
Healthy Daily Meal Planner
Aynur Kahraman

Department of Computer Engineering, Istanbul Technical
University

Maslak, Istanbul, 34469, Turkey

aynurkahraman@gmail.com

H. Aydolu Seven
Department of Computer Engineering, Istanbul Technical

University
Maslak, Istanbul, 34469, Turkey

aydolu@gmail.com

ABSTRACT
The purpose of this project is to develop a program that solves a
bi-objective diet problem to propose the user a “healthy” daily
meal according to some parameters specified by the user. The
program will interact with the user via a graphical interface to
receive information such as age and gender that is necessary to
determine daily nutritional and energy requirements and also
information on the preferences of the user among the dishes
available. The user will be presented all the dishes and is expected
to rate some of them on a scale from 1 to 10. The main goal is to
present the user a combination of dishes that satisfies the daily
nutritional requirements, minimizes the cost of the daily meal and
maximizes the total rating of the meal. In this paper, first the diet
problem is going to be introduced, then a genetic algorithm to
solve the problem will be presented.

Categories and Subject Descriptors
I.2.8-Problem Solving, Control Methods and Search

General Terms
Design, algorithms

Keys
Genetic Algorithms, Multi-objective Optimization, Multi-
objective Multi-constrained Knapsack Problem, Diet Problem

1. INTRODUCTION
A person’s daily diet is the subject matter of the problem because
it is bound to some constraints. These constraints can be the
maximum or minimum allowed amount of energy, minerals,
protein, fats, and so on. The classical diet problem [1] is a 0-1
integer programming problem where the goal is to find the
combination of foods that minimizes the cost of the meal while
satisfying all the constraints that make up the daily nutritional
requirements of a person. The diet problem which is the subject
matter of this paper is the same diet problem with the only
exception that it has an additional objective. For our problem, we
would like the user to rate the available dishes according to
personal taste. The additional objective is to maximize the user
rating of the daily meal.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Genetic and Evolutionary Computation Conference (GECCO)’05,
June 25–29, 2005, Washington, D.C. USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ... $5.00

1.1 The Bi-Objective Diet Problem
We assume that we have n kinds of dishes we can present to the
user and that we know the cost and the nutritional composition of
one serving of each dish. We learn each dish’s rating drom the
user. Let’s say we have m constraints. Most of the constraints that
represent the daily requirements will be lower bounds such as the
minimum daily amount of minerals and vitamins. However, there
will also be upper bounds such as maximum amount of vitamin K.
We choose to represent all the constraints as upper bounds, so we
will transform the lower bounds into upper bounds. Our problem
is simply to determine which dish will be included in the final
proposed daily meal. For every dish, we use a decision variable
assuming the values 0 or 1 (1 if the dish is included in the meal, 0
if it is not). Then the problem can be formulated as:
 n n
maximize ∑ xj * (rating)j ; minimize ∑ xj * (cost)j
 j = 1 j =1

subject to xj *rij ≤ ci i ∈ {1,2,...,m}

 xj ∈ {0,1} j ∈ {1,2,...,n}

Here, xj is the decision variable of dish number j; (rating)j is the
user-specified rating of it, (cost)j is the cost of it; ci is the
constraint number i; rij is the nutritional value of dish number j
relevant to constraint i.
Our diet problem has some obvious limitations. It assumes that
only one serving of a dish can be included in the daily meal.
Another limitation is that it proposes a daily meal, whereas in real
life a healthy daily diet consists of at least three meals, each
including different sorts of dishes.
The bi-objective diet problem can be modeled as a knapsack
problem [6]. The single constraint knapsack problem is
formulated as:

 n
maximize ∑ xj * pj subject to xj * rj ≤ c
 j = 1

xj ∈ {0,1} j ∈ {1,2,...,n}
In the knapsack problem [6], there are items which have profit
values (pj) and take up some resource (rj). The problem is to
determine the combination of items that maximizes the total profit
value without exceeding the resource constraint (c). The variables
(xj) represent whether an item is included in the solution or not
and can take only 0 or 1 as numerical values. For our problem, the
items are the available dishes. The knapsack problem above has
only one constraint, but there are several constraints in our diet
problem. Additionally our problem has two objectives. So our diet
problem can be classified as a multi-objective multidimensional

(sometimes referred to as multiple constraint) knapsack problem
[6].

