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ABSTRACT
Design optimization is a well established application field
of evolutionary computation. However, standard recombi-
nation operators acting on the genotypic representation of
the design or shape are often too disruptive to be useful
during optimization. In this work, we will analyze whether
morphing methods between two shapes can be used as re-
combination operators acting on the phenotype space, thus
directly on the shape or design. We introduce three different
morphing methods and employ them as recombination op-
erators in a standard evolution strategy (es). We compare
their performance with an evolution strategy without any re-
combination operators on two target shape approximation
problem. We can conclude that two of the three morphing
methods can be useful during search although all morphing
methods still turn out to hinder the self-adaptation of the
step sizes of the evolution strategy.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; J.2 [Physical sciences and engi-
neering]: Engineering

General Terms
Design, Algorithms

Keywords
Design optimization, evolution strategies, morphing meth-
ods, phenotypic recombination

1. INTRODUCTION
Design optimization is a well established application field

of evolutionary computation. In particular, the optimiza-
tion of aerodynamic structures, like aircraft wings [8] or
turbine blades [14] using evolutionary algorithms has been
successful. Although it is often treated as a parameter op-
timization problem, there is a clear difference between the
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genotype and the phenotype level in design optimization.
The genotype is e.g. given by the coordinates of the control
points if a spline representation is chosen. The phenotype
is the actual two-dimensional or three-dimensional design
or structure that can be represented by a sufficiently large
set of sample points. It is evident that the topology of the
genotype space is very different from that of the phenotype
space.

In particular, in conjunction with evolution strategies the
use of recombination operators for design or shape optimiza-
tion has been controversial and in some works recombination
has even been omitted [9] altogether. At the same time, on
the phenotype level, i.e., on the level of the actual shapes,
we have a very intuitive idea of what a shape should like that
lies in between two shapes as long as the two initial shapes
do not differ too much. This “intuitive idea” is captured
by morphing methods which provide a smooth transition
between two images, shapes or three-dimensional objects.
Therefore, it seems a reasonable idea to employ morphing
methods as phenotypic recombination operators in design
optimization with evolution strategies. The analysis of such
a shape optimization framework is the subject of this paper.
The idea to employ crossover or recombination methods on
phenotype space or more generally to use phenotypic in-
formation to determine optimal crossover points has been
successfully used before, e.g., in the context of probability
density models [7] and of neural networks [3].

In the next section, the evolutionary design optimization
task will be introduced and the basic evolution strategy will
be outlined. In Section 3 three different morphing methods
that have been suggested in the literature for the problem
of polygon shape morphing are presented. These morphing
methods are used in Section 4 as recombination operators
in a simple evolution strategy. Their performance will be
compared with each other and with an evolution strategy
without recombination for a target-spline benchmark prob-
lem [4] that is close to “real” design optimization problems.
We will summarize our findings and conclude in the last
section.

2. EVOLUTIONARY DESIGN
OPTIMIZATION

Since the necessary computation time prohibits the use of
aerodynamic shape optimization problems for testing new
algorithms or operators, we use target shape optimization
as a benchmark problem in this study. We define two tar-
get shape problems: a dolphin and the shape of a two-
dimensional cross-section of a turbine blade. Obviously, the
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turbine blade shape is close to the design of the real-world
problem whereas the dolphin is visually appealing and –
more seriously – due to the fins it is structurally different
from the blade. Both shapes (light gray curves) are shown
in Figure 1.

Figure 1: The target shapes (light gray curves) and
the best approximations (dark gray curves) after
10000 function evaluations for the dolphin (top) and
the blade (bottom) target shapes.

The goal of the optimization is to approximate the target
shape as close as possible. The fitness measure is a sym-
metrised Hausdorff distance measure H between two sets
of sample points. One set from the target shape T = {ti}
and one set from the individual whose fitness is calculated
A = {ai}. Both sets have the same cardinality |T | = |A| =
nF . Note that each point ai = (xa

i , ya
i ) and ti = (xt

i, y
t
i)

consists of two coordinates.

H(A, T ) =
1

2

(
nF∑
i=1

min{|ai − t| ; t ∈ T }

+

nF∑
i=1

min{|ti − a| ; a ∈ A}

)
(1)

Each shape is represented as a closed B-spline [10, 11].
The B-spline is defined by its degree, set of control points
and knot points. Here, we only vary the control points.
Therefore, the genotype of each individual consists of a chro-
mosome with the (x, y) coordinates of all control points.

