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ABSTRACT
Small populations are very desirable for reducing the re-
quired computational resources in evolutionary optimization
of complex real-world problems. Unfortunately, the search
performance of small populations often reduces dramatically
in a large search space. To address this problem, a method
to find an optimal search dimension for small populations
is suggested in this paper. The basic idea is that the evolu-
tionary algorithm starts with a small search dimension and
then the search dimension is increased during the optimiza-
tion. The search dimension will continue to increase if an
increase in the search dimension improves the search perfor-
mance. Otherwise, the search dimension will be decreased
and then kept constant. Through empirical studies on a test
problem with an infinite search dimension, we show that the
proposed algorithm is able to find the search dimension that
is the most efficient for the given population size.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search - Heuristic Algorithms

General Terms
Algorithms

Keywords
Evolution strategy, optimal search dimension, dynamic prob-
lems

1. INTRODUCTION
To reduce the computational time in solving expensive op-

timization problems using evolutionary algorithms, a com-
monly adopted approach is to parallelize the fitness evalua-
tion process so that each individual is evaluated on a sepa-
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rate machine. In this case, use of a relatively small popula-
tion size will be very helpful in reducing the computational
cost for the evolutionary optimization.

Unfortunately, we are left in a dilemma when we use small
populations for solving complex real-world problems. On
the one hand, many real-world optimization problems, e.g.,
design optimization where splines are used to describe the
geometry of a structure [6], have a very large number of de-
sign parameters. On the other hand, the search efficiency
decreases seriously when small populations are used to op-
timize problems with a high search dimension.

Two approaches could be employed to alleviate, if not
solve, the difficulty mentioned above. One method is to de-
velop an efficient evolutionary algorithm with a small popu-
lation size whose performance is less sensitive to the search
dimension. One good example is the derandomized evo-
lution strategy with covariance matrix adaptation (CMA-
ES) [4], which has shown to be robust on various unimodal
test functions. Nevertheless, the search efficiency of the
CMA-ES still greatly depends on the population size. A
conclusion from empirical studies is that the population size
should be scaled between linear and cubic with the problem
dimension to locate the global optimum [1].

Another method is to adapt the search dimension to the
population size in use. To this end, an adaptive coding
scheme has been suggested where the CMA-ES is employed
in aerodynamic shape optimization [7]. The basic idea is
to encode the number of parameters to be optimized (the
search dimension) in the chromosome and to mutate dur-
ing the optimization. One issue that arises in the adaptive
coding scheme is that the self-adaptation of the evolution
strategy can be disturbed due to the mutation in the search
dimension, which is harmful to the search performance. One
measure to address this problem is to ensure that the mu-
tations are neutral, i.e., the shape of the geometry will be
kept the same before and after a new point is inserted in the
spline representation.

In this paper, we will explicitly monitor the performance
change after the search dimension is increased. If the in-
crease in the search dimension is beneficial, the search di-
mension will be further increased. Otherwise, the search
dimension will be decreased and then will be kept constant
until the end of the optimization. To minimize the distur-
bance on the self-adaptation mechanism, the dimension is
increased only by 1 in each change in dimension. Through
simulations on various population sizes, it is shown that our



method is able to find an optimal or nearly optimal search
dimension for the given population size on a test problem
with an infinite search dimension.

The test problem used in this study will be briefly de-
scribed in Section 2. The search capacity of the CMA-ES
with regard to the population size on the test problem are
investigated empirically in Section 3. The algorithm to find
the optimal search dimension is given in Section 4 and a
number of simulations are conducted in Section 5, where
we show that the algorithm is able to find the optimal or
sub-optimal search dimension for different population sizes.
Conclusion and further research topics are discussed in Sec-
tion 6.

