
Evolving Optimal Feature Extraction using Multi-objective
Genetic Programming: A Methodology and Preliminary

Study on Edge Detection
Yang Zhang

Dept of Electronic & Electrical Engineering,
University of Sheffield

Mappin Building Mappin St. Sheffield S1 3JD, UK
+44(0)114-2225411

elp03yz@sheffield.ac.uk

Peter I Rockett
Dept of Electronic & Electrical Engineering,

University of Sheffield
Mappin Building Mappin St. Sheffield S1 3JD, UK

+44(0)114-2225589

p.rockett@sheffield.ac.uk

ABSTRACT
In this paper we describe a generic methodology to create an
“optimal” feature extraction pre-processing stage for pattern
classification. Our aim is to map the input data into a new, one-
dimensional feature space in which separability is maximized
under a simple thresholding classification. We have used multi-
objective genetic programming with Pareto strength-based
ranking to bias the selection procedure. The methodology is
applied to the edge detection problem in image processing; we
make quantitative comparison with the pre-processing stages of
the well-known Canny edge detector using synthetic and real-
world edge data and conclude that the performance of our
evolutionary-based method is much superior to the Canny
algorithm based on the criterion of minimum Bayes risk.

Categories and Subject Descriptors
Evolutionary Multiobjective Optimization

General Terms
Algorithms, Design, Theory.

Keywords
Edge Detector, Feature Extractor, Multi-objective Genetic
Programming

1. INTRODUCTION
Feature extraction is a common and invaluable step in pattern
classification. To utilize the potential information in a pattern set
to its fullest extent is always a goal and to this end, subset
selection, dimensionality reduction and transformation of
features (feature extraction) have been applied to patterns before
they are passed to a classifier. Whereas methods for
dimensionality reduction and subset selection are well

established [5], a generic and domain-independent methodology
for feature extraction to minimize classification error has always
been a highly desirable but so far, unattained goal in pattern
recognition. Typically, feature extraction pre-processing
approaches are hand-crafted based on domain-specific knowledge
and optimality is hard to guarantee. Indeed, much of image
processing research, for example, has been based on devising
feature extraction algorithms.

Our objective in the present work has been to identify the
optimal series of mathematical transformations to pattern data
that produces the best class separation in the transformed feature
space. Further, our aim has been to produce a generic, domain-
independent method for generating optimal feature
transformations such that the transformed patterns (or extracted
features) can then be accurately classified with a simple and fast
classifier.

Genetic programming (GP) is a problem-solving method [8]
which can be viewed as evolving sequences of processing steps
optimized with respect to some domain-specific fitness or
objective. GP has already been used to develop automated
feature detection/classification systems for pattern recognition
tasks [18, 2, 3].

In [2], pipelined image processing operations were used to
transform multi-spectral input data planes into a new set of
image planes and a conventional supervised classifier used to
classify the transformed features. The transformation stage used
training data to derive a Fisher linear discriminant and then
genetic programming was used to find a threshold to reduce the
output from the discriminant-finding phase to a binary image.
However, the discriminability is constrained in the discriminant-
finding phase and the GP only used as a search tool in one-
dimension to find a threshold.

In [4], the authors used GP to dynamically select feature subsets
based on a few premises: Firstly, they focused the GP’s attention
on the difficult cases (i.e. the ones which are frequently mis-
classified, and cases which have not been looked at for several
generations). They randomly selected a target number of cases
from a training set every generation with a bias, hoping to attain
one of the above two benefits. This approach, however, requires
a very large training set which is often hard or expensive to
obtain.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

795

In the present work, we re-emphasize the importance to
classification systems of the feature pre-processing stage, an area
which has been overshadowed in recent years by advances in
sophisticated classifiers (e.g. support vector machines). We
propose evolving a transformation which projects input patterns
into a one-dimensional feature space in such a way that class
separability is “maximized. We have employed the multiple
fitness objectives of: error rate (over a training set) together with
a measure of tree complexity aimed at achieving the most
compact mapping. Using this multi-objective optimization
approach, we aim to produce a systematic and generic
methodology for classification system design. In this paper, we
describe the application of this methodology to the edge detection
problem in image processing as a starting point since edge
detection is a well-researched and understood field. Thus it is
straightforward to gauge the usefulness of the evolved feature
extraction method in comparison to conventional methods.