For the optimization we employ a standard evolution strat-
egy with global mutative step-size adaptation. For each
individual during mutation a normally distributed random
number is added to the coordinates of the control points of
the spline representation. The isodensity contours of the
normal distribution are hyper-spheres, i.e. only one strat-
egy parameter, the variance of the normal distribution, is
adapted during the search process. The reason to use only
one step size is that due to the disruptive nature of some
of the recombination operators, a more stable adaptation
scheme is preferred. The evolution strategy is used together
with (µ,λ)-selection.

3. SHAPE MORPHING
Shape morphing is the process of deforming a source ob-

ject or shape into a target through a sequence of intermedi-
ate forms. Resembling the source at the start and the target
at the end of the process, the intermediate forms should be
gradual blends from source to target. Although there is no
precise definition of what the intermediate forms should look
like, there are several common requirements that have been
suggested. Carmel and Cohen-Or [2] summarize these into
the following:

1. The volume and circumference of the objects should
change monotonically

2. The boundary of the objects should retain the smooth-
ness of the original objects

3. Features common to both source and target objects
(e.g. head or legs), should be preserved during the
process

There are several different classifications of morphing algo-
rithms depending on the actual form of the source and target
objects. Techniques have been developed to morph images,
polygons and volumetric forms. For the 2D design opti-
mization problems analyzed in this paper, we will use the
polygon morphing algorithms that will be discussed in the
following. For 3D problems volumetric morphing algorithms
might also be applicable. The majority of shape morphing
algorithms operate on a sequence of vertexes that define the
object. There are only few approaches that directly use the
B-spline representations of two shapes, see [13, 5].

In this paper, we discuss three morphing methods as phe-
notypic recombination operators. They all operate on a se-
quence of nR sample points which we obtain from the spline
representation of the shapes. The sample points are the
vertexes of the polygon morphing algorithms.

3.1 Linear interpolation method
Given two polygons; each represented by a set of ver-

texes A and B with cardinality |A| = |B| = nR, an obvious
method of performing a shape blend or morph is to linearly
interpolate the two sets of vertexes into a new set C:

C(t) = u A+ t B
= {u ai + t bi | ai ∈ A; bi ∈ B} (2)

= {ci},
u = 1− t; |C| = nR.

Note that again, each vertex (or point) consists of two co-
ordinates ci = (xc

i , y
c
i ).
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natural morph

bad quality morph

Figure 2: Linear vertex interpolation can lead to
unsatisfactory intermediate shapes.

alignment

shape A

shape B

Figure 3: Correspondence between two phenotypic
shape descriptions A and B and subsequent re-
alignment.

This naive method however will typically produce poor
results. The arbitrary correspondence between vertexes of
the same index number, as shown above, will not produce
desirable results in many cases. Furthermore, each vertex is
linearly interpolating by the same amount. Essentially, the
linear vertex interpolation method fails because it treats ver-
texes independently from each other. One example of mor-
phing between two simple shapes in this way is shown in
Figure 2. Most research therefore decomposes the polygon
morphing problem into that of vertex correspondence and
vertex interpolation. Here we use the simple interpolation
suggested in equation (2) together with two different meth-
ods to align the vertexes of the two shapes.

First simply examine all sample points or vertexes on
both shapes and select the two that have the minimum Eu-
clidean distance. Using the correspondence between these
two points all subsequent points in both sequences are aligned,
see Figure 3. This method will be referred to as morph-
ing initial in the remainder of the paper.

A second solution to the correspondence problem is to de-
fine a cost function and to minimise it over different possible
vertex correspondences, see [16]:

cost(i, j) = w1 |angle(ai)− angle(bj)| + w2
1

nR
|i− j|,

which involves the following definition of the angle cost at
point ai:

angle(ai) =
1

2
arccos(ai−1, ai+1)·sign(xa

i−1y
a
i+1 − xa

i+1y
a
i−1),

(3)
where w1 is the angle cost, and w2 is the index cost.1

The function attempts to match parts of each curve that
have similar angles. The second part of the function ensures

1Typical values of w1 = 3, and w2 = 1 are given in [16].

that vertexes that are close together (in terms of their in-
dexes) correspond with each other. The minimum of the
cost function is then found over all possible vertex corre-
spondences of the two curves using the method of dynamic
programming. We will refer to this method in the following
as morphing match.

