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ABSTRACT
In this article, a computational model for the interpolation and 
exploration of Complex Response Surfaces is described and 
analyzed. This computational model consists of two stages: an 
initial stage in which a group of measured points is interpolated 
by means of the coalition of characteristic concepts of vector 
geometry, numeric methods and evolutionary computation to 
construct a response surface; and a second stage, where a series 
of good trajectories by means of the exploration of the 
interpolated surface are determined. In this stage, an evolutionary 
algorithm, processing a mutation operator that incorporates the 
fundamental concepts of the cylindrical coordinates, is used to 
identify a trajectory containing the best combinations among the 
variables of the particular process this surface represents.

Categories and Subject Descriptors
I.3.5. [Computer Graphics]: Computational Geometry an Object 
Modeling – Curve, surface, solid and object representations; 
Splines. I.2.1 [Artificial Intelligence]: Applications and Expert 
Systems. J.2 [Computer Applications]: Physical Sciences and 
Engineering – Engineering.

General Terms
Algorithms, Design.

Keywords
Optimal Surface Interpolation, Evolutionary Algorithms, 
NURBS, LaGrange Constraints. 

1. INTRODUCTION
The emulation of the behavior of many natural phenomena using 
computational tools has been very little developed, mainly 
because many of the tools based on computational intelligence 
were conceived, in its time, for very precise and defined 
technical problems.  Leaving aside incomplete or blurred 
information treatment as it is presented in the many phenomena 
of growth of plants and living beings.

The study of these phenomena of growth has been modest during 
decades and the approaching made through time using formal
methods of experiments design, have had as main objective the 
identification of the phenomenon’s variables through lineal 
models.  Natural phenomena are not-lineal; a clear example is 
the edible and medicinal funguses growing, which are produced 
under specific conditions depending of the weather of each 
country, available sow, and local practices.

In this paper, the construction of the response surface for the
growth of the mushroom Pleurotus ostreatus in one of its first 
stages of growth is presented.  For the construction of the 
response surface, the pH (Acidity of the Sow) and time (t) were 
taken as independent variables, while the answer variable will be 
the geometrical growth of the mushroom. Other traditional 
models, with higher order, have shown very low levels of 
confidence, 45% to 50% of prediction, because the noise and the 
complex behavior observed in the data points used for the 
analysis.  Additionally, with experiments design methods, model 
building and the exploration of a multimodal surface requires a 
lot of time [8].  To increase the levels of dependability in the 
found patterns is necessary to obtain response surfaces with 
polynomial functions that represent in a more precise way the 
relationship among the variables that compose the real pattern, 
with the limitation that the polynomial degree grows according 
with the quantity of available points for building the surface.

To eliminate many of the problems found with traditional 
approaches of experiments design, a new evolutionary method 
has been developed.  Our new method for obtaining response 
surfaces uses concepts of evolutionary computation fused with 
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concepts of interpolation surfaces by NURBS (Non Uniform 
Rational Basis Splines) and LaGrange Interpolation.  Starting 
from the analytic obtaining of tracts of the surface, a uniform 
unfolding of the same one is made in a series of triangular 
planes, which indicates sectors where lineal relationships among 
the variables exist.  Then, beginning from this unfolding, a 
pattern model is developed using characteristics of the 
evolutionary computation and concepts of cylindrical coordinates. 
This novel model allows obtaining good trajectories over the 
surface with the best combination of values among the variables 
composing the specific response surface.

For the understanding of the pattern development, this article 
begins with the basic concepts of the interpolation with NURBS 
and their coalition with elements of the evolutionary 
computation.  Then, cylindrical coordinates and the evolutionary 
computation coalition for the development of a mutation operator 
of cylindrical type to navigate on the surface is presented.  
Finally, for the validation of the response surface evolutionary 
model, this is applied to the growth of the mushroom type 
Pleurotus ostreatus, under different pH conditions, in one of its 
first stages of growth.

2. INTERPOLATION OF CURVES AND 
SURFACES WITH NURBS (TRADITIONAL 
FORM)
A brief summary of the interpolation of curves and surfaces using 
NURBS is presented.  A detailed description of this interpolation 
form can be in [2], [4].