2. FEATURE EXTRACTION
Other researchers have used evolutionary methods to produce
combined feature extraction and classification stages [7] but we
argue that this approach makes the feature extraction procedure
dependent on the co-evolved classifier in an completely opaque
way. There is a potential risk with this combined approach that
the evolved pre-processing can be excellent but the classifier can
be poor giving a poor overall performance, or the pre-processing
is limited to producing poor discriminability because the fitness
is defined by a deficient classifier. In short, we argue that the
search space in a combined feature extraction/classification
method is too large and that evolving the feature selection
method as a stand-alone processing stage is a more tractable
undertaking. Classification has been very extensively studied and
we see no merit in leaving the creation of an “optimal” classifier
to evolutionary chance.

In the framework proposed here, feature extraction discovery is
implemented as a supervised learning phase guided by the
fundamental property of the misclassification error. We have
applied this methodology to the edge detection problem in image
processing to evolve an “optimal” mathematical transformation
which maps the input pattern to a one-dimensional classification
space in which we implement a decision making stage which is
optimal with respect to the two class-conditioned PDFs in the
decision variable. Given a set of feature transformations at any
stage of the evolutionary process, we are always assured of the
best pattern classification thus removing a sub-optimal decision
making stage as a degrading factor in the overall system. This
then allows us to concentrate the whole of our computational
effort on evolving the best possible feature extraction stage.

Unfortunately, classification error alone is an insufficient fitness
objective because the trees evolved by GP are well-known to
‘bloat’ – that is, grow excessively large with no corresponding
improvement in performance. Consequently, in addition to
misclassification error objective, we have also used a measure of
tree complexity in a Pareto-based multi-objective optimization
framework. In fact, our fitness vector comprises the three
elements discussed in the following sub-sections:

2.1 Tree Complexity Measure
As pointed-out above, there is a danger that trees evolved by GP
will become very large due to tree bloat. We have observed in
early experiments that huge trees could produce a extremely
small error over the training set but a very poor error estimated
over an independent validation set. A similar phenomenon is
seen in neural networks where an overly complex network over-
fits the training set. The balance between training error and
complexity is a recurring theme in classifier design (and other
fields) and is often referred to as the bias-variance dilemma.
Broadly, for a given training error, the simpler individual is
preferred. Thus we have used node count as a straightforward
measure of tree complexity to be one of our fitness vector
elements driving the evolution to producing the smallest tree
possible.

2.2 Bayes Error Estimate
The use appropriate fitness functions is critical to the search
performance of genetic programming. An inappropriate fitness
function can seriously mislead the evolution. Some previous
work has been done aimed at searching for an optimal fitness
evaluation method, for example [11], in which each individual in
the population returns a real number and this is treated as if it
was a prediction of the true percentage of the desired class.
These authors used two components of fitness: squared error and
(½ TP + ½(1-FP)). To calculate the true positive (TP) and the
false positive (FP) rates, the value returned by a tree is truncated
and compared with an experience threshold. The potential risk
in this approach lies in the fact that they have used a crude
classifier to estimate TP and FP, and the use of the equal priors
(Pr = 0.5) as the second fitness component, which is not always
be reasonable in real applications. Furthermore, they reuse the
squared error as another component of fitness, but actually it is
the average truncated error on the training set.

Directly and simply, we choose the most commonly used
nonparametric estimator – a histogram – to make an empirical
estimation of class-conditioned likelihood densities in the one-
dimensional projected decision space. Considering these two
class-conditioned densities, the Bayes error is estimated to
evaluate the separability associated with a given feature extractor
(population individual) by means of the class prior probabilities
and calculating the overlap between the two densities. The Bayes
error is a fundamental lower bound on classification
performance, dependent solely on the class-conditioned densities
and independent of the classifier. It yields a fast, simple and
direct objective which seeks to minimize the overlap between the
class-conditioned likelihoods.

