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ABSTRACT 
Previous research has demonstrated the potential for neural 
network controlled active vision systems to solve shape 
discrimination and object recognition tasks.  However, this 
approach has not been very well explored, and previous 
implementations of such systems have been somewhat limited in 
scope.  We present an evolved neural network based active vision 
system that is able to move about a 2D surface in any direction, 
along with the ability to zoom and rotate.  We demonstrate that a 
system with such features can correctly classify shapes presented 
to it, despite variance in location, scale, and rotation.  And, 
contrary to our initial assumptions, effective discrimination is 
actually improved when the ability to rotate is disabled.   
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1. INTRODUCTION 
Traditional approaches to pattern recognition tasks usually 
involve highly domain-specific algorithms involving statistical 
analysis [1], but recently more biologically-inspired approaches, 
such as active vision, have begun to develop. 

Active vision refers to the process of exploring an image or scene 
for relevant features, just as biological organisms do.  The 
advantages of such a system are obvious, including attentive 
focus, which excludes processing of areas of the image that are 
irrelevant, and providing an elegant method of handling variance 
in location, scale, and rotation. 

Control of an active vision system could be implemented in a 
variety of ways, but artificial neural networks are an appealing 
choice because they are biologically-inspired and have 
demonstrated success in both noisy control and pattern 
recognition tasks.  Thus, it seems natural to apply neural networks 
to an integrated system capable of exploring a scene, locating 
relevant features, and making determinations based on the 
information it receives as input. 

Floreano et al [2] implemented such a system, evolving the 
connection weights of a recurrent neural network with fixed 
topology for a controller that explored a noisy grayscale image 
containing either an isosceles triangle or a square.  The system 
identified which object the scene contained based on one of two 
output values.  The objects varied in both scale and location, but 

not in rotation, a transformation found in most pattern recognition 
tasks. 

Stanley et al [3] used a similar approach to view and play the 
board game Go.  A 5x5 viewing window controlled via an 
evolved neural network was given a fixed number of time steps to 
explore a game board and express a move preference via a given 
output.  The system demonstrated the ability, on small boards, to 
beat GNU Go, an open source Go-playing algorithm of reasonably 
high skill (compared to other existing algorithms).  The same 
principles apply as in the research mentioned above, in that active 
vision allows the system to focus on relevant aspects of the 
presented surface, whether a 2D image or a game board.  

In a virtual aquatic environment, Terzopoulos et al [4] equipped 
artificial fish with active vision systems with similar functionality 
that were able to exhibit complex behavior such as tracking other 
objects in the environment. 

We present a system that expands upon previous approaches and 
explores the basic paradigm further.  Our system consists of an 
artificial retina capable of processing any 2D surface by panning 
left, right, up, or down, zooming in and out, and rotating.  It is 
controlled via a recurrent artificial neural network, evolved using 
a modified version of the NEAT (NeuroEvolution of Augmenting 
Topologies) methodology, and is applied to a basic shape 
discrimination task. 

2. EXPERIMENTAL DETAILS 
2.1 The Active Vision System 
The active vision system consists of a framework for feeding a 2-
dimensional image into a recurrent artificial neural network and 
allowing that network to scan the image.  The receptive field, or 
artificial retina, is a square region composed of cells, or receptors, 
that read pixel values from the surface.  All experiments use a 5x5 
retina. 

Just as in [2], the retina is able to move across the image vertically 
and horizontally, as well as zooming in and out.  Unlike that 
system, this one includes the ability to rotate. 

All images used are in grayscale TIFF format.  Each pixel 
contains a value between 0 and 255.   These are scaled to values 
between 0 and 1 and input to the neural network (so, our 5x5 
retina receives 25 pixel inputs).  Any portion of the retina that 
wanders past the image boundary receives pixel inputs of –1.   



Also input to the neural network is the retina’s current orientation, 
an “hourglass”, and a bias.  The orientation consists of the retina’s 
x and y position, angle of rotation, and zoom factor.  The active 
vision system is allotted a certain number of steps for each image 
evaluation, and the “hourglass” input is the ratio of steps 
remaining to total steps allocated.  The bias input is a constant 
value of 1. 

Each time step, neural net outputs are used to update the position 
and orientation of the retina.  The specific movement outputs 
include change in horizontal location (�x), change in vertical 
location (�y), change in rotation (��), and change in zoom (�z).  
The fifth output, affinity, represents the confidence the network 
has that the image contains the target shape. 

The network architecture is shown below. 

 
Figure 1: Active vision neural network initial architecture. 