2. TEST PROBLEM
The test problem used in this study is very simple. How-

ever, it serves our purpose well where an infinitely large
search dimension is needed theoretically. We consider the
approximation of a one-dimensional function using a Taylor
series. If a function f(x) has continuous derivatives, then
this function can be expanded as follows:

f(x) = f(a) + f
′(a)(x − a) +

f ′′(a)(x − a)2

2!
+ · · ·

+
f (n)(a)(x − a)n

n!
+ Rn, (1)

where Rn is the remainder after n + 1 terms defined by:

Rn =

Z x

a

f
(n+1)(u)
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=
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where a < ξ < x. When this expansion converges over a
certain range of x, i.e., limn→Rn = 0, then the expansion
is known as em Taylor Series of function f(x) about a. For
example, the Taylor expansion of sine function is as follows:

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · ,−∞ < x < ∞. (3)

The optimization problem is to find the coefficients of the
Taylor series by minimizing the squared approximation er-
ror:

E(x) = (
n
X

i=0

aix
i − sin(x))2, (4)

where x is the point about which the Taylor series is ex-
panded, ai, i = 0, 1, 2, · · · , n is the number of terms of the
Taylor series. Theoretically, an infinite search dimension is
needed to realize a perfect approximation of a sinusoidal
function using Taylor series. To estimate the approximation
error reliably, we sample 100 points uniformly within the
range of 0 ≤ x ≤ 1:

E =

100
X

j=1

E(xj). (5)

An interesting fact in the above test function is that the
influence of each term on the function value decreases as the

order increases. Thus, terms in the Taylor expansion are
added in the search algorithm from lower orders to higher
ones. This is reasonable because in optimization of real-
world problems, we try to account for at first the most im-
portant factors and then try to include those with minor
influence.

3. SEARCH EFFICIENCY OF SMALL EAS
As we mentioned in the Introduction, the derandomized

evolution strategy with covariance matrix adaptation (CMA-
ES) proposed in [3] was designed for small populations. It
has shown to be efficient on a large number of unimodal
optimization problems, particularly on ill-conditioned and
non-separable problems [4]. In the (µ, λ)-CMA-ES without
recombination, the λ offspring of generation g + 1 is gener-
ated as follows:

x
(g+1)
k = x

(g)
j + σ

(g)B(g)Dg)z
(g+1)
k ,

j = 1, · · · , µ; k = 1, · · · , λ, (6)

where k is randomly chosen from the µ selected parents,
z is an n-dimensional (n is the search dimension) vector
of normally distributed random numbers with expectation
zero and identity covariance matrix, BD (BD)T = C is the
covariance matrix. During the evolution, the covariance ma-
trix is updated as follows:

C(g+1) = (1 − ccov)C(g) + ccovp
(g+1)
c

“

p
(g+1)
c

”T

, (7)

where p
(g+1)
c is known as the evolution path calculated by:

p
(g+1)
c = (1 − cc)p

(g)
c +

p

cc · (2 − cc)B(g)D(g)z
(g)
k . (8)

The adaptation of the global step-size σ(g+1) is calculated
by:

σ
(g+1) = σ

(g)exp

 

1

dσ

||p(g)
σ || − ˆchin

χ̂n

!

, (9)

where χ̂n is the expected length of a (0, I)-normally dis-
tributed random vector and can be approximated by

√
n(1−

1
4n

− 1
21n2 ), dσ is a damping coefficient, and p

(g+1)
σ is a “con-

jugate” evolution path:

p(g+1)
σ = (1 − cσ)p(g)

σ +
p

cσ · (2 − cσ)B(g)z
(g)
k . (10)

The default parameter setting suggested in [4] is as follows:

cc =
4

n + 4
, ccov =

2

(n +
√

2)2
, cσ =

4

n + 4
, dσ = c

−1
σ + 1.

(11)
In this study, a slightly modified variant of the algorithm

presented in [3] has been adopted, where a separate co-
variance matrix is maintained for each parent individual.
Though the CMA-ES is designed for small populations, re-
cent studies have found that CMA-ESs with a large popu-
lation can improve the search performance significantly [2,
1].

However, little work has been reported on what is the
optimal search dimension for a CMA-ES with a small popu-
lation size when the theoretic search dimension is very large
or even infinite. In the following, we investigate the search
performance of CMA-ES with small populations on the test
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Figure 1: Search performance of the (1,4)-CMA-ES
for search dimensions ranging from 3 to 49. Results
averaged over 50 runs.
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Figure 2: Search performance of the (2, 10)-CMA-
ES for search dimensions ranging from 3 to 49. Re-
sults averaged over 50 runs.

problem described in Section 2. In our simulations, the
CMA-ES without recombination has been adopted and a
maximum of 2000 generations are run for search dimensions
5, 7, · · · , 47, 49. For each search dimension, the results are
averaged over 50 independent runs. The results from a (1,
4)-CMA-ES and a (2, 10)-CMA-ES are presented in Figures
1 and 2, respectively.