2.3 Misclassification Error
The final element we use in the fitness vector is the conventional
one of the fraction of misclassified patterns counted over the
training set. Since we are projecting the input pattern to a one-
dimensional decision space, here we use a simple threshold
classifier. This objective means we are trying to evolve a feature
extractor which maps the original pattern space into a new
feature space where threshold classification would be able to
yield the minimum possible misclassification.

796

The use of two measures of classification error – the Bayes error
estimate (Section 2.2) and the fraction of misclassified training
set patterns (Section 2.3) requires some explanation. In the early
stages of this work it became clear that using only the fraction
misclassified patterns resulted in slow and sometimes, non-
convergent evolution. In the initial phases of the evolution where
all the randomly generated members of the population were
typically poor performers, the fraction of misclassified patterns
objective lacked the sensitivity to identify individuals with
slightly more promise than others, hence the slow convergence.

The use of the Bayes error alone allowed the evolutions to
converge rapidly but the subsequently estimated validation error
was very high. On closer inspection, it became clear that
although the Bayes error objective was minimized over the
training set, the GP was often opportunistically achieving this
goal by producing two transformed class-conditioned densities
with non-coincident ‘comb’-like features rather than the desired
end of two compact densities with widely separated means.
Consequently, although the degree of likelihood overlap from the
training set was small, the misclassification fraction calculated
over the validation set was large. This led us to using two error
measures: the Bayes error allows the evolutionary search to make
rapid progress in the initial stages of the optimization while the
fraction of misclassified patterns eventually comes to the fore
when the evolution advances to a certain stage of maturity and
leads to two well separated distributions.

2.4 GP Implementation
Our genetic programming implementation used a generational
strategy in which two sets of individuals are maintained during
evolution. One represents the current population and the second
contains the current approximation to the Pareto front. The
ranking is done by calculation of strength or fitness of each

individual in both sets. When calculating the strength for
individual we use the method designed in SPEA-2[10].

The workflow of our multi-objective genetic programming
algorithm is illustrated at Figure 1.

Non-destructive, depth-dependent crossover [12] was used in our
work in order to avoid the breaking of building blocks. After
breeding, individual trees grow to be much bigger than the
original ones and simple depth-dependent crossover did not work
effectively. Retaining offspring if their raw fitness was better
than their parents did not always work, especially as we are
dealing with high-dimensional patterns in a large search space. It
would be possible to work with big trees both in depth and in
number of nodes. Furthermore, we found that simple non-
destructive depth-dependent crossover does not work well when
applied to multi-objective genetic programming.

Table 1 GP settings

Terminal
Pixels in 13 × 13 patch

10 Float number in
{0.0,…,1.0}

RADICAL, LOG, POWER,
MINUS, SIN

MINUS, PLUS, MULTIPLE,
DIVIDE, MAX, MIN

Function

IFELSE

Raw fitness Bayesian Error; Classification
Error; Node Number

Standardized fitness Strength-based Fitness
Population size 500

Original Tree Depth 5
Selection Method Binary Tournament Selection
Max Generation 500

Stopping Criterion

best individual in generation
does not evolve across 4% *

Max of Generations
or Max generations arrives

or Error == 0
Operators Crossover 70%, Mutation 30%

Nodes Type UNARY, BINARY,
TERNARY

Original population Half Full tree, half random tree

Thus we modified the crossover operator to retain only the
offspring which dominates either of its parents. In this way, we
were able to maintain diversity in the population and avoid being
trapped in local minima in the early stages. Most importantly,
this crossover method works much more consistently in a multi-
objective GP by avoiding comparisons of raw fitness.

We suggest and use a depth-dependent mutation operator in the
current GP implementation. The contribution from mutation and
crossover to effective search in a defined space has been
discussed at length elsewhere. Here we chose a sub-tree of
individuals to mutate based on uniform selection of depth and
then reuse the strategy in the above crossover operator – we
select a sub-tree based on its complexity.

Figure 1 GP workflow

797

The parameters used in the GP implementation are listed in
Table 1.