3.2 String representation morphing
The string representation morphing algorithm [6] attempts

to morph polygonal shapes by decomposing the shapes into
strings and then computing the weighted mean (or linear in-
terpolants) of the strings based on a recent algorithm by [1].
This involves using the Levenshtein algorithm [15] for com-
puting the distance between two strings. The main steps
are outlined as follows:

1. Calculation of starting points. The starting point
is calculated in the same way as for morphing initial.

2. Curve sampling. It is necessary to produce two sets
of samples A and B from the individual and the target
curves such that the distance between any two con-
secutive points has a fixed euclidean distance ∆ =
|ai−ai−1|. This differs from the majority of morphing
algorithms that accept polygons whereby the vertex
distribution is arbitrary, but it is an intrinsic feature
of this method. Most polygons can be re-sampled ac-
curately when ∆ is sufficiently small.

3. String decomposition. Once a sequence of uniform
samples is obtained, a ”string” representation for each
curve is generated simply by taking the sequence of
vectors from each point to the next point in the curve
sequence.

4. Levenshtein algorithm [15]. This algorithm com-
putes the similarity, or distance, between two strings
by considering the optimal sequence of edit operations
that are required in order to transform one string into
the other. The edit operations are: deletion (a → ε),
insertion (ε → a), and substitution (a → b). These
are defined with the following costs: c(a → ε) = c(ε →
a) = |a| = ∆, c(a → b) = |a−b|. The substitution cost
is therefore bounded by 0 and 2 ∆. The Levenshtein
algorithm is implemented by means of dynamic pro-
gramming and returns the minimal cost of edit oper-
ations that can transform one string, A, into another,
B. This process also extracts the explicit sequence of
optimal edit operations, S, which is known as the edit
transcript.

5. Weighted mean of strings [1]. In order to gener-
ate intermediate forms of the two strings (which cor-

respond to intermediate shapes) a subsequence S
′

of
S of the edit operations can then be applied.

In the following, we will refer to this method as morph-
ing string.

3.3 Phenotype Decoding Method
The three shape morphing methods introduced above all

result in intermediate phenotypes represented by nR sam-
ple points. Therefore, it is necessary to reversely transcribe
the sample point sequence into a B-spline. Significantly this
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Figure 4: Flow of the phenotypic recombination pro-
cess in an evolutionary algorithm.

process also modifies the result of the morphing on the phe-
notypic level as the B-spline it returns has a different rep-
resentation in phenotype space than the sample points re-
turned by the morphing. This mapping from phenotype to
genotype is a non-trivial step in any evolutionary algorithm
particularly where complex phenotypic operators are used.
The intermediate genotypic representation of the interme-
diate shape should differ from the genotypic representation
of its parents in the same ratio that the corresponding phe-
notypic representations differ. This strong causality con-
straint is essential in theory in order to ensure that the self-
adaptation of the mutation in evolution strategy (es) that
operates on the genotypic level - as the primary variation op-
erator - is not disrupted. Fortunately, various methods exist
for producing B-splines of a fixed number of control points,
n, from a set of m sample points, commonly where n > m.
The standard method of least-squares approximation is used
here. A schematic overview of the steps in performing phe-
notypic based recombination is shown in Figure 4.

4. RESULTS
A visual comparison of the three morphing methods is

shown in Figure 5.

4.1 Experimental set-up
All parameters of the experiments and the evolution strat-

egy (es) are summarized in Table 1. The relatively small
choice of the offspring population size is motivated by the
computationally expensive practical optimizations. The ra-
tio µ

λ
was recommended in [12], the standard values for τ

and τ ′ were used [12].
All results that we present in the following are the average

of ten runs. The first generation was initialized by adding
normally distributed random numbers with variance 0.02 to
the control points of the spline representation of the initial
shapes. The initial shapes of a typical first generation are
shown in Figure 6 together with the dolphin target shape
problem.

