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ABSTRACT 
The purpose of this project is to develop a program that solves a 
bi-objective diet problem to propose the user a “healthy” daily 
meal according to some parameters specified by the user. The 
program will interact with the user via a graphical interface to 
receive information such as age and gender that is necessary to 
determine daily nutritional and energy requirements and also 
information on the preferences of the user among the dishes 
available. The user will be presented all the dishes and is expected 
to rate some of them on a scale from 1 to 10. The main goal is to 
present the user a combination of dishes that satisfies the daily 
nutritional requirements, minimizes the cost of the daily meal and 
maximizes the total rating of the meal. In this paper, first the diet 
problem is going to be introduced, then a genetic algorithm to 
solve the problem will be presented. 

Categories and Subject Descriptors 
I.2.8-Problem Solving, Control Methods and Search 

General Terms 
Design, algorithms 

Keys 
Genetic Algorithms, Multi-objective Optimization, Multi-
objective Multi-constrained Knapsack Problem, Diet Problem 

1. INTRODUCTION 
A person’s daily diet is the subject matter of the problem because 
it is bound to some constraints. These constraints can be the 
maximum or minimum allowed amount of energy, minerals, 
protein, fats, and so on. The classical diet problem [1] is a 0-1 
integer programming problem where the goal is to find the 
combination of foods that minimizes the cost of the meal while 
satisfying all the constraints that make up the daily nutritional 
requirements of a person. The diet problem which is the subject 
matter of this paper is the same diet problem with the only 
exception that it has an additional objective. For our problem, we 
would like the user to rate the available dishes according to 
personal taste. The additional objective is to maximize the user 
rating of the daily meal. 
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1.1 The Bi-Objective Diet Problem 
We assume that we have n kinds of dishes we can present to the 
user and that we know the cost and the nutritional composition of 
one serving of each dish. We learn each dish’s rating drom the 
user. Let’s say we have m constraints. Most of the constraints that 
represent the daily requirements will be lower bounds such as the 
minimum daily amount of minerals and vitamins. However, there 
will also be upper bounds such as maximum amount of vitamin K. 
We choose to represent all the constraints as upper bounds, so we 
will transform the lower bounds into upper bounds. Our problem 
is simply to determine which dish will be included in the final 
proposed daily meal. For every dish, we use a decision variable 
assuming the values 0 or 1 (1 if the dish is included in the meal, 0 
if it is not). Then the problem can be formulated as: 
                           n                                                                       n 
maximize  ∑  xj * (rating)j ;     minimize  ∑  xj * (cost)j
                          j = 1                                                                  j =1   

subject to    xj *rij ≤ ci    i ∈ {1,2,...,m}  

   xj  ∈ {0,1}           j ∈ {1,2,...,n} 
 
Here, xj is the decision variable of dish number j; (rating)j is the 
user-specified rating of it, (cost)j is the cost of it; ci is the 
constraint number i; rij is the nutritional value of dish number j 
relevant to constraint i.  
Our diet problem has some obvious limitations. It assumes that 
only one serving of a dish can be included in the daily meal. 
Another limitation is that it proposes a daily meal, whereas in real 
life a healthy daily diet consists of at least three meals, each 
including different sorts of dishes.  
The bi-objective diet problem can be modeled as a knapsack 
problem [6]. The single constraint knapsack problem is 
formulated as: 

                          n 
maximize ∑  xj * pj                subject to    xj * rj ≤ c 
                        j = 1 

xj  ∈ {0,1}                 j ∈ {1,2,...,n} 
In the knapsack problem [6], there are items which have profit 
values (pj) and take up some resource  (rj). The problem is to 
determine the combination of items that maximizes the total profit 
value without exceeding the resource constraint (c). The variables 
(xj) represent whether an item is included in the solution or not 
and can take only 0 or 1 as numerical values. For our problem, the 
items are the available dishes. The knapsack problem above has 
only one constraint, but there are several constraints in our diet 
problem. Additionally our problem has two objectives. So our diet 
problem can be classified as a multi-objective multidimensional 



(sometimes referred to as multiple constraint) knapsack problem 
[6]. 