From Fig. 1, we can see that the search performance of
the (1, 4)-CMA-ES heavily depends on the search dimen-
sion. For a search dimension smaller than 7, the approxi-
mation error is quite large due to the limited number of free
parameters. The minimal approximation error (0.002936)
is achieved when the search dimension is 11, where the ap-
proximation error is mostly smaller than 0.01. When the
search dimension further increases, the search performance
degrades seriously due to the limited search capacity of the
(1,4)-CMA-ES.

Similar simulations are carried out for the (2, 10)-CMA-
ES. The minimal approximation error (0.000003) is achieved
when the search dimension is 11. This implies that the

(1, 4)-CMA-ES failed to locate the global optimum for an
eleven-dimensional optimization problem in 50 runs. Even
the (2, 10)-CMA-ES is able to locate the best found solu-
tion only once in the 50 runs. These results indicate that
the search efficiency of CMA-ES with small populations is
limited even for a relatively low dimensional problem. Mean-
while, as in the (1, 4)-CMA-ES case, the search performance
becomes worse when the search dimension increases, though
not as serious as the (1, 4)-CMA-ES. Again, there is an op-
timal search dimension where the (2, 10)-CMA-ES achieves
the best performance and the search performance is accept-
able when the search dimension is from 9 up to 17 (approx-
imation error smaller than 0.01).

4. ADAPTATION OF SEARCH DIMENSION
It can be seen from the results in the previous section that

there is an optimal search dimension for a given population
size that is able to achieve the minimal approximation er-
ror. The optimal search dimension is unknown beforehand
and is presumably dependent on the population size and the
problem at hand.

In this section, we suggest a simple approach to address
this problem by adapting the search dimension during the
optimization to find an approximately optimal search di-
mension for a given population size. The basic idea is to
start the optimization from a relatively low search dimen-
sion and let the search dimension increase in every k gen-
erations during the optimization. k is called change period.
To determine whether an increase in search dimension is
beneficial, we compare the best fitness values before and af-
ter dimension increase. Assume the best (minimal in this
work) fitness values before and after an increase in search
dimension are PBest and CBest, respectively. Note that
CBest is the best fitness value after k generations with an
increased search dimension. The increase in search dimen-
sion is considered to be beneficial if CBest is smaller than
Pbest for minimization problems. If an increase in dimen-
sion is regarded as beneficial, then the search dimension will
be further increased by one. Otherwise, the search dimen-
sion will be decreased by one and fixed until the end of the
optimization.

To implement the above idea, the change period k needs
to be determined. We conduct simulations to investigate the
influence of this parameter on the adaptation performance.
Another parameter to be determined is the initial search
dimension. This parameter should depend on the problem
at hand. In our simulations, the initial dimension is set to
5.

When the search dimension is increased, we have the fol-
lowing three alternatives:

• Re-initialize all design parameters randomly;

• Inherit the value for existing design parameters and
initialize new design parameter randomly;

• Inherit the value for existing design parameters and set
the new parameter to zero, so that the fitness function
does not change after the inclusion of the new dimen-
sion.

We test the performance of the suggested algorithm for 10
change periods, i.e., k = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure 3: Adaptation of search dimension for (1,
4)-CMA-ES with various change periods. The de-
sign parameters are randomly re-initialized during
dimension changes. (a) The best fitness value, and
(b) the optimized search dimension. Results aver-
aged over 50 runs.
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Figure 4: Adaptation of search dimension for (2,
10)-CMA-ES with various change periods. The de-
sign parameters are randomly re-initialized during
dimension changes. (a) The best fitness value, and
(b) the optimized search dimension. Results aver-
aged over 50 runs.

The results where all design parameters are randomly initial-
ized are presented in Figures 7 and 8, respectively. Again,
50 runs are conducted for each k.