4.2 Blade Target Shape
The development of the fitness value, the symmetrised

Hausdorff distance, with the number of function calls is
shown in Figure 7 for the four recombination operators.
The methods morphing initial, morphing match and mor-
phing string are represented by a solid line, a dashed line
and a dash-dotted line, respectively. The fitness for the evo-
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Figure 5: An example of the result of the three
morphing methods. The two parent shapes are
shown as dotted curves. The results of morphing-
initial, morphing-match and morphing-string recom-
bination operators are shown as solid, dashed and
dash-dotted curves, respectively.

parameter value

(µ, λ) (5,35)
σinit σinit ∈ [10−3, 10−4]
lower bound for σ 10−8

fitness sample size (blade) nF 66
fitness sample size (dolphin) nF 500
phenotype sample size nR 600
string distance ∆ 0.005
number of control points 10
degree of the spline 3

Table 1: Parameter setting for all experiments.

Figure 6: Four examples for the shapes from the
first generation (dark gray) for the dolphin problem.
Initial shapes are the same for the blade problem.
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lution strategy (es) without any recombination operator is
shown as a dotted line. Note that the 10.000 function calls
roughly correspond to 285 generations in our experimental
set-up. First we notice that the es without recombination
achieves the best fitness values during the first 2000 function
calls. It is “faster” than all other methods. The second ob-
servation is that morphing string performs worst during the
whole optimization. It converges to a relatively poor fitness
value.
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Figure 7: The Hausdorff distance (fitness) versus the
function evaluations for the blade target shape prob-
lem. The es with the morphing-initial, morphing-
match and morphing-string recombination operators
are shown as solid, dashed and dash-dotted curves,
respectively. The es without recombination is shown
as a dotted curve.

A more detailed analysis, see Figure 8, reveals that both
methods morphing match and morphing initial overtake the
es without recombination after 2400 and 2600 function eval-
uations. Both methods reach about the same fitness value
after 3000 evaluations. Although the difference between the
morphing methods and the es without recombination seems
relatively small, it is statistically significant (student t-test
with α = 0.01).

Strangely, morphing match starts to diverge at later gen-
erations, as can be seen from Figure 9. The advantage of
morphing initial remains statistically significant for the final
evaluations (significance level α = 0.001 at 10.000 function
calls).

The developments of the global step sizes for all methods
(shown in Figure 10) reveal why two of the three morphing
methods are not successful. Bearing in mind that the mu-
tation operator has a very strong impact on the behavior
of the es, the correlation between the performance of each
algorithm and the development of the global step size is not
surprising. The step size of morphing string does not con-
verge at all, it fluctuates around a relatively high level of
0.025. For the morphing match method the typical adap-
tation pattern of the strategy parameter can be observed,
however, at later generations it still converges to a value
which seems to be too high. This relatively high level of σ
for function calls larger than 5000, is likely to be responsi-
ble for the divergent behavior that we observed in Figure 9.
Furthermore, the lower optimization “speed” of all morph-
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Figure 8: The fitness values between evaluations
2300 and 3100 for the blade target shape problem.
The difference between morphing initial/match and
the es without recombination is significant (student
t-test at α = 0.01) at 3100 evaluations.
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Figure 9: The fitness values for the last 4000 func-
tion evaluations for the blade target shape problem.
The difference between morphing initial and the es
without recombination is significant (student t-test
at α = 0.001). The divergence of morphing match is
clearly visible.
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Figure 10: The development of the standard devi-
ations of the mutation operators for all algorithms
for the blade target shape problem.

ing methods can be attributed to the delayed adaptation of
the strategy parameters that is also visible in Figure 10.

Finally, the resulting best approximation (dark gray curve)
is shown together with the target shape (light gray curve)
in Figure 1 (bottom).

4.3 Dolphin Target Shape
The behavior of the four algorithms is similar for the dol-

phin target shape problem. In Figure 11 the overall devel-
opment of the fitness value is shown. The correspondence
between algorithm and curve pattern is the same as for the
blade target shape problem. We notice again that the evo-
lution strategy (es) without recombination performs best
during early generations, i.e. the first 5000 function evalua-
tions. The morphing-string method performs worst during
the whole optimization process and fails to converge to a
satisfactory fitness value.

The first 40 generations (600 evaluations) seem to be an
exception. As Figure 12 shows, here paradoxically morphing-
string performs best. However, statistical analysis reveals
that this difference is not significant (student t-test) and
must be due to statistical outliers.