2.1 Surfaces and Curves NURBS (Non 
Uniform   Rational Basis Splines)
A NURBS curve is defined in the following way:
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Where 
 iw

 are denominated weights, 
 iP

 are the points of 

control of the interpolation, while 
 )(, uN pi  are basic 

functions normalized, B-Splines of the grade p.  The weights iw

determine the influence of the vector i-th of control P, on the 

curve. The i-th basic functions 
)(, uN pi are defined on a vector 

of knots
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.  They are recursively 
defined in the following way:
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The vector of knots is a group of numbers that indicates the 
beginning and the end of the rational functions.  In many cases 
the rational functions may be of uniform type, for what the 
vectors of knots can be classified as periodic.  If the group of 
points to interpolate is not equally spaced, the vector of knots is 
considered non periodic.  In the general case, this vector is non-
periodic and has the following form:

  ,.......,,,........,,....., 1 mp uuU 
   (4)

where   and   appear  1p  times at the beginning and at 
the end. This special arrangement guarantees that the function 
begins and concludes respectively in the first and last control 
point.  For this particular case the parameters will be defined in 

the range  1,0u  and the weights are ideal when they come 
closer to the unit. 

A NURBS surface is define as the tensile product, in this way:
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where 
 jiw ,  are weights, 

 jiP,  are the control points or the 

points to interpolate and 
 )(, uN pi , 

 )(, vN qj  are the 
normalized basic functions, B-Splines, defined on the non 
periodic knot vectors 

 1,......,1,1,,....,,0,...,0,0 1 mp uuU 
, and 

 1,....,1,1,,....,,0,....,0,0 1 nq vvV 
 respectively.  Here 

p  and q  are the degrees of the interpolation rational functions 

in the addresses u and v .

2.2 Interpolation of Curves and Surfaces 
through NURBS.
To determine an interpolation NURBS curve  kQ for  1m

given points, these suffixes have  1m  independent 

conditions.  Assigning a value for 
_

ku , to each one of the points 

to interpolate, and selecting two knots vector, U  and W .  The 
interpolation problem is:
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Or in matrix form:
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Where the rational functions  )(, uR pi are defined as:
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In surface treatment, the knots vector for the addresses u and v
will be determined by an arrangement    11  nm  of 

points  lkQ ,  to interpolate with mk ,....,0  and

nl ,.....,0 .  The Interpolation of a surface from an 

arrangement of given points can be expressed by means of the 
equation (9).



 



  













n

j

lqjkj

n

j

lqjk

m

i
piji

m

i

n

j

lqjkpijilk

vRuC

vRuRPvRuRPQ

0

_

,

_

0

_

,

_

0
,,

0 0

_

,

_

,,,

)()(

)()()()(
(9)

3. EVOLUTIONARY INTERPOLATION 
SURFACES.
The conventional methods of parameterization, in the most cases, 
are inadequate to generate NURBS free surfaces that follow a 
behavior of the convex hull, formed by the interpolation points.  
For this reason, a new approach for the interpolation it is 
established as:  The values of the parameters for each 
interpolation point are taken as the maximum value of each 
randomly-generated rational function.

The rationale for this parameterization heuristic is explained as 
follows.  If the evaluation of the parameters is grouped against 
the rational functions, a matrix is obtained with dominant 
elements in the main diagonal.  For this reason, when taking the 
parameters of the vector of knots like the point where the 
maximum of these rational functions is, the inverse matrix of R 
with dominant elements in the main diagonal is obtained.  This 
assures that fallacious bends are not obtained when generating 
the best interpolation curve.

3.1 Generation of the Rational Functions.

Rational functions  uR , conformation that will be directly bound 
to the individual who evolves inside the evolutionary algorithm 
of interpolation.

The basic rational function is conformed by 6 points, where each 

point will be conformed by two coordinates  ii yu , , where the iu

values will be given by the traditional formula of partition of 

axes, while the values of iy
 will be located inside the 

evolutionary individual.  For the previous particular case of 6 
points, the individual will be conformed as it is shown in the 
Figure 2 according to Figure 1.

Figure 1. Conformation of the rational base functions R(u).

In figure 1, each one of the points over the rational function is
located on the knots vector.  These points have a height given by 
the vector in figure 2:     

oy 1y 2y 3y 4y 5y 6y

Figure 2. Height for the structure conformation of the 
rational functions R(u).

