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ABSTRACT 
The maximum possible number of codewords in a q-ary code of 
length n and minimum distance d is denoted Aq(n,d). It is a 
fundamental problem in coding theory to determine this value for 
given parameters q, n and d. Codes that attain the maximum are 
said to be optimal. Unfortunately, for many different values of 
these parameters, the maximum number of codewords is currently 
unknown: instead we have a known upper bound and a known 
lower bound for this value. 

In this paper, we investigate the use of different evolutionary 
algorithms for improving lower bounds for given parameters. We 
relate this problem to the well-known Maximum Clique Problem. 
We compare the performance of the evolutionary algorithms to 
Hill Climbing, Beam Search, Simulated Annealing, and greedy 
methods. We found that the GAs outperformed all other 
algorithms in general; furthermore, the difference in performance 
became more significant when considering harder test cases. 

Categories and Subject Descriptors 
G.2.1 [Combinatorics]: combinatorial algorithms.  

G.2.2 [Graph Theory]: graph algorithms.  

I.2.8 [Problem Solving, Control Methods and Search]: graph 
and tree search strategies, heuristic methods.  

General Terms 
Algorithms, Performance, Design, Theory. 

Keywords 
Evolutionary Algorithms, Simulated Annealing, Optimal Codes, 
Maximum Clique Problem. 

1. INTRODUCTION 
In this section, we briefly introduce the basic concepts from 
coding theory, only to the extent required to understand our 
research. There are several excellent books on coding theory for 
those readers interested in learning more about the subject; these 
include, for example [9] and [12]. 

When data is transmitted or stored, errors can occur for a variety 
of reasons such as noise in the transmission or dirt on the storage 
media. In the case of binary data, this has the effect of changing 
the value in a single bit, from 0 to 1 or vice-versa. It is possible to 
detect and correct such errors if we store data according to a 
certain format, namely, by using error-correcting codes. 

An (n,M,d)q code is a set of M codewords, each of length n, and 
in which each symbol is chosen from a possible alphabet of q 
symbols. Furthermore, if we compare any pair of codewords, they 
must differ in at least d positions; the value d is referred to as the 
minimum distance of the code and this determines the number of 
errors that may be corrected. When q=2, the set of possible 
symbols is {0,1} and the code is called binary. Codes with q=3 
are called ternary; in the general case, the code is called q-ary. 

There are several (often conflicting) desirable properties in a 
code. One such property is the number of codewords, as this 
determines the number of different pieces of information that may 
be represented by the code. In our research, we consider the 
problem of finding (n,M,d)q codes where n, d and q are fixed, and 
with a large value of M. While the maximum value of M is 
exactly known for some parameter sets, for many others, it is 
known only to be within a given range; we consider both types of 
parameter sets. Tables containing this information for many 
parameters may be found at [2] for the binary case and [3] for the 
ternary case. 

In this paper we compare several techniques for finding error-
correcting codes that have a larger number of codewords than the 
best currently known for given parameters.  

We have several goals in this research. First, we wish to evaluate 
which techniques are most suitable for finding codes that are 
optimal. For those parameter sets for which the exact number of 
codewords in an optimal code is known, we wish to find codes 
that are optimal, or at least near-optimal. For those codes for 
which the maximum number of codewords is known only to be 
within a given range, we would like to eventually improve upon 
the lower bound for this value. 

 



Figure 1. Example Compatibility Matrix 

2. PROBLEM SET-UP 
In this section we discuss several issues relating to the problem at 
hand. Understanding these issues enables us to define a good 
strategy for attacking the problem. 

2.1 Precomputation 
Every time the program looks at a possible solution, it needs to 
calculate the distance between each pair of codewords, in order to 
determine the minimum distance of the code. It is beneficial to 
pre-compute the distances between all possible codewords to save 
computation during the run. Note that one can always assume the 
existence of the all-zero vector in the code since any code not 
containing the all-zero vector is equivalent to one that does 
contain it, according to the definition of equivalence of codes. 

Hence we generate all possible codewords of length n and 
distance at least d from the all-zero vector. We store the results in 
a compatibility matrix, a square matrix in which entry (i,j) = 1 if 
codeword i and codeword j meet the minimum distance 
requirement, and 0 otherwise. It follows from the definition that 
this matrix is symmetric. Since the program has to find a set of 
codewords such that the distance between any two is at least d, 
the corresponding entries in the compatibility matrix must all be 
equal to 1.  

2.2 Maximum Clique Problem 
In fact, the problem we are considering is equivalent to the well-
known problem of finding the maximum clique in a graph. 