The activation function for the output neurons is a modified 
hyperbolic tangent (tanh).  Traditional tanh plateaus at –1 and 1, 
which seems to make movement control difficult for the system; 
i.e., it is difficult for it to stay still.  The modified tanh (dubbed 
“tanh-cubic” since it raises the input to the power of 3 as part of 
the function) adds a plateau at 0.  The graph below compares tanh 
to tanh-cubic. 

Figure 2: Activation functions. 

Each output ranges from –1 to 1.  For movement controls (�x, �y, 
��, and �z) the neuron’s output value is multiplied by the 
maximum delta for that value.  The maximum change for location 
(x and y) each time step is +/-20 pixels.  The maximum change for 
rotation is 3.6 degrees clockwise or counterclockwise, and the 
maximum change in zoom is +/-1%.  The affinity output is scaled 
to a confidence value between 0 and 1. 

The network’s final judgment regarding the target shape is a 
product of this affinity, with greater weight given to affinity 
responses nearer the end of the evaluation.  The weighted sum of 
affinity values is given in the equation below.   

 

Figure 3: Final affinity calculation.  
(n � number of steps, affinityi � affinity at step i). 

To provide evolutionary pressure for efficient neural networks 
(i.e., to mitigate bloat) the number of time steps provided each 
network is a product of its complexity.  Thus, smaller networks 
are allocated more time steps than larger networks.  The 
normalization is such that each network should use approximately 
the same number of CPU cycles to process an image fully. 

Each target shape had an associated target range, 0.0-0.2 for a 
mismatch and 0.8-1.0 for a match. A weighted affinity value 
within the target range had an error of 0.0. Otherwise, its error is 
the distance to the inner edge of the range (0.2 for false and 0.8 
for true). The total error of the network is the sum of errors for all 
shapes presented for evaluation. To calculate fitness, this error is 
subtracted from the maximum possible total error, and the result is 
then squared. 

2.2 NEAT 
The algorithm used to evolve the neural network architectures was 
NEAT (NeuroEvolution of Augmenting Topologies) [5], a 
methodology that evolves both the weights and architecture of the 
neural networks controlling the active vision systems. 

NEAT is distinguished by allowing crossover between networks 
with different topologies.  Also, NEAT uses speciation to divide 
the population into morphologically similar subgroups.  The 
algorithm has demonstrated the ability to outperform other 
neuroevolutionary approaches, and perform well at a variety of 
tasks [3, 5, 6]. 

The version of NEAT used here was an open source version, 
ANJI [http://anji.sourceforge.net/], written in Java and actively 
maintained by the authors. 

Per the NEAT paradigm, the initial neural network architecture 
consisted of only input and output nodes, fully connected with 
only feed-forward connections.  Initial weight values were taken 
from a uniform distribution between -1 and 1.  Input node 
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activation functions were linear, output nodes tanh-cubic, and 
hidden nodes tanh. 

Each generation, upon receiving a fitness score as mentioned 
above, the best performing 20% of the population was selected for 
survival and reproduction.  For all experiments, a population size 
of 100 was used, so after selection there were always 20 survivors.  
The population was then replenished back to 100 individuals: the 
20 survivors, plus 20 mutated versions of those survivors, plus 60 
“offspring” the result of both crossover and mutation. 

The three mutations in standard NEAT are 1) mutate connection 
weight, 2) add new connection, and 3) add new node.  ANJI adds 
a fourth, 4) remove connection, to combine both simplification 
and complexification dynamics to the search.  Mutations in ANJI 
are handled differently than in standard NEAT.  In standard 
NEAT, a mutation rate indicates the probability that a particular 
individual will be mutated (e.g., an add connection mutation rate 
of 0.03 with a population of 100 would mean that 3 individuals 
per generation would receive a new connection).   

In our implementation, a topological mutation rate indicates the 
probability that a new topological feature will be added or 
removed among all locations where such a mutation would be 
possible (e.g., if in the entire population there are 10,000 possible 
locations where an add connection mutation could occur, a 0.03 
mutation rate would result in roughly 300 new connections in the 
population).  

The parameters for the NEAT algorithm used in all experiments 
are listed below. 

Table 1. Parameters for genetic algorithm. 

 

2.3 The Object Recognition Task 
Three distinct shapes were used for these experiments: a square, a 
circle, and an equilateral triangle.  All images were grayscale tiffs, 
with pixel values ranging between 0 and 255.  All images were 
100 pixels square, and each of the shapes were 30 pixels across at 
their widest points.  The shapes were black and the backgrounds 
white.  For both evolution and evaluation, the shapes were 
randomly varied according to the following parameters: their 
center points were translated randomly up to 20 pixels along the x 
and y axes; they were scaled randomly up to 20% larger or down 
to 20% smaller; and they were randomly rotated up to 20 degrees 
clockwise or counterclockwise.  The following figures show an 
original image and typical randomizations. 

a) Original image. 

b) 9 typical random transformations. 

