, facilitating synapses cause augmentation of post-
synaptic response through increasing synaptic efficacy with
successive presynaptic spikes. Such mechanism may be the
neural basis of FAN. Preliminary results for this idea can
be found in [20]. Also, such a neural mechanism imple-
mented at the single-neuron level can be extended to mul-
tiple neurons. For example, in [21], we showed that facil-
itating synapses, together with adaptation through Spike-
Timing-Dependent Plasticity (presynaptic), can serve as a
neural basis for delay compensation in a network of bilater-
ally connected orientation-tuned cells. It would be worth-
while to verify further whether the dynamic activation rate
r defined in Eq. 5 is plausible in terms of neurophysiology.
It is known that facilitation is driven by elevated calcium
levels in presynaptic terminals. Recently, a neurophysiolog-
ical mechanism (e.g., involving calcium chelator BAPTA)
has been found, which may be responsible for the regulation
of the increase rate of synaptic efficacy [27].

Another question at this point relates to the extrapola-
tory capacity of facilitating neural dynamics. Extrapolation
is usually related to prediction of the future from informa-
tion from the present. However, in the nervous system, due
to the neural transmission delay, extrapolation was used to
predict the present based on past information. The question
is, is it possible that neural mechanisms that initially came
about for delay compensation could have developed further
to predict future events? Prediction or anticipation of fu-
ture events is an important characteristic needed in mobile,
autonomous agents [24, 17].

One prominent hypothesis regarding prediction is the in-
ternal forward model [35]: Forward models existing in var-
ious levels in the nervous system are supposed to produce
predictive behaviors which are based on sensory error cor-
rection. Internal forward models were suggested from an
engineering point of view, where the sensory motor system
is regarded as a well-structured control system that can
generate accurate dynamic behaviors. Even though theo-
retical mechanisms similar to Kalman filter methods were

suggested [23], the precise neural basis for the forward mod-
els have not been fully investigated. Recently, several brain
imaging studies provided supporting evidence for the exis-
tence of internal forward models in the nervous system [2,
33]. However, these results did not suggest what could be
the neural substrate. Thus, it may be worthwhile investigat-
ing how such abilities in autonomous agents can be related to
facilitatory dynamics at the cellular level. The input blank-
out experiment conducted in Sec. 4.3 is a first step in this
direction, where delay compensation mechanisms evolved to
deal with internal delay can be directed outward to handle
environmental uncertainty.

There are other forms of delay compensation such as in-
creased myelination of axons, increase in the thickness of
axons and dendrites, and changing the type of ion chan-
nels [8, 28]. However, there is a clear limit in the amount of
compensation these processes can bring about, thus facilitat-
ing neural dynamics may still be needed. As we mentioned
earlier, the dynamic activation rate may be an adaptable
property of neurons, thus the rate may be adjusted to ac-
commodate different delay durations. That way, organisms
can cope with delay during growth.

In our research, we focused on the dynamics of single neu-
rons only. In principle, extrapolation can be done at a differ-
ent level such as the local circuit level or large-scale network
level. However, our view is that to compensate for delays ex-
isting in various levels in the central nervous system and to
achieve faster extrapolation, the compensation mechanism
needs to be implemented at the single-neuron level.

6. CONCLUSION
In this paper, we have shown that facilitatory (extrapola-

tory) dynamics found in facilitating synapses may be used to
compensate for delay at a single-neuron level. Experiments
with a recurrent neural network controller in a modified 2D
pole-balancing problem with sensory delay showed that fa-
cilitatory activation greatly helps in coping with delay. The
same mechanism was also able to deal with uncertainty in
the external environment, as shown in the input blank-out
experiment. In summary, it was shown that facilitatory neu-
ral activation can effectively deal with delays inside, and
outside, the system, and it can very well be implemented
at a single neuron level, thus allowing a developing nervous
system to be in touch with the present.
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