3. DATA MODEL
In a study of training neural network edge detectors, Chen et al.
[15] concluded that hand labeling real image data yielded a
training set which did not adequately sample the pattern space
leading to deficient learning. Consequently, we have used a
similar approach of synthesizing both training dataset and
validation dataset using a physically realistic model of the
imaging process. Following [15], we have created three types of
patterns: edges, non-obvious-non edges and uniform patches as
illustrated in Figure 2a and 2b. Figure 2a depicts an edge
configuration since the edge passes through the central pixel of
the odd-sized patch. Figure 2b shows a non-obvious non-edge
(NONE) since although the configuration represents an edge
pattern, it does not pass through the central cell of the patch and
thus we do not want such a pattern labeled as an edge.
We have modeled an abrupt step edge located on the optical axis,
which is then projected onto the CCD image plane. A set of
edge/NONE patterns were produced by applying randomized
affine transformations of the optical field image projected onto
the CCD. A uniformly-distributed random rotation angle in
[0…2π] was applied followed by uniformly-distributed
displacements:

 ∆x ∈ [-1.5…1.5] pixels

 ∆y ∈ [-1.5…1.5] pixels

The intensities on either side of the step edge were randomly
selected in [0…255]. Finally, a Gaussian blur (σ = 1) was
applied to approximate the point spread function (PSF) of the
imaging system. Further details can be found in [1].
Both the training and validation datasets used here were
produced independently. We have employed an image patch size
of 13 × 13 – probably larger than is needed to investigate
whether GP can select the most useful features within the
constraint of minimizing the tree size and by implication, the
number of input features used. 10,000 training set patterns were
generated, and 100,000 samples for the validation set
maintaining a constant prior probability of the edge class of 0.05.
Every edge pixel is accompanied by two non-obvious-non edge
pixels as relationship between A’, A’’ and A in figure 2a. So the
prior probability for the non-obvious-non-edge is 0.1 in both
training and validation sets. As a consequence of the foregoing,
uniform patches comprise 85% in both datasets.

As a final stage in generating the validation set, zero-mean,
independent, Gaussian-distributed noise (σ = 2) was added to
every pixel. Note that the training set was not corrupted by noise
since each training set pattern can be viewed as a ‘mean’ pattern
of a large number of noise corrupted patterns; rather than
presenting a large number of noise-corrupted patterns to the
optimization, it is computationally faster to use noise-free ‘mean’
patterns.

4. RESULTS AND COMPARISIONS
Fair quantitative comparison of the results obtained here with
other edge detection methods turns out to be a subtle and
involved issue. The obvious conventional algorithm with which
to make comparison is that due to Canny which is widely held to
be the best edge detector currently available [9,13]. The Canny
algorithm, however, includes a significant number of post-
processing steps such as non-maximal suppression (NMS) which
appear to be responsible, in large part, for the superiority of the
Canny algorithm over other conventional edge detectors [16]. We
contend that the most appropriate basis for comparison is the
labeling point which minimizes the Bayes risk (for equal costs of
error [5]) for both the Canny and GP detectors. However,
arranging this for the GP detector developed here is not
straightforward since this would require the post-processing
steps to be included within the optimization loop to guarantee the
minimum Bayes risk operating point with post-processing.
Therefore, in order to compare like-with-like in the present work
we have used the output of the optimal linear filtering stage from
the Canny algorithm but before the post-processing. We argue
that this is a valid basis for fair comparison because NMS and
other post-processing steps can equally well be applied to the
output of our GP detector to reduce the false positive rate.
Comparison on an equal footing before post-processing exposes
the fundamental quality of the edge detection method. Hereafter,
we refer the “Canny” algorithm as that without the post-
processing. Our interest here is a domain-independent
methodology and steps like NMS are very much specific to the
image processing domain.

We have carried out a number of runs to evolve individuals using
a training set and compared the validation error using optimal
“feature extractor” with the validation error from the Canny edge
detector. The operating point which naturally emerges from our
GP algorithm is that which minimizes the misclassification error.
For the “Canny” algorithm we need to set the decision threshold
which minimizes the Bayes risk and this can be obtained
straightforwardly from the receiver operating characteristic
(ROC) plot calculated over the validation set. The operating
point which minimizes the Bayes risk is given by the tangent
point of the line of slope, k [14, 17]:

 ()1T N FP

T P FN

C C P
k

C C P

− −
= ×

−

 
 
 