A graph G = (V,E) is defined by a set of vertices V and a set of 
edges E. A clique C is a subset of V such that each vertex in C is 
connected to all other vertices in C by an edge. The maximum 
clique problem asks for the largest subset MC of V such that MC 
is a clique.  

To convert an instance of the coding theory problem into an 
instance of the maximum clique problem, we label the vertices 
with the possible codewords, and connect two vertices by an edge 
if they meet the minimum distance requirement. 

Example: Suppose that we wish to find the maximum number of 
codewords in a binary code with length 4 and minimum distance 
2. In general, we could consider all binary vectors of length 4. 
However, in the interests of keeping this example manageable, we 
shall further suppose that the following vectors are the only 
possible candidate codewords: {0000, 0011, 1010, 1011, 1110, 
1111}. 

  0000 0011 1010 1011 1110 1111 

0000 0 1 1 1 1 1 

0011 1 0 1 0 1 1 

0011 1 1 0 0 0 1 

1010 1 0 0 0 1 0 

1011 1 1 0 1 0 0 

1110 1 1 1 0 0 0 

 
0011 1010  

 

 

 0000 
 

 

 

Figure 2. Example Graph for Maximum Clique Problem 

This results in the compatibility matrix given in Fig.1, which in 
turn corresponds to the adjacency matrix of the graph given in 
Fig.2. 

The size of the maximum clique is 4, and the vertices in this 
maximum clique should be {0000,0011,1010,1111}. Therefore 
the maximum number of codewords is 4, and the codewords in 
this optimal code should be {0000,0011,1010,1111}. 

2.3 Relationships between Sets of Parameters 
Several relationships exist between sets of parameters. We 
combine the following to reduce the search space for binary 
codes. 

Let C be a binary (n,M,2r-1) code. By adding an overall parity 
check, we get an (n+1,M,2r) code, thus A2(n,2r-1) ≤ A2(n+1,2r). 
Note: An overall parity check adds a bit at the end of every 
codeword. This bit is a 1 if the remaining part of the codeword 
has an odd number of 1’s, and 0 otherwise. As a consequence in 
the resulting code, every codeword has an even number of 1’s and 
the distance between every pair of codewords is even. 

Let C be a binary (n+1,M,2r) code. By deleting any single 
coordinate, we get an (n,M,d) code with d ≥ 2r-1. Therefore we 
have A2(n,2r-1) ≥ A2(n+1,2r). 

Because A2(n,2r-1) ≤ A2(n+1,2r) and A2(n,2r-1) ≥ A2(n+1,2r), 
they must be equal. Since a code of length n and minimum 
distance 2r-1 has fewer possible codewords than a code of length 
n+1 and minimum distance 2r, it reduces the search space while 
still guaranteeing the same optimal value. For further information, 
see [9], p.43. 

Example:  A2(10,4) = A2(9,3) = 40. There are 848 vectors of 
length 10 that are at distance at least 4 from the all-zero vector 
and that thus are candidates for codewords in a (10,40,4) code. 
Meanwhile, there are only 466 codewords of length 9 that are at 
distance at least 3 from the all-zero vector. In each case, if 
attempting to find an optimal code, we need to find 40 compatible 
codewords; clearly, this would be much simpler in the smaller set. 

3. RELATED WORK 
In this section we briefly review several papers that consider the 
use of evolutionary algorithms to solve the Maximum Clique 
Problem. Many of the algorithms have been run on DIMACS 
graphs in order to allow for a good comparison between the 
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different methods. Since finding optimal error-correcting codes 
can be reduced to finding a maximum clique, all these strategies 
are also applicable to our problem. However, when finding error-
correcting codes we deal with the problem at a much larger scale. 
For example, in considering binary error-correcting codes, we see 
that the smallest parameter values for which the maximum 
number of codewords is currently unknown are {n=17, d=4}. 
There are 130,238 possible codewords for this case; in 
comparison, the largest DIMACS graph has approximately 6,000 
vertices. 

Bui and Eppley [4] created a hybrid genetic algorithm that uses a 
local optimizer during each generation. Their fitness value was 
based on the number of vertices selected by the chromosome and 
a measure of how close this set was to being a clique. At the time 
of publication (1995) their genetic algorithm tied the best known 
results. 

Murthy and Parthasarthy [11] used a similar approach without 
any local optimizing strategy. However, their test cases were 
small graphs. Since our graphs are very large, it is difficult to say 
whether this approach will perform well. 