2. THE GENETIC ALGORITHM
The multi-objective optimization and solution of single objective
multidimensional knapsack problem (MKP) will be analyzed
separately in this section.
2.1 Background Research
A genetic algorithm [4] is a search operation through a repeated
iteration process which is based on producing a number of
potential solutions first (initialization of population), using an
evaluation method to measure how much a solution serves a
certain objective (fitness evaluation), then diversifying the group
of solutions using some operators (selection, recombination,
mutation). This procedure is repeated until the whole population
converges or for a maximum number of times. To apply a genetic
algorithm, the representation of the solutions, the fitness
evaluation method, population size, the selection method, the
genetic operators, the population initalization method should be
determined. Since the variables in a MKP can be either 0 or 1, it
is reasonable to enumerate each variable and represent them as a
bit string. A MKP is a maximization problem, so the bigger the
value of the objective function the better, except for the cases in
which the solution is infeasible. The fitness evaluation method is
the objective function itself. But the infeasibility problem [5]
should be taken care of by either employing penalty or a repair
algorithm. The MKP can be solved using a standard GA, but the
use of problem specific heuristics significantly increases
performance.
There are genetic algorithms that use heuristics proposed for
MKP in the literature. Chu & Beasley [2] proposed a GA which is
superior to many heuristics in terms of solution quality. Their GA
is a steady state GA that uses binary string encoding, has a
population size of 100, uses binary tournament selection, uniform
crossover and bitwise mutation, does not allow duplicate
individuals in the population, has an initialization method specific
for MKP and a repair method which makes use of a concept
called pseudo-utility. In their initialization method, first a random
permutation of items is produced. Then each item in their order in
the permutation is set to 1 until doing so causes a constraint
violation. A repair method is used to transform an infeasible
solution into a feasible one. For a single constraint knapsack
problem, the pseudo-utility (uj) of item j is pj / rj. The higher the
uj, the more likely that item will be included in the solution.
However in MKP, there are multiple constraints, so there is no
clear definition of pseudo-utility. Ways to compute pseudo-utility
ratios for MKP have been proposed. Chu & Beasley used Pirkul’s
[7] surrogate duality approach, taking the shadow prices of each
constraint in the LP relaxation of MKP as the surrogate
multipliers. So, they first solve LP relaxation of MKP, find the
surrogate dual multipliers and compute the pseudo-utility of each
item. In Chu & Beasley’s repair method, first the items in an
infeasible solution, in ascending order of their uj values, are
extracted from the solution until no constraint is violated. Then
the items, in descending order of their uj values, are added to the
solution provided that no constraint is violated. Thus, the items
with the lowest utility are extracted from and the ones with the
highest utility are added to the solution. This repair algorithm
keeps each solution on the boundary of feasibility.

Raidl’s improved GA [8] is very similar to Chu & Beasley’s,
except for some differences in the initialization, repair and local
optimization methods. The most important difference is that Raidl
uses the values of xjs in LP relaxation of MKP as pseudo-utility
ratios. In Raidl’s repair and local optimization methods, first a
random permutation of n items is generated, then the items are
sorted according to their pseudo-utilities. Thus, the items with the
same pseudo-utility are prioritized over each other in a random
fashion. Raidl’s initialization method also uses pseudo-utility
values. First a random permutation of n items is generated. Then
for each item in the permutation, a random number in the interval
[0,1) is generated. If the random number is less than the value of
that item’s decision variable in the LP relaxation, that item is
added to the solution unless no constraint is violated. Thus, it is
more likely that the items with higher xj value in the LP relaxation
are included in the initial population. But the initial population is
made diverse through randomness at the same time. Chu &
Beasley’s GA and Raidl’s GA both keep the search on the
boundary of feasibility. According to tests, Raidl’s GA performs
slightly better than Chu & Beasley’s GA.
In multiobjective optimization, the goal is to find a solution
whose vector of objectives is the most convenient for the decision
maker. There are several approaches for multi objective
optimization; there are aggregating methods, methods not based
on pareto optimum, and methods based on pareto optimum [3].
Some of these methods depend on favoring a criterion over
another, some of them on reaching a goal for each objective, some
depend on compromise between objectives [3]. In multiobjective
optimization a solution is said to be non-dominated or non-
inferior if no other solution is at least equivalent or superior to it
for all of the objectives. All non-inferior solutions form the pareto
set and the pareto based approaches try to scan the pareto set for
searching the most convenient solution.
As mentioned above, in multiobjective optimization problems, the
goal is to find a solution made up of a vector of decision
variables, which satisfies constraints and optimizes vector of
objectives and is the most convenient for the decision maker [3].
So, the final solution comes out after both optimization and
decision processes [9]. According to decision maker’s
preferences, Multiobjective Evolutionary Algorithm (MOEA)-
based Multiobjective Problem (MOP) solution techniques can be
arranged in three categories. Vledhuizan and Lamont quoted [9]
that Hwang and Masud had declared these categories in 1979 as
follows:
A Priori Preference Articulation: Multiple objectives are put
together and the problem becomes a single-objective problem.
A Progressive Preference Articulation: This category includes
interactive approaches, in which decision making and
optimization are made simultaneously and an updated set of
solutions is provided for the decision maker.
A Posteriori Preference Articulation: A set of pareto optimal
candidate solutions is given and the decision maker selects the
convenient solution from the set .
The approach used in our problem, “Weighted Sum Approach”, is
one of the aggregating methods, and also a priori MOEA solution
techniques.