 …(1)

where T NC , FPC , T PC , FNC are costs for true-negative, false-
positive, true-positive and false-negative, respectively and P is
the prior probability of edges (here, 0.05) [14]. We have used a
cost ratio of one since in the edge detection problem we have no
basis for regarding one sort of error as more or less important

A

A’

A’’

B

Figure 2a Edge pattern Figure 2b Non-obvious
non-edge pattern

798

than another. The ROC plot for the “Canny” detector with the
filter width set to the popular value of σ = 1 is shown in Figure 3
from which it is clear that the optimal operating point is very
poor. The “Canny” error is 0.0496 which contrasts with the error
of 0.05 which can be obtained by simply labeling every patch a
non-edge without considering the input data at all. In fact, the
main contribution to this error is the poor true positive (TP)
figure.

The poor apparent performance of the “Canny” algorithm was
something of a surprise here. Replotting the ROC curve using the
ground truth labeled real image data from Heath et al. [9]
produced almost identical results implying that the synthetically
generated edge data is not responsible for the poor showing of
the “Canny” algorithm. In fact, we have been unable to identify
any previous work to determine the operating point for this
detector which minimizes the Bayes risk, as opposed to finding a
minimum misclassification rate [e.g. 9]. The fact that workers in
the field routinely obtain ‘sensible’ edge maps from the Canny
algorithm implies that users are sub-consciously imposing
significant cost ratios (see eqn. 1) when they select an “optimal”
threshold.

The corresponding misclassification error for the GP edge
detector is shown in Table 2 along with the Bayes error estimate
computed over the edge and non-edge likelihood distributions.
We have calculated the confidence intervals at a 95% confidence
level for both the Bayes error and the validation error and
conclude that the differences between the GP and “Canny”
detectors are statistically significant. Clearly the GP performance
is superior. It is also clear that the “Canny” algorithm does not
achieve particularly good class separation for case of a cost ratio
of unity considered here.

False Positive Fraction

0.0 .2 .4 .6 .8 1.0

Tr
ue

 P
os

iti
ve

 F
ra

ct
io

n

0.0

.2

.4

.6

.8

1.0

k = (1 - 0.05)/0.05

Typical results from a range of optimization runs which display
the smallest classification errors are shown in Table 3 from
which it is clear that for many of the evolved trees, the
misclassification error is quite close to the Bayes error estimates.
This implies that the feature extraction sequences obtained are
consistently close to being Bayes optimal.

By way of illustrating a typical GP tree obtained here, Figure 5
shows a tree obtained at generation 81 which contains 45 nodes.

The Bayes error estimate for this tree is 0.028970 and the
validation error is 0.029430.

Table 2 Comparison

Method Bayes Error Classification Error

GP 0.0248 0.0264

Canny 0.0489 0.0496

Table 3 Run list

Generation Nodes BE Error
25 3 0.0203 0.03544

169 59 0.02472 0.02482
94 31 0.02899 0.02978
99 21 0.02242 0.02312

105 29 0.029 0.02928
73 38 0.02819 0.02876
39 99 0.02572 0.02606
62 93 0.02699 0.02805
90 60 0.01987 0.02189

110 30 0.02337 0.02398
52 28 0.0129 0.01291

109 34 0.03359 0.03552
88 110 0.02625 0.02664
85 120 0.02724 0.02752

136 52 0.02206 0.02226
In order to examine the labeling performance on real image data,
we have applied the GP feature extractor shown in Figure 5 to
images taken from the ground truth labeled USF dataset [9] and
drawn comparison with the “Canny” edge detector. We have
determined the optimal thresholds for the “Canny” detector for
each image in turn from the ROC curves plotted for each image
and using the appropriate edge prior for each test image. The
labeling performance for minimum Bayes risk for the “Canny”
detector is summarized in Table 4 from which it is clear that the
poor performance of this algorithm on the validation dataset is
repeated on real image data.

In Figure 4.1 to Figure 4.3, “a” denotes the original images from
the USF dataset, “b” shows the ground truth data, “c” shows the
labeling results from the “Canny” detector using image-specific
“optimal” threshold and “d” shows images labeled with the GP
feature extractor illustrated in Figure 5.