2. THE GENETIC ALGORITHM 
The multi-objective optimization and solution of single objective 
multidimensional knapsack problem (MKP) will be analyzed 
separately in this section. 
2.1 Background Research 
A genetic algorithm [4] is a search operation through a repeated 
iteration process which is based on producing a number of 
potential solutions first (initialization of population), using an 
evaluation method to measure how much a solution serves a 
certain objective (fitness evaluation), then diversifying the group 
of solutions using some operators (selection, recombination, 
mutation). This procedure is repeated until the whole population 
converges or for a maximum number of times. To apply a genetic 
algorithm, the representation of the solutions, the fitness 
evaluation method, population size, the selection method, the 
genetic operators, the population initalization method should be 
determined. Since the variables in a MKP can be either 0 or 1, it 
is reasonable to enumerate each variable and represent them as a 
bit string. A MKP is a maximization problem, so the bigger the 
value of the objective function the better, except for the cases in 
which the solution is infeasible. The fitness evaluation method is 
the objective function itself. But the infeasibility problem [5] 
should be taken care of by either employing penalty or a repair 
algorithm. The MKP can be solved using a standard GA, but the 
use of problem specific heuristics significantly increases 
performance.  
There are genetic algorithms that use heuristics proposed for 
MKP in the literature. Chu & Beasley [2] proposed a GA which is 
superior to many heuristics in terms of solution quality. Their GA 
is a steady state GA that uses binary string encoding, has a 
population size of 100, uses binary tournament selection, uniform 
crossover and bitwise mutation, does not allow duplicate 
individuals in the population, has an initialization method specific 
for MKP and a repair method which makes use of a concept 
called pseudo-utility. In their initialization method, first a random 
permutation of items is produced. Then each item in their order in 
the permutation is set to 1 until doing so causes a constraint 
violation. A repair method is used to transform an infeasible 
solution into a feasible one. For a single constraint knapsack 
problem, the pseudo-utility (uj) of item j is pj / rj. The higher the 
uj, the more likely that item will be included in the solution. 
However in MKP, there are multiple constraints, so there is no 
clear definition of pseudo-utility. Ways to compute pseudo-utility 
ratios for MKP have been proposed. Chu & Beasley used Pirkul’s 
[7] surrogate duality approach, taking the shadow prices of each 
constraint in the LP relaxation of MKP as the surrogate 
multipliers. So, they first solve LP relaxation of MKP, find the 
surrogate dual multipliers and compute the pseudo-utility of each 
item. In Chu & Beasley’s repair method, first the items in an 
infeasible solution, in ascending order of their uj values, are 
extracted from the solution until no constraint is violated. Then 
the items, in descending order of their uj values, are added to the 
solution provided that no constraint is violated. Thus, the items 
with the lowest utility are extracted from and the ones with the 
highest utility are added to the solution. This repair algorithm 
keeps each solution on the boundary of feasibility. 

Raidl’s improved GA [8] is very similar to Chu & Beasley’s, 
except for some differences in the initialization, repair and local 
optimization methods. The most important difference is that Raidl 
uses the values of xjs in LP relaxation of MKP as pseudo-utility 
ratios. In Raidl’s repair and local optimization methods, first a 
random permutation of n items is generated, then the items are 
sorted according to their pseudo-utilities. Thus, the items with the 
same pseudo-utility are prioritized over each other in a random 
fashion. Raidl’s initialization method also uses pseudo-utility 
values. First a random permutation of n items is generated. Then 
for each item in the permutation, a random number in the interval 
[0,1) is generated. If the random number is less than the value of 
that item’s decision variable in the LP relaxation, that item is 
added to the solution unless no constraint is violated. Thus, it is 
more likely that the items with higher xj value in the LP relaxation 
are included in the initial population. But the initial population is 
made diverse through randomness at the same time. Chu & 
Beasley’s GA and Raidl’s GA both keep the search on the 
boundary of feasibility. According to tests, Raidl’s GA performs 
slightly better than Chu & Beasley’s GA. 
In multiobjective optimization, the goal is to find a solution 
whose vector of objectives is the most convenient for the decision 
maker. There are several approaches for multi objective 
optimization; there are aggregating methods, methods not based 
on pareto optimum, and  methods based on pareto optimum [3]. 
Some of these methods depend on favoring a criterion over 
another, some of them on reaching a goal for each objective, some 
depend on compromise between objectives [3]. In multiobjective 
optimization a solution is said to be non-dominated or non-
inferior if no other solution is at least equivalent or superior to it 
for all of the objectives. All non-inferior solutions form the pareto 
set and the pareto based approaches try to scan the pareto set for 
searching the most convenient solution. 
As mentioned above, in multiobjective optimization problems, the 
goal is to find a solution made up of a vector of decision 
variables, which satisfies constraints and optimizes vector of 
objectives and is the most convenient for the decision maker [3]. 
So, the final solution comes out after both  optimization and 
decision processes [9]. According to decision maker’s 
preferences, Multiobjective Evolutionary Algorithm (MOEA)-
based Multiobjective Problem (MOP) solution techniques can be 
arranged in three categories. Vledhuizan and Lamont quoted [9] 
that Hwang and Masud had declared these categories in 1979 as 
follows:  
A Priori Preference Articulation: Multiple objectives are put 
together and the problem becomes a single-objective problem. 
A Progressive Preference Articulation: This category includes 
interactive approaches, in which decision making and 
optimization are made simultaneously and an updated set of 
solutions is provided for the decision maker. 
A Posteriori Preference Articulation: A set of pareto optimal 
candidate solutions is given and the decision maker selects the 
convenient solution from the set . 
The approach used in our problem, “Weighted Sum Approach”, is 
one of the aggregating methods, and also a priori MOEA solution 
techniques.  
 
