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ABSTRACT 
In this paper we describe a generic methodology to create an 
“optimal” feature extraction pre-processing stage for pattern 
classification. Our aim is to map the input data into a new, one-
dimensional feature space in which separability is maximized 
under a simple thresholding classification. We have used multi-
objective genetic programming with Pareto strength-based 
ranking to bias the selection procedure. The methodology is 
applied to the edge detection problem in image processing; we 
make quantitative comparison with the pre-processing stages of 
the well-known Canny edge detector using synthetic and real-
world edge data and conclude that the performance of our 
evolutionary-based method is much superior to the Canny 
algorithm based on the criterion of minimum Bayes risk. 

Categories and Subject Descriptors 
Evolutionary Multiobjective Optimization 

General Terms 
Algorithms, Design, Theory. 

Keywords 
Edge Detector, Feature Extractor, Multi-objective Genetic 
Programming 

1. INTRODUCTION 
Feature extraction is a common and invaluable step in pattern 
classification. To utilize the potential information in a pattern set 
to its fullest extent is always a goal and to this end, subset 
selection, dimensionality reduction and transformation of 
features (feature extraction) have been applied to patterns before 
they are passed to a classifier. Whereas methods for 
dimensionality reduction and subset selection are well 

established [5], a generic and domain-independent methodology 
for feature extraction to minimize classification error has always 
been a highly desirable but so far, unattained goal in pattern 
recognition. Typically, feature extraction pre-processing 
approaches are hand-crafted based on domain-specific knowledge 
and optimality is hard to guarantee. Indeed, much of image 
processing research, for example, has been based on devising 
feature extraction algorithms. 

Our objective in the present work has been to identify the 
optimal series of mathematical transformations to pattern data 
that produces the best class separation in the transformed feature 
space. Further, our aim has been to produce a generic, domain-
independent method for generating optimal feature 
transformations such that the transformed patterns (or extracted 
features) can then be accurately classified with a simple and fast 
classifier. 

Genetic programming (GP) is a problem-solving method [8] 
which can be viewed as evolving sequences of processing steps 
optimized with respect to some domain-specific fitness or 
objective. GP has already been used to develop automated 
feature detection/classification systems for pattern recognition 
tasks [18, 2, 3].  

In [2], pipelined image processing operations were used to 
transform multi-spectral input data planes into a new set of 
image planes and a conventional supervised classifier used to 
classify the transformed features. The transformation stage used 
training data to derive a Fisher linear discriminant and then 
genetic programming was used to find a threshold to reduce the 
output from the discriminant-finding phase to a binary image. 
However, the discriminability is constrained in the discriminant-
finding phase and the GP only used as a search tool in one-
dimension to find a threshold.  

In [4], the authors used GP to dynamically select feature subsets 
based on a few premises: Firstly, they focused the GP’s attention 
on the difficult cases (i.e. the ones which are frequently mis-
classified, and cases which have not been looked at for several 
generations). They randomly selected a target number of cases 
from a training set every generation with a bias, hoping to attain 
one of the above two benefits. This approach, however, requires 
a very large training set which is often hard or expensive to 
obtain. 
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In the present work, we re-emphasize the importance to 
classification systems of the feature pre-processing stage, an area 
which has been overshadowed in recent years by advances in 
sophisticated classifiers (e.g. support vector machines). We 
propose evolving a transformation which projects input patterns 
into a one-dimensional feature space in such a way that class 
separability is “maximized. We have employed the multiple 
fitness objectives of: error rate (over a training set) together with 
a measure of tree complexity aimed at achieving the most 
compact mapping. Using this multi-objective optimization 
approach, we aim to produce a systematic and generic 
methodology for classification system design. In this paper, we 
describe the application of this methodology to the edge detection 
problem in image processing as a starting point since edge 
detection is a well-researched and understood field. Thus it is 
straightforward to gauge the usefulness of the evolved feature 
extraction method in comparison to conventional methods. 