The comparisons in Figure 4.1 to 4.3 are made on the basis of
adjusting the “Canny” threshold to give the minimum Bayes risk
whereas the GP results were obtained for the feature extractor
trained on a fixed prior of 0.05, i.e. not completely optimal with
respect to the priors.

The most striking result is that the “Canny” algorithm fails to
label almost all the edges; Figure 4.1(c) contains just six labeled
pixels in the top right hand corner of the image.

The GP results on Figures 4.1 – 4.3 are summarized in Table 5
from which it can be seen that this detector attains a significantly
higher true positive (TP) figure. The high false positive figure of
the GP detector is consistent with the thick edges labeled in
Figures 4.1(d), and particularly Figure 4.2(d) and Figure 4.3(d).

Figure 3. ROC plot for the "Canny" algorithm

799

(a)

(Such this edges could be thinned by non-maximal suppression
post-processing which has not been applied to these results.)

Table 4 Canny [TP, FP] operating points on test images

Figure Edge Prior TP FP

4.1 0.043 0.00029 0.0001

4.2 0.025 0.0142 0.0063

4.3 0.034 0.0320 0.0045

Table 5 GP [TP, FP] operating points on test images

Figure TP FP

4.1 0.6295 0.1834

4.2 0.7600 0.1500

4.3 0.8807 0.3400

5. DISCUSSION AND FUTURE WORK
We have demonstrated that multi-objective genetic programming
is able to evolve an “optimal” feature extractor to transform input
patterns into a feature space in which we could obtain maximum
separability. In the present work we have projected the input
pattern to a one-dimensional decision space since this
transformation naturally arises from a genetic programming tree.
Potentially, superior classification performance can be obtained
by projecting the input features to a multi-dimensional decision
space and this is currently an area of active research.

The use of multiple objectives, particularly multiple
classification error objectives has been shown to be effective in
guiding the optimization. It is interesting that GP was able to
meet its goals of minimizing the overlap of the two likelihoods
in a way which was both unintended and unwanted. Clearly the
straightforward concept of separabilty needs to be very
carefully framed for GP to avoid evolving opportunistic and
unhelpful solutions.

(b)

(c) (d)

(b) (a)

(d) (c)

(b) (a)

(d) (c)

Figure 4.1 (a)-(d). See text for details

Figure 4.2 (a)-(d).

Figure 4.3 (a)-(d).

800

The node number objective employed penalizes an individual
according to its complexity. This appears to be essential both in
order to prevent tree bloat as well suppressing over-fitting of the
training set leading to poor generalization.

Although the present work was not intended as a feature
selection method, we have presented the optimization with a 13
× 13 image patch. Since one of our simultaneous objectives was
to minimize the node count – and by implication the number
input features used – it is interesting to note that in all cases the
GP selected the pixels from around the center of the image patch
which is intuitively pleasing. One would expect most of the edge
‘information’ is located around the center of the patch.
Another area of ongoing work is the interpretation of evolved
tree. Certainly the tree shown in Figure 5 is quite unlike any
conventional edge detection algorithm although given that the
Canny algorithm – widely held to be the best conventional edge
detector performs so poorly in a like-for-like comparison - this is
not surprising.
Finally, we plan to apply the present methodology to other
classification problems such as corner detection in image
processing as well as more general problems.

6. CONCLUSIONS
In this paper we have presented a domain-independent multi-
objective genetic programming methodology to evolve near-
optimal feature extraction algorithms. We have employed both an
estimate of Bayes error and misclassification error to drive the
optimization since the combination of these two results in faster
convergence and better generalization performance.
As a demonstration vehicle, we have examined the problem of
edge detection in image processing and made quantitative
comparison with the pre-processing stages of the well-known
Canny algorithm. One surprising (and incidental) outcome of this
work has been that the operating point for the Canny algorithm
which minimizes Bayes risk is very poor. In direct comparison
with the Canny algorithm, the feature detector evolved using
genetic programming performs significantly better.

7. REFERENCES
[1] P.I.Rockett. Performance Assessment of Feature Detection

Algorithms: A Methodology and Case Study on Corner
Detectors. IEEE Transactions on Image Processing. Vol.12,
No.11. Nov 2003.