Similar to the blade shape problem, the morphing-initial
method performs better than the es without recombination
for evaluations larger than 8500. Indeed this performance
difference is statistically significant (student t-test) with a
level of α = 0.001. However, the performance of morphing-
match stays below the one of the es without recombination.

In Figure 14 the developments of the step sizes for all four
different methods are shown. We observe a very similar pat-
tern as for the blade shape problem. The standard devia-
tion of the mutation operator does not adapt well when used
together with the morphing-string recombination operator.
The adaptation of the step sizes of the morphing-match and
the morphing-initial methods is delayed compared to the one
of the es without recombination. At the same time, it seems
that the step sizes of these two morphing methods have not
converged yet. Thus, one could imagine that both methods
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Figure 11: The Hausdorff distance (fitness) ver-
sus the function evaluations for the dolphin tar-
get shape problem. The es with the morphing-
initial, morphing-match and morphing-string recom-
bination operators are shown as solid, dashed and
dash-dotted curves, respectively. The es without re-
combination is shown as a dotted curve.
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Figure 12: The fitness values for the first 1000 func-
tion evaluations for the dolphin target shape prob-
lem. The differences between the methods are not
statistically significant (student t-test).
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Figure 13: The fitness values between 6000 and
10000 function evaluations for the dolphin target
shape problem. The difference between morph-
ing initial and the es without recombination is sig-
nificant at 10000 function evaluations (student t-test
at α = 0.001).
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Figure 14: The development of the standard devi-
ations of the mutation operators for all algorithms
for the dolphin target shape problem.

would achieve slightly better results if more function eval-
uations were performed. Whether morphing-match would
start to diverge again at some point would require further
analysis.

Finally, the resulting best approximation (dark gray curve)
is shown together with the target shape (light gray curve) in
Figure 1 (left). One should not be mislead by the poor im-
pression of the approximation quality. With the low number
of ten control points that we fixed in this study, the dolphin
cannot be approximated better. At the same time, increas-
ing the number of control points increases the probability of
local loops in the spline approximation. Local loops are dif-
ficult to detect and even more difficult to get rid off during
optimization. Since loops would obscure the results, we de-
cided to settle for a relatively low number of control points
while being aware that the absolute approximation quality
would be low for the dolphin.

5. SUMMARY AND CONCLUSION
In this paper, we analyzed for the first time the applica-

bility of polygon shape morphing methods as recombination
operators in a standard evolution strategy (es) for design op-
timization. In order to be able to achieve the number of runs
that are needed to make any statistically sound statements,
we used target shape design as a benchmark problem.

The results showed that two of the three morphing meth-
ods can indeed enhance the performance of the evolution
strategy. This performance difference is statistically signifi-
cant, however, not as decisive as one would have hoped for.

Indeed the advantage of the final approximation qual-
ity comes at the price of “slower” initial performance, i.e.,
the algorithms with morphing recombination operators take
more evaluations to reach the same approximation quality
than the es without recombination. As our analysis of the
strategy parameters indicate, these performance problems
are a result of the delayed (or in the case of morphing string
not visible) self-adaptation. In evolution strategies the mu-
tation operator together with the self-adaptation property
are the major driving forces of optimization. A recombina-
tion operator that disturbs this process cannot demonstrate
its advantage even if the combination of different shapes is
otherwise fruitful for the search. In particular, the problem
of the reverse transcription of the phenotypic result of the re-
combination operator adds to the “disturbance”, since con-
trol points will have changed their positions. In addition to
the problems identified in this paper, the reverse transcrip-
tion would basically prohibit the use of individual step-sizes
or of even more complicated methods like the covariance
matrix adaptation.

The particularly poor performance of morphing string can-
not be fully explained by the results of this work. How-
ever, a visual inspection of some of the recombination re-
sults seems to indicate that the morphing method itself can
lead to strange results.

In this work, we concentrated on phenotypic morphing
methods as recombination operators for evolution strate-
gies. Standard n-point genotypic recombination operators
do not work well for this problem with evolution strategies.
Intermediate recombination on the genotype level results in
performance values similar to the ones discussed in this pa-
per (results for both methods are not shown here).

In the future, we plan to analyze whether a stable self-
adaptation property can be realized even when morphing
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recombination operators are used. Furthermore, we will an-
alyze morphing methods that directly act on the B-spline
representation. The use of morphing recombination with
genetic algorithms would also constitute an interesting sub-
ject of research.
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