2.2 The GA for Bi-Objective Diet Problem
Our GA is basically same as Chu & Beasley’s or Raidl’s. The
only difference is the initialization, repair and optimization
methods. The initialization method is an improved version of the
one used by Chu & Beasley. It is the C* method explained in
Gottlieb’s thesis [5]. The difference is that in C* every item is
attempted to be included in the solution, thus ensuring that the
solution lies on the boundary. We will not make use of linear
relaxation for our repair and optimization routines. The repair and
optimization routines we use are very similar to the initialization;
the random permutation generated for each solution in the
initialization routine will be used in repair and optimization. In
our repair method, each item, in their order in the random
permutation will be extracted from the solution until there is no
constraint violation [5]. And in the optimization method, each
item, in their order in the random permutation, will be added to
the solution provided that there is no constraint violation [5]. The
properties of our GA are summarized in Table 1.

Table 1. The properties of the GA

GA steady state, no duplicate individuals

Encoding bit string

Selection binary tournament selection

Mutation bitwise mutation (with probability of
1/n)

Recombination uniform crossover (with probability
of 0.9)

Population size 100

Total number of loops 106

Problem-specific initialization, repair and local optimization
methods are used.

Since there are multiple objectives in our problem, the evaluation
of fitness will be different. We are going to use the weighted sum
approach for multi objective optimization. According to this
approach, multiple objectives are transformed into a single
objective which is a linear function of all objectives [3]. The
objectives have to be of the same type, in other words they should
all be either minimization or maximization. However, in our
problem, of the two objectives, one is maximization and the other
is minimization. So, we will transform the minimization into
maximization by using the reciprocal of that objective function.
Each objective is multiplied with a weight value assigned to it and
added together. The sum of all the weights assigned to the
objectives should be 1. Also, to prevent the objectives from
dominating each other numerically, the objective values should be
normalized. For our problem, the objectives and the final fitness
function are:

 n n
objective 1 : f1 = ∑ xj * (rating)j ; f1′ = f1 / ∑ (rating)j
 j = 1 j = 1

 n n
objective 2 : f2 = ∑ xj * (cost)j ; f2′ = f2 / ∑ (cost)j
 j = 1 j = 1

fitness : f = w1 * f1′ + w2 / f2′

The weights assigned to each objective will be 0.5 by default.
But, it can be 0.6 – 0.4 or vice versa depending on the user’s
choice.

3. THE PROBLEM DATA
Up to here, we assumed that we had a certain amount of foods of
which we know the nutritional composition and cost. We also
assumed that we knew the constraints that make up the daily
nutritional requirements of a person. So, we need to know the cost
of each food, the amount of nutrients in each food and the
nutritional requirements.
For the cost information, we will use an estimated cost for each
item. For the nutritional composition of foods, we are going to use
USDA National Nutrient Database for Standard Reference,
Release 17 [10]. This database contains the nutritional
composition of 100 grams of 6839 food items and we are going to
use a subset of those 6839 food items. In the database, the foods
are organized in different food groups. There is also information
on the weight of one serving of each food item in the database.
The amount of a nutrient in a food item will be the resource that
item takes up, counting towards the constraint relevant to that
nutrient. Those nutrients will be vitamins, elements, electrolytes,
macronutrients and energy. Generally, each country has different
recommended dietary values. We are going to use DRI (Dietary
Reference Intake) and RDA (Recommended Dietary Allowance)
tables established by U.S. Food and Nutrition Board of the
National Academy of Sciences for the constraints of our problem
[12]. DRI is a revised and updated version of the RDA[11]. DRI
consists of four reference values: the recommended dietary
allowance (RDA), adequate intake (AI), estimated average
requirement (EAR) and tolerable upper intake level (UL) [11].
RDA gives reference values that meet the nutritional requirements
of 97-98% of the population [11]. AI values are used when there
is not enough scientific data to establish RDA values [11]. EAR
values meet the nutritional requirements of 50% of the population
and UL gives the highest amount of daily intake of a nutrient
without side effects [11]. There aren’t UL values for most
nutrients and there aren’t RDA or AI values for a few of them.
We are going to use the RDA and AI values as lower bounds and
UL values as upper bounds. The reference values in both RDA
and DRI change according to age and gender. However, RDA and
DRI differ from each other the way they form age groups. We are
going to use the reference values in the DRI tables for most of the
nutrients. The RDA and DRI tables also provide reference values
for babies, lactating women and pregnant women. However, we
are not going to use these values in our project. Our program will
not propose a meal for those groups.