Carter and Park [5] implemented two different genetic algorithms 
for the maximum clique problem: a simple genetic algorithm with 
a binary string chromosome and a multi-phased annealed 
approach. The latter very slightly outperformed the simple one 
and had a tendency of getting stuck in local optima. Later, in [6], 
they reported that Simulated Annealing worked much better than 
genetic algorithms, because crossover didn’t work for the 
problem at all. They found that running the algorithm without 
crossover gave better results. 

Jagota and Sanchis [8] used Neural Nets to find the maximum 
clique of a graph. To have a higher chance of getting larger 
cliques, they pre-sorted all vertices by their degree and found that 
doing this actually resulted in worse performance. 

Marchiori [10]] obtained very good results by allowing non-
cliques to remain in the population. During each generation, local 
optimization techniques extracted a clique from the selected set of 
vertices and then tried to maximize the size by adding more 
vertices.  

Finally, Ashlock, Guo and Qui [1] use a genetic algorithm to 
develop an error-correcting code for DNA constructs using the 
edit distance as a similarity measure. Each chromosome contained 
3 selected codewords and Conway’s Lexicode Algorithm (see 
section 4.4) was applied until the maximal number of codewords 
was reached. 

4. THE ALGORITHMS 
In our research we compare the performance of Hill Climbing, 
Beam Search, Simulated Annealing, greedy methods and several 
varieties of genetic algorithms. In this section we briefly 
summarize the parameters used for each algorithm, as well as 
other technical information. 

Hill Climbing, Beam Search and Simulated Annealing all use the 
same representation for a candidate solution: a sequence of 
integers, where the first integer represents the first codeword to be 
chosen, the second integer represents the second codeword to be 
chosen, etc. However, in order to keep the search space at a 

minimum, we have to make sure that all candidate solutions are 
actually cliques. We achieve this by treating all integers as 
offsets. 

4.1 Hill Climbing 
We evaluate the performance of Hill climbing using 100 
iterations. 

4.2 Beam Search 
We evaluate the performance of Beam Search with a Beam Size 
of 5 and using 100 iterations.  

4.3 Simulated Annealing 
Simulated annealing has been used very successfully in many 
different types of combinatorial optimization problems and 
should perform reasonably well for finding optimal error-
correcting codes. We evaluate the performance of Simulated 
Annealing using the parameters given in Table 1. 

Table 1. Parameters for Simulated Annealing 

Initial Temperature c0 2 

Number of Transitions for 
each value of c 

100 

Rule for changing c ck+1 = ck * 0.8 

Termination Criterion No Change of Best for 1 Iteration 

4.4 Conway’s Lexicode Algorithm 
Conway’s Lexicode algorithm, described in [7], is a greedy 
algorithm that can be used for creating an error-correcting code 
with given minimum distance. We first sort the candidate 
codewords lexicographically and initialize an empty set C of 
codewords. We then consider, in turn, each candidate in sorted 
order, and add it to C if the distance to all codewords already in C 
is at least d.  

It should be noted that in the binary case, a linear code is 
generated when the words are considered in lexicographic order. 
For many parameter sets, the best-known code is linear; hence by 
using this algorithm we may reach the lower bound on the 
maximum number of codewords, but we will be unable to 
improve upon it. 

4.5 Randomized Greedy Algorithm 
This is a variation of Conway’s Lexicode Algorithm, in which the 
codewords are considered in a random order. By doing so, we 
may find non-linear codes and thus improve upon the lower 
bound. This approach is used in [4] to initialize the population. 

4.6 Genetic Algorithms 
We evaluate the performance of several varieties of genetic 
algorithms. We use the parameters summarized in Table 2 for all 
of these varieties. 

4.6.1 Indirect 
The chromosome representation of this approach is the same as 
the one used for Hill Climbing, Beam Search and Simulated 



Annealing. The chromosome size must be large enough to be able 
to represent the largest set of codewords possible. Consequently, 
the number of integers in the chromosome equals the upper bound 
of the particular code. As a result, the execution speed mostly 
depends on the currently known upper bound and this algorithm 
might not be feasible for a set of parameters when the maximal 
number of codewords of the corresponding error-correcting code 
is very large. 

Note that while a direct representation is possible, we chose not to 
use it since applying either crossover or mutation almost always 
creates “illegal” chromosomes that must then be corrected. As a 
result, the most important aspect of the GA is in fact the method 
chosen to correct illegal chromosomes. We decided to choose a 
representation that would not allow this to happen, to ensure that 
we are focusing on the GAs themselves. 