Figure 4: Random transformation of shapes for evaluation. 
The active vision system began all evaluations fully zoomed out 
and snapped to the edges of the canvas, and was not allowed to 
zoom out further.  It was allowed to zoom as small as a 1:1 ratio 
of image pixel to retina receptor, and its center point was inhibited 
from moving off the canvas. 

Nearest neighbor interpolation was used for pixel sampling.  This 
means that for a zoomed-out retina the value input for each 
receptor was the value of the centermost pixel in that receptor’s 
viewing area.  This is much more crude than area averaging 
interpolation, which would compute the average value of all 
pixels in the receptor area.  But, nearest neighbor is much less 
computationally expensive, and experimentation showed that it 
did not significantly hurt fitness. 

The following figure shows an image being viewed by the active 
vision system, and how the region covered by the active vision 
system is interpreted into pixel values for input into the neural 
network. 

Figure 5: Pixel sampling for artificial retina. 
We sought to evolve a “square recognizer” active vision system.  
Each generation 10 randomized versions of each shape were 

Parameter Value
Population size 100
Number of generations 500
Weight mutation rate 0.75
Survival rate 0.2
Excess gene compatibility coefficient 1.0
Disjoint gene compatibility coefficient 1.0
Common weight compatibility coefficient 0.4
Speciation threshold 0.2
Add connection mutation rate 0.002
Add neuron mutation rate 0.001
Remove connection mutation rate 0.005



generated, for a total of 30 images, and each individual was 
presented all 30 images in random order.  The squares were 
“match” images, the triangles and circles “mismatch” images.  
Those individuals responding with high affinity for squares and 
low affinity for triangles and circles received higher fitness. 

3. RESULTS 
The evaluation set of images for each generation was 30 (10 
matches and 20 mismatches).  At the end of each run (500 
generations), the best performer from the last generation was 
evaluated with a larger test set (randomized as mentioned in 
section 2.3)  of 1500 images (500 matches and 1000 mismatches).  
A weighted affinity value of >= 0.5 indicated a positive match, 
and < 0.5 indicated a mismatch. 

Intially, three runs were performed in which the active vision 
system had all navigational features enabled.  The results of these 
evaluations are presented in Table 2. 

Run True 
Pos 

False 
Pos 

True 
Neg 

False 
Neg 

Overall 
Match 
Rate 

1 442 1 999 58 96.07% 
2 445 0 1000 55 96.34% 
3 495 15 985 5 98.67% 

 

Table 3 shows the results for champions from a set of 
ablation runs in which the active vision system’s ability to rotate 
was disabled. 

Run True 
Pos 

False 
Pos 

True 
Neg 

False 
Neg 

Overall 
Match 
Rate 

4 499 5 995 1 99.60% 
5 497 2 998 3 99.67% 
6 497 1 999 3 99.73% 

 

Table 4 shows the results for champions from a set of 
ablation runs in which the active vision system’s ability to zoom 
was disabled.  The retina was zoomed completely out, giving it a 
low-resolution view of the full image canvas.   

Run True 
Pos 

False 
Pos 

True 
Neg 

False 
Neg 

Overall 
Match 
Rate 

7 299 41 959 201 83.87% 
8 304 19 981 196 85.67% 
9 243 80 920 257 77.53% 

 

Table 5 shows the results for champions from a set of runs in 
which the ability to zoom was disabled, but the retina began fully 
zoomed in to the center of the canvas. 

Run True 
Pos 

False 
Pos 

True 
Neg 

False 
Neg 

Overall 
Match 
Rate 

1 458 42 70 930 92.53% 
2 488 12 4 996 98.93% 
3 417 83 40 960 91.80% 

 

The behavior of the evolved systems with the ability to zoom 
(tables 2 & 3) closely resembled the behavior of the systems 
evolved in [2].  Successful individuals varied in the precise 
strategy used to discriminate between shapes, but there were many 
similarities in their behaviors. 

Individuals with the ability to zoom always zoomed in to an 
a specific edge or corner of the target shape.  Most often, the 
retina would disengage from the shape and drift toward a 
particular corner of the canvas to signal a negative affinity output.  
For positive identifications, the retina would focus on a particular 
corner and continue to scan that corner while outputting a positive 
affinity response. 

Some networks always began a discrimination sequence by 
outputting a positive affinity, then switching to a negative output 
once the shape was scanned and an identification was made.  
Most output a negative affinity to begin with, before switching to 
positive after encountering a square.  Some networks focused on a 
given upper corner, while others either focused on lower corners 
or lower edges.  There was a variation in the region scanned, but 
the aspects of scanning a particular corner or edge, disengaging 
non-matches and remaining engaged in matches, were the 
predominant commonalities. 