Each rational function has an equation as:

       uLyuLyuLyuR nnoo  ..........11
 (10)

where:

 xLi
: LaGrange polynomial, depending of the m values that 

conforms the knots vector, where the rational functions are 
linked.
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The line that unites the points that conform the rational functions 

is given by a polynomial of order n  (for the rational function of 

the Figure 1, 6n ).  For the case of polynomial union of 
smaller degree, polynomial functions can settle down for 
segments.  It is remarkable that the knots will be located in the 
extreme of the rational function, while the point to be 
interpolated will be found exactly above the central point; the 
other points are result of a uniform partition of the rational 
functions derived from the conformation of the rational functions.  
For an interpolation of a group of nine points the rational 
functions may take the form in Figure 3:



Figure 3. Rational Functions of order 3, for the interpolation 
of 9 control knots1.

The total numbers of points for the conformation of the rational 
functions of a whole of n  interpolation points is calculated with 
equation (12):

127*)1( n                             (12)

3.2 Evolutionary Algorithm of Interpolation.
Beginning with the surface interpolation, it is necessary to keep 
in mind the following points [7], [8]:

An appropriate partition for the vector of knots that determine 
the beginning and final of each one of the rational functions to be 
generated.  

An initial population of individuals where each one of the genes 
will represent each one of the points that conforms the rational 
functions mentioned in the point 3.1[3].

After the initial population definition, we apply the following 
evolutionary operators [5]:  

1. The Selection Operator of Roulette chooses for the 
following generation the population's better individual.  

2. The Operator of Recombination, elitism with 
replacement, where the best individual participates in 
all crossovers.  

3. The Operator of Mutation uses an evolution strategy 
where a gene is chosen in a random way.  To each gene 
selected for the mutation a random number is added or 
subtracted while the fitness function of each individual 
improves.

3.3 Fitness Function of the Interpolation 
Algorithm.
For the evaluation of the individuals the following procedure is 
applied [7], [8]:

                                                            
1 Jung, H.B., Kim K. A New Parameterization Method for 

NURBS Surface Interpolation.  Advanced Manufacturing 
Technology. Springer-Verlag, London, 2.001.

1. Build the rational functions for each individual and determine 

the equation of each one of them to obtain the matrix .R
2. Find the Euclidean distance among the real points and the 

generated points by the interpolation matrix R  (the knot 
vector and their secondary partitions will be static during the 
evolution process).  In accordance with the above-mentioned 
the fitness function for this case will be given by the equation 
(13). 
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Where:
D:  indicates the Euclidean distance among the data point (Pj) 

and the generated points (Qj) by the matrix .R

Avoiding obtaining missed interpolation functions or overflow of 
the rational functions between point and point, it is necessary to 
include inside the fitness function a part that limits the growth of 
the rational functions.  This constrain will be given in this way:

1. The proposed main and secondary partitions are 
evaluated for the construction of the rational 
functions against the interpolation matrix.

2. A series of LaGrange functions are selected to 
interpolate the main points of the surface in the sense 
of each one of the variables.  

3. The secondary points are evaluated according to the 
LaGrange interpolation polynomial.  The difference 
among the values given by the matrix of interpolation 
and the values given by the evaluation of the
polynomial of LaGrange is calculated to obtain the 

value .L
In the general case, with n partitions in the unfolding of the 
response surface, the fitness function is determined by a 
LaGrange Constraint of n order, as follows:

             xLxfxLxfxLxfxp nnoo  ..........11
  (14)

where:

 xLi
: LaGrange polynomial, depending of n surface partitions.
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This polynomial has a different order respect to the total number 
of points, since the LaGrange constraint takes in account only the 
surrounding values to the point, needed to error calculation.  
Obtaining information about the height of the neighbor points of 
the evaluated point increases the power interpolation. 

By this way the fitness function for each one of the population's 
individuals will be given by the equation (16) [8]:

                         
LD

FA
 

1
:                                     (16)

Where:

:FA Fitness Function Value.



:L     LaGrange Error.

:,   Weight Factors (factors allowing the values L, D, have 

the same order of magnitude).

ji xx , : Interpolation Original Points.