2. FEATURE EXTRACTION 
Other researchers have used evolutionary methods to produce 
combined feature extraction and classification stages [7] but we 
argue that this approach makes the feature extraction procedure 
dependent on the co-evolved classifier in an completely opaque 
way. There is a potential risk with this combined approach that 
the evolved pre-processing can be excellent but the classifier can 
be poor giving a poor overall performance, or the pre-processing 
is limited to producing poor discriminability because the fitness 
is defined by a deficient classifier. In short, we argue that the 
search space in a combined feature extraction/classification 
method is too large and that evolving the feature selection 
method as a stand-alone processing stage is a more tractable 
undertaking. Classification has been very extensively studied and 
we see no merit in leaving the creation of an “optimal” classifier 
to evolutionary chance.  

In the framework proposed here, feature extraction discovery is 
implemented as a supervised learning phase guided by the 
fundamental property of the misclassification error. We have 
applied this methodology to the edge detection problem in image 
processing to evolve an “optimal” mathematical transformation 
which maps the input pattern to a one-dimensional classification 
space in which we implement a decision making stage which is 
optimal with respect to the two class-conditioned PDFs in the 
decision variable. Given a set of feature transformations at any 
stage of the evolutionary process, we are always assured of the 
best pattern classification thus removing a sub-optimal decision 
making stage as a degrading factor in the overall system. This 
then allows us to concentrate the whole of our computational 
effort on evolving the best possible feature extraction stage.  

Unfortunately, classification error alone is an insufficient fitness 
objective because the trees evolved by GP are well-known to 
‘bloat’ – that is, grow excessively large with no corresponding 
improvement in performance. Consequently, in addition to 
misclassification error objective, we have also used a measure of 
tree complexity in a Pareto-based multi-objective optimization 
framework. In fact, our fitness vector comprises the three 
elements discussed in the following sub-sections: 

2.1 Tree Complexity Measure 
As pointed-out above, there is a danger that trees evolved by GP 
will become very large due to tree bloat. We have observed in 
early experiments that huge trees could produce a extremely 
small error over the training set but a very poor error estimated 
over an independent validation set. A similar phenomenon is 
seen in neural networks where an overly complex network over-
fits the training set. The balance between training error and 
complexity is a recurring theme in classifier design (and other 
fields) and is often referred to as the bias-variance dilemma. 
Broadly, for a given training error, the simpler individual is 
preferred. Thus we have used node count as a straightforward 
measure of tree complexity to be one of our fitness vector 
elements driving the evolution to producing the smallest tree 
possible. 

2.2 Bayes Error Estimate 
The use appropriate fitness functions is critical to the search 
performance of genetic programming. An inappropriate fitness 
function can seriously mislead the evolution. Some previous 
work has been done aimed at searching for an optimal fitness 
evaluation method, for example [11], in which each individual in 
the population returns a real number and this is treated as if it 
was a prediction of the true percentage of the desired class. 
These authors used two components of fitness: squared error and 
(½ TP + ½(1-FP)). To calculate the true positive (TP) and the 
false positive (FP) rates, the value returned by a tree is truncated 
and compared with an experience threshold.  The potential risk 
in this approach lies in the fact that they have used a crude 
classifier to estimate TP and FP, and the use of the equal priors 
(Pr = 0.5) as the second fitness component, which is not always 
be reasonable in real applications. Furthermore, they reuse the 
squared error as another component of fitness, but actually it is 
the average truncated error on the training set.  

Directly and simply, we choose the most commonly used 
nonparametric estimator – a histogram – to make an empirical 
estimation of class-conditioned likelihood densities in the one-
dimensional projected decision space. Considering these two 
class-conditioned densities, the Bayes error is estimated to 
evaluate the separability associated with a given feature extractor 
(population individual) by means of the class prior probabilities 
and calculating the overlap between the two densities. The Bayes 
error is a fundamental lower bound on classification 
performance, dependent solely on the class-conditioned densities 
and independent of the classifier. It yields a fast, simple and 
direct objective which seeks to minimize the overlap between the 
class-conditioned likelihoods. 