4. THE GRAPHICAL INTERFACE
The user specifies his/her age and gender from the graphical
interface, sees all the available foods and rates the ones he/she
chooses. The foods are presented as members of food groups. The
user is also able to rate an entire food group without rating each
food in that group separately. Additionally, the user is able to
favor one criterion over another via the graphical interface.
He/she can prioritize the minimization of cost or the
maximization of the meal’s total rating. By default, the two
objectives have equal weights. The preliminary graphical user
interface is given in Figure 1.

REFERENCES

[1] Argonne National Laboratory, Mathematics and Computer
Science Division, The Optimization Technology Center,
NEOS Guide, Case Studies, Diet Problem.

 http://www-fp.mcs.anl.gov/otc/Guide/CaseStudies/diet/
[2] P. C. Chu, J. E. Beasley: A Genetic Algorithm for the

Multidimensional Knapsack Problem, working paper at The
Management School, Imperial College of Science, London,
1997.

[3] C. A. Coello Coello, A Comprehensive Survey of
Evolutionary-Based Multiobjective Optimization Techniques,
Knowledge and Information Systems, Vol. 1 No. 3, pp.269-
308, 1999.

[4] A. E. Eiben, J.E. Smith, Introduction to Evolutionary
Computing, Springer Verlag, 2003.

[5] J. Gottlieb: Evolutionary Algorithms for Constrained
Optimization Problems Dissertation, Technical University of
Clausthal, Department of Computer Science, 2000.

[6] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems,
Springer Verlag, 2004.

[7] H. Pirkul: A Heuristic Solution Procedure for the
Multiconstrained 0-1 Knapsack Problem, Naval Research
Logistics 34, pp. 161-172, 1987.

Figure 1. The preliminary graphical user interface

5. CURRENT STATUS
[8] G. R. Raidl: An Improved Genetic Algorithm for the

Multiconstrained 0-1 Knapsack Problem, proceeding of the
5th IEEE International Conference on Evolutionary
Computation, 1998.

We implemented the genetic algorithm we proposed for small
scale single objective MKP samples and reached the optimum
solution for them. We constructed most of our diet problem’s
data. We prepared a graphical interface, have the database of
constraints and nutritional composition ready. We are in the phase
of implementing the final program in which the genetic algorithm,
the graphical interface and the database connections work
together.

[9] D. A. V. Veldhuizen, G. B. Lamont: Multiobjective
Evolutionary Algorithms: Analyzing the State-of-the-Art,
Massachusetts Institute of Technology Evolutionary
Computation, Vol. 8, No. 2, pp.125-147, 200

[10] U.S. Department of Agriculture, Agricultural Research
Service. 2004. USDA Nutrient Database for Standard
Reference, Release 17. Nutrient Data Laboratory Home
Page, http://www.nal.usda.gov/fnic/foodcomp.

6. FUTURE WORK
For future, we consider using Raidl’s methods of initialization,
optimization and repair routines by implementing a method to
solve the LP relaxation of the problem. We also consider
implementing another multiobjective optimization tchnique using
a pareto based approach. Because it is difficult to determine the
proper weights in the weighted sum approach and as Coello states
[3] it does not generate proper Pareto optimal solutions in the
presence of non-convex search spaces, we consider implementing
anoher approach.

[11] International Food Information Council Foundation, Dietary
Reference Intakes: An Update,
http://ific.org/publications/other/driupdateom.cfm, August
2002.

ACKNOWLEDGMENTS
The Healthy Daily Meal Planner is developed as the graduation
project under the supervision of Asst. Prof. Dr. A. Şima Etaner-
Uyar by 8th term students Aynur Kahraman and H. Aydolu Seven
from the Computer Engineering Department of Istanbul Technical
University, Turkey.

[12] Food and Nutrition Information Center, Dietary Reference
Intakes (DRI) and Recommended Dietary Allowances (RDA),
http://www.nal.usda.gov/fnic/etext/000105.html

	INTRODUCTION
	THE GENETIC ALGORITHM
	THE PROBLEM DATA
	THE GRAPHICAL INTERFACE
	CURRENT STATUS
	FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