4. EVOLUTIONARY NAVIGATION ON 
THE INTERPOLATED RESPONSE 
SURFACE.
So far, the first stage of the evolutionary method of interpolation 
and exploration of a response surface originated in a data point 
set has been presented.  This process consists in the modification 
of the traditional NURBS method with an evolutionary algorithm 
that locates the maximum value of each randomly generated 
rational function in each interpolation point.  After this, the 
evolutionary algorithm is enriched with LaGrange functions, 
reflecting the variables action, to correct the secondary points in 
order to follow an adequate behavior in the convex hall.

The second stage is the navigation on the interpolated surface to 
identify good trajectories with the best combination of the 
variable’s amounts.  Due to the conception of the selection and 
recombination operators inside the algorithm, the identification 
and crossing of information among the population's individuals is 
achieved, while the exploration of the surface is carried out with 
the mutation operator by means of the use of the geometric 
concept of cylindrical coordinates [1].  To determine those 
trajectories, the same structure of the interpolation evolutionary 
algorithm will be used according with the operators of selection 
by roulette and the operator of recombination.

For the first stage, a non evolutionary behavior, an experiments 
design, and an evolutionary process were generated, in which 
there was not any approach for a behavior, neither for the 
allowed ranges for the modification of the values of the 
independent variables.  This means that in many cases the found 
behavior will not identify the best combination of values neither 
the maximum points inside the response surface [1].  The second 
sage is completely evolutionary and is responsible to get the best 
combination in values of the variables of the process the response 
surface represents.  The interpolation and exploration 
evolutionary algorithm was applied to emulate the growth 
process of the mushroom Pleurotus ostreatus.

4.1 Cylindrical Evolutionary Mutation 
Operator.
The mutation operator is in charge of identifying the areas of the 
interpolated response surface where a given behavior of the 
phenomenon is detected.

In the case of the growth process of the mushroom Pleurotus 
ostreatus a gradual and always increasing growth, with the 
smallest pH variation, was observed.  Starting from the non 
evolutionary process, that general behavior of the trajectory for 
the particular case of the growth of the mushroom Pleurotus 
ostreatus was identified and following from here the value of the 
independent variables were taken.  This is time in days (t) and 
the pH value (acidity of the sow) for every day.  In accordance 
with this, the proposed emulation evolutionary algorithm fixes 

the string of genes that contains the values of the days, and goes
modifying the values of the other variable (pH), so that between 
day and day will exist a controlled growth with moderate 
variation of the independent parameters [9].

For this case, a set of mutation positions inside the whole of the 
individuals' genes was generated and the concept of coordinated 
cylindrical is used to identify the best vicinities for the gene 
selected for the mutation, these better vicinities are determined 
by a bigger value to the value considered for the point of 
mutation.

According to this mutation strategy the gene previous to the gene 
selected for the mutation will be chosen, gene that we will call 
central point and that it will be represented by the coordinates:

Xc: Central day for the mutation.

Yc: Central pH for the mutation.

With these coordinates a value, called Fc, could be calculated.  
The positions that were selected for the mutation will be denoted 
in the following way:

   Xa: Day to change during the mutation.

Ya: pH to change during the mutation.

For these coordinates a specific value is also calculated, denoted 
as F.

For the mutation, the central point is taken and a sector of arch of 
approximately 90° with a variation of 15° is considered around 
the central point as it is shown in the equation (17).

      i*2617993.0 ,  cos*2 rxx c  ,        

      sin*2 ryy c                                              (17)

Where:

2x :  represents the new point for the coordinate days.

2y :  represents the new point for the coordinate pH.

 : Variation angle or variation allowed for the independent 

variables.

NP
r

1
 : Radio of the circular sector on which is carried out 

the advancement.

:NP  Number of steps for the emulation path.

i:  random value of the angle variation of the circular sector, this 
value will be delimited in the interval [-3,3], where 0.261793 are 
approximately 15° in radians.

For this point a value of the growing behavior will be evaluated, 

and it will be denoted 2F .



In accordance with this, if the value F2 overcomes as minimum 
the value of (1/NP)*CF, the values of the coordinate (Xa, Ya) are 
modified respectively in the algorithm by the values of (X2, Y2)

This way, and in accordance with the aptitude values, makes sure 
that the behavior of the phenomenon will be made in gradual and 
always growing way upon some given conditions and in 
correspondence with the variations that it can suffer under its pH 
conditions [1].