2.3 Misclassification Error 
The final element we use in the fitness vector is the conventional 
one of the fraction of misclassified patterns counted over the 
training set. Since we are projecting the input pattern to a one-
dimensional decision space, here we use a simple threshold 
classifier. This objective means we are trying to evolve a feature 
extractor which maps the original pattern space into a new 
feature space where threshold classification would be able to 
yield the minimum possible misclassification. 
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The use of two measures of classification error – the Bayes error 
estimate (Section 2.2) and the fraction of misclassified training 
set patterns (Section 2.3) requires some explanation. In the early 
stages of this work it became clear that using only the fraction 
misclassified patterns resulted in slow and sometimes, non-
convergent evolution. In the initial phases of the evolution where 
all the randomly generated members of the population were 
typically poor performers, the fraction of misclassified patterns 
objective lacked the sensitivity to identify individuals with 
slightly more promise than others, hence the slow convergence. 

 
 

The use of the Bayes error alone allowed the evolutions to 
converge rapidly but the subsequently estimated validation error 
was very high. On closer inspection, it became clear that 
although the Bayes error objective was minimized over the 
training set, the GP was often opportunistically achieving this 
goal by producing two transformed class-conditioned densities 
with non-coincident ‘comb’-like features rather than the desired 
end of two compact densities with widely separated means. 
Consequently, although the degree of likelihood overlap from the 
training set was small, the misclassification fraction calculated 
over the validation set was large. This led us to using two error 
measures: the Bayes error allows the evolutionary search to make 
rapid progress in the initial stages of the optimization while the 
fraction of misclassified patterns eventually comes to the fore 
when the evolution advances to a certain stage of maturity and 
leads to two well separated distributions. 

2.4 GP Implementation 
Our genetic programming implementation used a generational 
strategy in which two sets of individuals are maintained during 
evolution. One represents the current population and the second 
contains the current approximation to the Pareto front. The 
ranking is done by calculation of strength or fitness of each 

individual in both sets. When calculating the strength for 
individual we use the method designed in SPEA-2[10]. 

The workflow of our multi-objective genetic programming 
algorithm is illustrated at Figure 1.  

Non-destructive, depth-dependent crossover [12] was used in our 
work in order to avoid the breaking of building blocks. After 
breeding, individual trees grow to be much bigger than the 
original ones and simple depth-dependent crossover did not work 
effectively. Retaining offspring if their raw fitness was better 
than their parents did not always work, especially as we are 
dealing with high-dimensional patterns in a large search space. It 
would be possible to work with big trees both in depth and in 
number of nodes. Furthermore, we found that simple non-
destructive depth-dependent crossover does not work well when 
applied to multi-objective genetic programming. 

Table 1 GP settings 

Terminal 
Pixels in 13 × 13 patch 

10 Float number in 
{0.0,…,1.0} 

RADICAL, LOG, POWER, 
MINUS, SIN 

MINUS, PLUS, MULTIPLE, 
DIVIDE, MAX, MIN 

Function 

IFELSE 

Raw fitness Bayesian Error; Classification 
Error; Node Number 

Standardized fitness Strength-based Fitness 
Population size 500 

Original Tree Depth 5 
Selection Method Binary Tournament Selection 
Max Generation 500 

Stopping Criterion 

best individual in generation 
does not evolve across 4% * 

Max of Generations 
or Max generations arrives 

or Error == 0 
Operators Crossover 70%, Mutation 30% 

Nodes Type UNARY, BINARY, 
TERNARY 

Original population Half Full tree, half random tree 

 

Thus we modified the crossover operator to retain only the 
offspring which dominates either of its parents. In this way, we 
were able to maintain diversity in the population and avoid being 
trapped in local minima in the early stages. Most importantly, 
this crossover method works much more consistently in a multi-
objective GP by avoiding comparisons of raw fitness. 

We suggest and use a depth-dependent mutation operator in the 
current GP implementation. The contribution from mutation and 
crossover to effective search in a defined space has been 
discussed at length elsewhere. Here we chose a sub-tree of 
individuals to mutate based on uniform selection of depth and 
then reuse the strategy in the above crossover operator – we 
select a sub-tree based on its complexity. 