 



2.2 The GA for Bi-Objective Diet Problem 
Our GA is basically same as Chu & Beasley’s or Raidl’s. The 
only difference is the initialization, repair and optimization 
methods. The initialization method is an improved version of the 
one used by Chu & Beasley. It is the C* method explained in 
Gottlieb’s thesis [5]. The difference is that in C* every item is 
attempted to be included in the solution, thus ensuring that the 
solution lies on the boundary.  We will not make use of linear 
relaxation for our repair and optimization routines. The repair and 
optimization routines we use are very similar to the initialization; 
the random permutation generated for each solution in the 
initialization routine will be used in repair and optimization. In 
our repair method, each item, in their order in the random 
permutation will be extracted from the solution until there is no 
constraint violation [5]. And in the optimization method, each 
item, in their order in the random permutation, will be added to 
the solution provided that there is no constraint violation [5]. The 
properties of our GA are summarized in Table 1. 

Table 1. The properties of the GA 

GA steady state, no duplicate individuals 

Encoding bit string 

Selection binary tournament selection 

Mutation bitwise mutation (with probability of 
1/n) 

Recombination uniform crossover (with probability 
of  0.9) 

Population size 100 

Total number of loops 106

Problem-specific initialization, repair and local optimization 
methods are used. 

 
Since there are multiple objectives in our problem, the evaluation 
of fitness will be different. We are going to use the weighted sum 
approach for multi objective optimization. According to this 
approach, multiple objectives are transformed into a single 
objective which is a linear function of all objectives [3]. The 
objectives have to be of the same type, in other words they should 
all be either minimization or maximization. However, in our 
problem, of the two objectives, one is maximization and the other 
is minimization. So, we will transform the minimization into 
maximization by using the reciprocal of that objective function. 
Each objective is multiplied with a weight value assigned to it and 
added together. The sum of all the weights assigned to the 
objectives should be 1. Also, to prevent the objectives from 
dominating each other numerically, the objective values should be 
normalized. For our problem, the objectives and the final fitness 
function are: 

                                            n                                                                 n 
objective 1 : f1 =  ∑  xj * (rating)j  ;  f1′ =  f1 / ∑  (rating)j  
                                           j = 1                                                           j = 1  

                                          n                                                              n 
objective 2 : f2 = ∑  xj * (cost)j  ;  f2′  =  f2 / ∑  (cost)j  
                                         j = 1                                                         j = 1  

                                   
fitness : f = w1 * f1′ + w2 / f2′  

The weights assigned to each objective will be 0.5 by default. 
But, it can be 0.6 – 0.4 or vice versa depending on the user’s 
choice.  

3. THE PROBLEM DATA  
Up to here, we assumed that we had a certain amount of foods of 
which we know the nutritional composition and cost. We also 
assumed that we knew the constraints that make up the daily 
nutritional requirements of a person. So, we need to know the cost 
of each food, the amount of nutrients in each food and the 
nutritional requirements. 
For the cost information, we will use an estimated cost for each 
item. For the nutritional composition of foods, we are going to use 
USDA National Nutrient Database for Standard Reference, 
Release 17 [10]. This database contains the nutritional 
composition of 100 grams of 6839 food items and we are going to 
use a subset of those 6839 food items. In the database, the foods 
are organized in different food groups. There is also information 
on the weight of one serving of each food item in the database. 
The amount of a nutrient in a food item will be the resource that 
item takes up, counting towards the constraint relevant to that 
nutrient. Those nutrients will be vitamins, elements, electrolytes, 
macronutrients and energy. Generally, each country has different 
recommended dietary values. We are going to use DRI (Dietary 
Reference Intake) and RDA (Recommended Dietary Allowance) 
tables established by U.S. Food and Nutrition Board of the 
National Academy of Sciences for the constraints of our problem 
[12]. DRI is a revised and updated version of the RDA[11]. DRI 
consists of four reference values: the recommended dietary 
allowance (RDA), adequate intake (AI), estimated average 
requirement (EAR) and tolerable upper intake level (UL) [11]. 
RDA gives reference values that meet the nutritional requirements 
of 97-98% of the population [11]. AI values are used when there 
is not enough scientific data to establish RDA values [11]. EAR 
values meet the nutritional requirements of 50% of the population 
and UL gives the highest amount of daily intake of a nutrient 
without side effects [11]. There aren’t UL values for most 
nutrients and there aren’t RDA or AI values for a few of them. 
We are going to use the RDA and AI values as lower bounds and 
UL values as upper bounds. The reference values in both RDA 
and DRI change according to age and gender. However, RDA and 
DRI differ from each other the way they form age groups. We are 
going to use the reference values in the DRI tables for most of the 
nutrients. The RDA and DRI tables also provide reference values 
for babies, lactating women and pregnant women. However, we 
are not going to use these values in our project. Our program will 
not propose a meal for those groups. 

4. THE GRAPHICAL INTERFACE  
The user specifies his/her age and gender from the graphical 
interface, sees all the available foods and rates the ones he/she 
chooses. The foods are presented as members of food groups. The 
user is also able to rate an entire food group without rating each 
food in that group separately. Additionally, the user is able to 
favor one criterion over another via the graphical interface. 
He/she can prioritize the minimization of cost or the 
maximization of the meal’s total rating. By default, the two 
objectives have equal weights. The preliminary graphical user 
interface is given in Figure 1. 
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