4.6.2 Indirect Seed – Lexicode Finish 
This approach combines the indirect chromosome representation 
with Conway’s Lexicode algorithm as seen in [1]. The 
chromosome representation is the same as in the indirect 
approach, however, its size is limited by the parameter seed_size. 
Any compatible codewords that have not been selected by the 
chromosome itself will be chosen by Conway’s algorithm. The 
advantage of this approach is that it should be possible to attack 
even very large codes, since most of the codewords are selected 
by a greedy algorithm. 

4.6.3 Lexicode Seed – Indirect Finish 
This strategy also combines the indirect chromosome 
representation with Conway’s Lexicode algorithm. The main 
difference to the last approach is that it works in the opposite 
direction: Conway’s algorithm is used to pre-select a set of 
codewords and the chromosome defines the codewords selected 
after this. To make this work, we must stop Conway’s algorithm 
before it has selected all the codewords, and hence the parameter 
Conway_limit specifies when this is done. 

4.6.4 Indirect Seed – Randomized Greedy Finish 
This approach combines the indirect chromosome representation 
with the randomized greedy algorithm (see section 4.5) and works 
very much like 4.6.2. The only difference is that the randomized 
greedy technique is used to select the remaining codewords rather  

Table 2. Parameters for Genetic Algorithms 

Population Size 500 

Number of Generations 100 

Number of Runs 10 

Selection Strategy Tournament of Size 3 

Crossover Probability 85% 

Mutation Probability 15% 

 

than Conway’s algorithm. Similarly, the chromosome size is 
limited by the parameter seed_size as in 4.6.2.  

5. THE TEST CASES 
One of the advantages of translating the problem of finding an 
optimal error-correcting code into the maximum clique problem is 
that it works the same way regardless of alphabet size q. The 
reason is that the compatibility matrix is always a binary matrix.  

We evaluated the performance of the algorithms on different 
parameter sets for both binary and ternary codes. It is important to 
note that the different test cases might generate graphs with very 
different properties. For example, even though the number of 
candidate codewords (i.e. vertices) might be similar, the number 
compatible with each other (i.e. edges) could be very different. 
Consequently, the performance of the algorithms may vary across 
test cases. 

We summarize the binary test cases in Table 3. The first two 
cases are relatively small and thus most of our algorithms should 
perform fairly well. In comparison, the other two cases are  
difficult, and in fact are cases for which the exact number of 
codewords in an optimal code is unknown. These latter two cases 
will thus provide an interesting comparison of which algorithms 
are most useful when trying to improve on the best codes 
currently known. 

Table 3. Binary Test Cases 

n d #Codewords in 
Optimal Code 

#Candidate 
Codewords 

for (n,d) 

#Candidate 
Codewords 
for (n-1,d-1) 

12 6 24 2 510 1 486 

13 6 32 5 812 3 302 

17 6 256-340 121 670 63 019 

17 4 2720-3276 130 238 65 399 

 
We summarize the ternary test cases in Table 4. The test cases 
were chosen with the same goal as for the binary case: namely, to 
provide a comparison of the performance of the algorithms on 
cases that range in difficulty from easy to hard. In particular, the 
first test case should be considered easy while the last two should 
be considered very hard. 

Table 4. Ternary Test Cases 

n d #Codewords in 
Optimal Code 

#Candidate 
Codewords for 

(n,d) 

5 3 18 192 

6 3 38 656 

7 3 99-111 2 088 

8 3 243-333 6 432 

 



Table 5. Summary of Results for all Algorithms 

 A2(12,6) A2(13,6) A2(17,6) A2(17,4) A3(5,3) A3(6,3) A3(7,3) A3(8,3) 

Best known 24 32 256 2720 18 38 99 243 

Best 16(1/10) 22(1/10) 134(1/10) 1721(1/10) 14(9/10) 33(2/10) 76(1/10) 183(1/10) 
Hill climbing 

Ave. 14.0 20.7 130.6 1706.4 13.9 31.6 74.0 180.7 

Best 19(1/10) 23(1/10) 136(3/10) 1728(1/10) 18(2/10) 34(2/10) 78(1/10) 186(1/10) 
Beam search 

Ave. 15.7 21.6 133.8 1716.0 15.0 33.0 76.1 182.8 

Best 16(6/10) 22(7/10) 136(1/10) 1729(1/10) 18(3/10) 34(1/10) 79(1/10) 185(1/10) 
Simulated 
Annealing 