5. RESULTS VALIDATION.
For the validation of the model it was taken into account the 
growth of the mushroom Pleurotus ostreatus in one of its first 
stages of growth.  For the construction of the response surface, 
the pH (Acidity of the Sow) and time (t) were taken as 
independent variables, while the answer variable will be the 
growth of the mushroom, C, cultivated in plates of Petri of 10 cm 
of diameter. 

To achieve the validation of the model are necessary two 
fundamental stages of the pattern, they are:  

1. Evolutionary interpolation of the surface.  

2. Evolutionary emulation for the growth of the 
mushroom.  

For the evolutionary interpolation of the surface the most 
successful growth achieved in laboratory by the mushroom was 
chosen, in this case the sow PDA (Potatoes, Dextrose and Agar).  
In Figure 5 two overlapped lines are shown, one indicates a 
border of the surface of data points, while the other line indicates 
the interpolation line for the same data [9].

Figure 4. Lines including the termination criteria for the 
Evolutionary Interpolation.

To determine the magnitude of the interpolation it is necessary to 
show a superior view of the surface to observe the contours of the 
growth that indicate the form in which the interpolation was 
made.

The numeric results obtained for the considered sow were the 
following ones: 

1. Iterations Number: 150.
2. Individual fitness: 51.23.
3. Interpolation Mesh Error: 1.95 cm. (81 points).
4. Confidence Percentage: 99.76%.

Figure 5.  Top view of the data points surface and the 
interpolated Surface.

Figure 6.  Interpolated Surface.

To achieve an emulation that reflects in a real way the growth of
the mushroom, the response surface had to be triangled in a 
uniform way, so that the lineal confidence of the triangular 
surface with regard to the analytical response surface was [9]:  



1. For 81 points: 82.16%
2. For 324 points: 87.84%
3. For 6556 points:  96.61%.  

The validation of the model of evolutionary emulation (or 
exploration) was achieved identifying the pH values common to 
each one of the growths found by the evolutionary interpolation 
method and then carrying out experimentation in the laboratory 
again with those pH values that presented a successful growth.  
From the analysis of the data a gap for each sow in each one of 
the days of the observed mushroom growth was registered, then 
an average gap and a value of variance point to point for the 
whole stage of the mushroom growth considered in this model 
was calculated [9].

Table 1. Evolutionary Growth vs. Growth of validation 
Comparison, sow PDA.

For this type of sow, the growth presents a total error of 3.54 cm 
in all the points considered for the growth of the mushroom.  The 
average of the error with regard to a total diameter of 10 cm was 
of 0.099cm, a Petri plate of 10 cm was the patron measure for the 
mushroom growth.  The standard deviation of the data was found 
around 0.34845 cm, with regard to the average.

The evolutionary model, here presented, was tested against the 
model proposed in [6].  In this model, the combination of effects 
from temperature and propionic acid for the Aspergilus 
parasiticus are evaluated.  Figure 7 shows the behaviours
obtained in [6] and the evolutionary model for a temperature 
T=36°C.

Figure 7.  Aspergillus parasiticus Fungus Growth (T=36°C)

The three lower curves represent experimental processes. The 
upper curve is the optimal growing interpolated in [6], while the 

fourth curve was obtained by the evolutionary model, according 
to table 2.     

Table 2. Evolutionary Growth vs. Growth of validation 
Comparison, sow PDA.

6. CONCLUSIONS.
1. The interpolation of a group of data point obtained in 

laboratory using evolutionary NURBS (Non Uniform Rational 
Basis Splines), presents a very good approximation point to 
point.  

2. Although this approximation presented some problems of 
overflow of the data, mainly produced in the NURBS method 
because the limitless growth of some rational functions among 
each one of the data point [9], the enrichment of the 
evolutionary algorithm with LaGrange functions resulted in an 
adequate solution.  

3. The interpolation of the validation case (mushroom growing)
using a non evolutionary method presented many deficiencies 
in regard with the real behavior, because many of the 
emulated values did not have a relative continuity among the 
values of the independent parameters (t, pH).  On the other 
hand, the incorporation of geometrical features in the fitness 
function allows that the evolutionary emulation presents
moderate values of growth with regard to moderated change 
in the values of the independent parameters; this made the 
gain for the emulated behavior to be much more gradual.

4. With the evolutionary model of interpolation is easier to find 
optimal points than the traditional methods for the exploration 
of response surface, which produces different paths for 
different weather conditions, and with gradual changes in the 
controlled variables.      
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