[2] N.R. Harvey, S.P. Brumby, S. Perkins, J.J. Szymanski. J.
Theiler, J.J. Bloch, R.B. Porter, M. Galassi & A.C. Young.
Image Feature Extraction: GENIE vs Conventional
Supervised Classification Techniques. IEEE Transactions
on Geoscience and Remote Sensing, Vol. 40, No. 2, pp 393-
404, 2002.

[3] J.R.Sherrah, R.E.Bogner & A.Bouzerdoum. The
Evolutionary Pre-Processor: Automatic Feature Extraction
for Supervised Classification using Genetic Programming.
Genetic Programming 1997: Proceedings of the Second
Annual Conference. Stanford University, CA, USA. Pages
304-312 1997

[4] C.Gathercole & P.Ross, Dynamic training subset selection
for supervised learning in genetic programming, Parallel
Problem Solving from Nature-PPSN III, pp. 312-321,
Springer-Verlag, 1994.

[5] K. Fukanaga. Introduction to Statistical Pattern Recognition.
Academic Press, Boston, second edition, 1990.

[6] L.Devroye, L. Györfi & G. Lugosi. A Problabilistic Theory
of Pattern Recognition. Springer-Verlag, 1996.

[7] J.R.Sherrah, Automatic Feature Extraction for Pattern
Recognition. PhD Thesis, Dept. of EEE, The University of
Adelaide, South Australia, July. 1998

[8] P.J.Angeline. Genetic programming and emergent
intelligence. In K.E.Kinear, Jr., editor, Advances in Genetic
Programming, chapter 4, pages 75-98. MIT Press, 1994.

[9] M.D.Heath, S.Sarkar, T.Sanocki & K.W.Bowyer.
Comparison of Edge Detectors: A Methodology and Initial
Study. In Computer Vision and Pattern Recognition, 1996.
Proceedings CVPR '96, Pages 143-148. 1996

[10] S. Bleuler, M. Brack, L. Thiele & E. Zitzler. Multiobjective
Genetic Programming: Reducing Bloat Using SPEA2.
Congress on Evolutionary Computation (CEC 2001). Pages
536-543. 5/2001

Figure 5 Typical GP individual

801

[11] W. B. Langdon & S. J. Barrett. Genetic Programming in
Data Mining for Drug Discovery, Chapter 10 in
Evolutionary Computing in Data Mining, Ashish Ghosh and
Lakhmi C. Jain editors, Physica Verlag, pages 211-235,
2004.

[12] T. Ito, I. Iba & S. Sato. Non-destructive depth-dependent
crossover for genetic programming. In W. Banzhaf, R. Poli,
M. Schoenauer, and T. C. Fogarty, editors, Proceedings of
the First European Workshop on Genetic Programming,
LNCS, Paris, 14-15 April 1998.

[13] K.Bowyer, C.Kranenburg S.Dougherty. Edge Detector
Evaluation Using Empirical ROC Curves. In Computer
Vision and Image Understanding vol.84, NO.1, pages 77-
103 Oct. 2001.

[14] M.H.Zweig & G.Campbell. Receiver Operating
Characteristic (ROC) Plots: A Fundamental Evaluation Tool
in Clinical Medicine. In Clinical Chemistry, vol. 39, iss. 4,
pp561-577 1993

[15] W.C.Chen, N.A.Thacker & P.I.Rockett. An adaptive step
edge model for self-consistent training of a neural network

for probabilistic edge labeling. In IEE Proceedings - Vision,
Image & Signal Processing, VISP 143 No.1, Pages 41-50
Feb. 1996.

[16] R.K.Cope & P.I.Rockett. The efficacy of Gaussian
smoothing in the Canny edge detector. In Electronics
Letters, Vol 36 (19), Pages 1615-1617 2000.

[17] T.Kanungo & R.M.Haralick. Receiver operating
characteristic curves and optimal Bayesian operating points.
In International Conference on Image Processing -
Proceedings, Vol.3 Pages. 256-259, Washington, DC, Oct
23-26, 1995

[18] W.A.Tackett. Genetic Programming for feature discovery
and image discrimination. In S. Forrest, editor, Proceedings
of the Fifth International Conference on Genetic
Algorithms, Pages. 303-309. Morgan Kaufmann, 1999.

802