Networks with the ability to rotate often began by rotating 
slightly (e.g., 10 degrees) in one direction before spending the rest 
of the evaluation rotating in the other direction, up to 90 degrees.  
These networks did not rotate to a particular orientation when 
zoomed in on a particular feature such as a corner or edge.  The 
rotation speed and direction was about the same for all images, 
and did not appear to contribute much to shape recognition. 

4. DISCUSSION 
We have presented an evolved neural network controlled active 
vision system that elaborates on previous models by introducing 
rotation into the range of navigational features, and have tested 
the usefulness of that feature in discriminating samples of shapes 
randomized with respect to size, location, and rotation. 

The most surprising result was that in ablation runs, 
individuals without the ability to rotate were able to evolve to 
perform better than those with all features intact.  Rotational 
variance does not affect the appearance of circles, but it does 
affect the appearance of both triangles and squares.  Successful 
individuals were adequately able to sample enough information 
from the edges and corners of both scaled and rotated shapes to 
make accurate identifications. 

Table 2. Evaluations of champions from runs with all 
navigational features enabled. 

Table 3. Evaluations of champions from runs with rotation 
disabled. 

Table 4. Evaluations of champions from runs with zoom 
disabled, fully zoomed out. 

Table 5. Evaluations of champions from runs with zoom 
disabled, fully zoomed in. 



 
The behavior and performance of the rotation-enabled 

networks suggests not only that the ability to rotate was not 
exploited as a helpful navigational feature, but that the added 
complexity was detrimental to the search. 

 
Before performing the experiments, our assumption was that 

networks given the ability to rotate would outperform those that 
could not when attempting to discriminate between shapes that 
had been randomly rotated.  This turned out not to be the case.  It 
remains to be seen if this generally true of active vision systems, 
or if the ability to rotate becomes useful, or even necessary, for 
more complex image recognition tasks. 

 
The ablation tests with regard to zoom indicate that the 

ability to resolve the image at higher resolutions and focus on 
particular features is important in making correct identifications.  
Those individuals that began fully zoomed in were able to evolve 
behavior that allowed for more accurate discrimination than those 
that began fully zoomed out but could not zoom in, suggesting 
that the ability to resolve details of local features is in general 
more useful than course-grained global input. 

 
The results also suggest that, as with certain types of 

biological organisms, the discrimination strategy does not involve 
template matching (i.e., memorizing and storing a template of the 
image and comparing that stored image with the presented image 
from a particular viewpoint), but rather what some researchers 
refer to as parameter extraction.   

 
Campan et al [7] studied the ability of two species of bee, 

Apis mellifera and Megachile rotundata, to discriminate between 
black convex shapes on white backgrounds.  The target shapes 
were mounted on tubes, only one of which led to the hive.  Bees 
had to learn correctly to identify a target shape in order to return 
to their hive.  The researchers demonstrated by using both 
patterned shapes and patterned backgrounds in further tests, that 
the bees were not using stored templates for comparison, but 
rather were identifying features on the perimeter of the shapes, 
such as angles and edges. 

 
Their conclusions were drawn not only from the patterned 

tests, but from the flight patterns and scanning strategies of the 
bees.  In the case of A. mellifera, the authors describe the bees as 
scanning the regions of the shapes that tended to differ.  So that in 
the case of a diamond and a down-pointing triangle, the bees 
tended to spend time scanning along the upper part of both 
images, where they differed. This behavior sounds remarkably 
similar to the scanning strategies used by the evolved neural 
networks. 

 
Moller [8] reached the same conclusion with regard to desert 

ants.  They use parameters extracted from images rather than 
photographic, retinotopical templates. There is still ongoing 
debate about which approach is used in both invertebrates and 
vertebrates.  Some studies demonstrate apparent template 
matching in vertebrates such as fish [9] and chickens [10]. 

 
It would seem that in all successfully evolved individuals, a 

strategy much more akin to parameter extraction arose, and that 

like biological systems, it is robust with regard to variations in 
scale, location, and rotational orientation. 

 

5. CONCLUSION 
The experiments in this paper have demonstrated the efficacy of 
an active vision system controlled via a recurrent neural network 
in performing basic shape discrimination tasks with a high degree 
of  reliability.  Our model builds upon previous approaches by 
adding in the ability for the system to rotate, and in the test cases 
explored in these experiments, that navigational ability actually 
hampers the evolving system’s ability to learn the particular 
discrimination. 

     Future work involves expanding the model further, perhaps 
with higher resolution or multi-resolution retinas, and applying 
them to more difficult classification tasks, such as automated 
fingerprint classification (i.e., right loop, left loop, arch, or 
whorl). 
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