From Fig. 3 and Fig. 4, we see that the neither the (1,
4)-CMA-ES nor the (2, 10)-CMA-ES shows acceptable per-
formance. The search dimension is largely underestimated
for all tested change periods. A much larger change period
is not practical, since an overly large period will unfavorably
increase the needed computational time. Thus, we conclude
that randomly re-initialize the design parameters is undesir-
able in adopting an adaptive search dimension.

The next idea to try out is to inherit the value for each ex-
isting design parameter and then initialize the newly added
design variable randomly. The simulation results are shown
in Figures 5 and 6, respectively. We notice that the per-
formance has been improved significantly. For the (1, 4)-
CMA-ES, the performance is quite good when the change
period is between 30 and 50, where the optimized search di-
mension is between 9 and 11 on average, which are optimal
or sub-optimal if we refer to the empirical results shown in
Fig. 1. Similar conclusion can be made to the results ob-
tained for the (2, 10)-CMA-ES. However, the performance
of the algorithm seems more robust against the change pe-
riod in that satisfying performance has been achieved when
the change period varies from 15 to 50, where the estimated
optimal search dimension is 13 on average, which is one of
the optimal search dimension as shown in Fig. 2.

Finally, we investigate the performance of the algorithm
when we initialize the newly added design parameter to 0,
which in this example makes the inclusion of the new search
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Figure 5: Adaptation of search dimension for (1, 4)-
CMA-ES with various change periods. The value
of the existing design parameters are inherited and
the new one is randomly initialized during dimen-
sion change. (a) The best fitness value, and (b) the
optimized search dimension. Results averaged over
50 runs.
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Figure 6: Adaptation of search dimension for (2,
10)-CMA-ES with various change periods. The
value of the existing design parameters are inher-
ited and the new one is randomly initialized during
dimension changes. (a) The best fitness value, and
(b) the optimized search dimension. Results aver-
aged over 50 runs.
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Figure 7: Adaptation of search dimension for (1, 4)-
CMA-ES with various change periods. The value of
the existing design parameters are inherited and the
new one is set to zero during dimension changes. (a)
The best fitness value, and (b) the optimized search
dimension. Results averaged over 50 runs.
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Figure 8: Adaptation of search dimension for (2,
10)-CMA-ES with various change periods. The
value of the existing design parameters are inher-
ited and the new one is set to zero during dimen-
sion changes. (a) The best fitness value, and (b) the
optimized search dimension. Results averaged over
50 runs.

dimension neutral to the fitness value. Such neutral muta-
tions have shown to be essential to the success of adaptive
coding when splines are used for geometry description in de-
sign optimization [7]. Comparing the results in Fig. 5 and
those in Fig. 7 regarding the (1, 4)-CMA-ES, we see that
minor improvements have been achieved, particularly when
the change period is small.

5. CONCLUSIONS
Evolutionary optimization of large problems with evolu-

tionary algorithms with a small population is a challenging
topic. To efficiently optimize possibly infinite large problems
using small populations, a method to adapt the search di-
mension has been suggested in this paper. The basic idea is
that for small populations, we should start from a relatively
low search dimension and then increase it gradually during
the optimization. The increase in search dimension should
continue until performance improvement cannot be achieved
in a number of generations after the dimension increase. In
this case, the search dimension is decreased by one and and
kept constant till the end of the optimization. From our em-
pirical studies, the change period should be between 20 to
50 generations. A too small change period is not desirable
because the algorithm needs some time to find the poten-
tial improvement after an increase in dimension. Neither
is a large change period preferred because a larger change
period tends to increase the computational time rapidly.

It is found essential for the success of our algorithm that
the value of the existing design parameters should be inher-

ited after an increase in search dimension. This result is
consistent with the findings reported in the literature that a

priori knowledge is beneficial in enhancing the performance
of evolutionary algorithms [5].

The strategy parameters are randomly re-initialized dur-
ing dimension changes in this work, which may not be op-
timal for evolution strategies. It will be one of our future
work to investigate the influence of re-initialization of strat-
egy parameters on the performance of our algorithm using
a dynamic search dimension.
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