Ave. 15.5 21.7 133.4 1719.3 15.8 32.7 77.3 183.4 

Conway 
Lexicode Best 16 16 256 2048 15 32 76 200 

Best 13(2/10) 20(1/10) 129(1/10) 1693(1/10) 13(2/10) 30(2/10) 71(1/10) 176(1/10) 
Randomized 

Greedy 
Ave. 11.8 18.6 124.9 1678.5 11.9 28.4 68.4 170.4 

Best 24(5/10) 26(1/10) 140(1/10) N/A 18(10/10) 36(1/10) 83(1/10) 194(1/10) 
GA:  

Indirect Ave. 21.1 23.6 137.3 N/A 18.0 34.6 80.7 189.8 

Best 24(10/10) 32 (2/10) 256(7/10) 2238(1/5) 18(10/10) 36(10/10) 88(2/10) 219(1/10) GA:  
Indirect Seed - 

Lexicode Finish Ave. 24.0 28.8 253.9 2214.8 18.0 36.0 87.2 216.1 

Best 19(7/10) 26(10/10) 256(10/10) N/A 15(10/10) 36(9/10) 84(2/10) 206(3/10) GA:  
Lexicode Seed – 
Indirect Finish Ave. 18.1 26.0 256.0 N/A 15.0 35.9 83.0 205.0 

Best 24(8/10) 24(4/10) 139(1/10) N/A 18(9/10) 34(5/10) 80(2/10) 192(1/10) GA:  
Indirect Seed – 

Randomized 
Greedy Finish 

Ave. 23.0 23.4 133.9 N/A 17.7 33.5 78.8 188.3 

6. RESULTS 
The results for all of the above test cases, and for all of the 
described algorithms, are summarized in Table 5. In this table, 
the shaded entries highlight the best overall results found for 
each test case. Furthermore, the numbers in brackets identify the 
number of times a best result was obtained, out of the total 
number of runs. Thus, for example, we see that the Indirect GA 
obtained a best result of 24 for A2(12,6), five times out of ten 
runs; furthermore, this was one of three algorithms that obtained 
the best overall result for that case. 
Notice that the genetic algorithms outperformed all of the other 
algorithms in general. This is particularly noticeable when we 
consider the difficult test cases, in which the Indirect Seed – 
Lexicode Finish GA significantly outperformed all other 
algorithms. It is interesting to note that Simulated Annealing 
(often considered by many to be the most suitable choice for 

combinatorial problems of this type) only achieved the best 
overall result in the easiest case.  
Since this strategy requires a parameter seed_size (see section 
4.6.2), it is interesting to compare the performance of this 
strategy with different values for this parameter. 

From the easy test cases we deduced that the smaller the value 
of this parameter, the better the algorithm performed. Even for 
the hardest case, A2(17,4), where 65,399 codewords result in a 
currently best known code with 2,720 codewords, values 
between 6 and 9 worked best. These numbers are very small 
compared to the large set of codewords and as a consequence 
most of the words are actually selected by the greedy algorithm. 
At this point we do not know whether this limits the search 
space in such a way that this approach cannot actually get to the 
global maximum for hard test cases. It is possible that larger 
values for this parameter actually perform better when running 



this algorithm for a very large number of generations, because 
the search space is not as restricted. 
Since A2(17,4) is a very difficult case with a very large search 
space, it is computationally very expensive to run the GAs. As a 
result, we chose to run only the most promising GA, namely the 
Indirect Seed – Lexicode Finish GA. 

7. CONCLUSION AND FURTHER WORK  
Although we have not been able to find an error-correcting code 
that contains more codewords than the currently best known, we 
have been successful in showing that genetic algorithms can be 
applied to this particular problem. In fact, when you consider all 
the test cases we have experimented with, our genetic 
algorithms performed better than all of the three standard search 
techniques. 

Since we have only tied current best known codes, our goal 
remains to find an error-correcting code with a larger set of 
codewords than the currently best known. It is possible that one 
of the algorithms described in this project is already able to do 
that for certain parameters values. It would be interesting to see 
how the different GAs perform on different parameter values. 

We decided to use an indirect chromosome representation for all 
our genetic algorithms, because this guarantees that all our 
chromosomes represent cliques. Most of the papers described in 
section 3 use a binary representation and apply different 
techniques to handle chromosomes that do not form a clique. A 
different idea to deal with this issue is to create a multi-
objective genetic algorithm, where one objective is to have a 
large set of vertices, while the other objective is for that set to be 
a clique. At the end of the run we would most likely get a lot of 
candidate solutions which are not cliques, but since the vertices 
in these solutions are just a small subset of all possible 
codewords, it should be relatively easy to extract the maximum 
cliques. 
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