Figure 1 GP workflow 
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The parameters used in the GP implementation are listed in 
Table 1. 

3. DATA MODEL 
In a study of training neural network edge detectors, Chen et al. 
[15] concluded that hand labeling real image data yielded a 
training set which did not adequately sample the pattern space 
leading to deficient learning. Consequently, we have used a 
similar approach of synthesizing both training dataset and 
validation dataset using a physically realistic model of the 
imaging process. Following [15], we have created three types of 
patterns: edges, non-obvious-non edges and uniform patches as 
illustrated in Figure 2a and 2b. Figure 2a depicts an edge 
configuration since the edge passes through the central pixel of 
the odd-sized patch. Figure 2b shows a non-obvious non-edge 
(NONE) since although the configuration represents an edge 
pattern, it does not pass through the central cell of the patch and 
thus we do not want such a pattern labeled as an edge. 
We have modeled an abrupt step edge located on the optical axis, 
which is then projected onto the CCD image plane. A set of 
edge/NONE patterns were produced by applying randomized 
affine transformations of the optical field image projected onto 
the CCD. A uniformly-distributed random rotation angle in 
[0…2π] was applied followed by uniformly-distributed 
displacements:  

 ∆x ∈ [-1.5…1.5] pixels 

 ∆y ∈ [-1.5…1.5] pixels 

               
   
 

The intensities on either side of the step edge were randomly 
selected in [0…255]. Finally, a Gaussian blur (σ = 1) was 
applied to approximate the point spread function (PSF) of the 
imaging system. Further details can be found in [1]. 
Both the training and validation datasets used here were 
produced independently. We have employed an image patch size 
of 13 × 13 – probably larger than is needed to investigate 
whether GP can select the most useful features within the 
constraint of minimizing the tree size and by implication, the 
number of input features used. 10,000 training set patterns were 
generated, and 100,000 samples for the validation set 
maintaining a constant prior probability of the edge class of 0.05.  
Every edge pixel is accompanied by two non-obvious-non edge 
pixels as relationship between A’, A’’ and A in figure 2a. So the 
prior probability for the non-obvious-non-edge is 0.1 in both 
training and validation sets. As a consequence of the foregoing, 
uniform patches comprise 85% in both datasets.  

As a final stage in generating the validation set, zero-mean, 
independent, Gaussian-distributed noise (σ = 2) was added to 
every pixel. Note that the training set was not corrupted by noise 
since each training set pattern can be viewed as a ‘mean’ pattern 
of a large number of noise corrupted patterns; rather than 
presenting a large number of noise-corrupted patterns to the 
optimization, it is computationally faster to use noise-free ‘mean’ 
patterns. 

4. RESULTS AND COMPARISIONS 
Fair quantitative comparison of the results obtained here with 
other edge detection methods turns out to be a subtle and 
involved issue. The obvious conventional algorithm with which 
to make comparison is that due to Canny which is widely held to 
be the best edge detector currently available [9,13]. The Canny 
algorithm, however, includes a significant number of post-
processing steps such as non-maximal suppression (NMS) which 
appear to be responsible, in large part, for the superiority of the 
Canny algorithm over other conventional edge detectors [16]. We 
contend that the most appropriate basis for comparison is the 
labeling point which minimizes the Bayes risk (for equal costs of 
error [5]) for both the Canny and GP detectors. However, 
arranging this for the GP detector developed here is not 
straightforward since this would require the post-processing 
steps to be included within the optimization loop to guarantee the 
minimum Bayes risk operating point with post-processing. 
Therefore, in order to compare like-with-like in the present work 
we have used the output of the optimal linear filtering stage from 
the Canny algorithm but before the post-processing. We argue 
that this is a valid basis for fair comparison because NMS and 
other post-processing steps can equally well be applied to the 
output of our GP detector to reduce the false positive rate. 
Comparison on an equal footing before post-processing exposes 
the fundamental quality of the edge detection method. Hereafter, 
we refer the “Canny” algorithm as that without the post-
processing. Our interest here is a domain-independent 
methodology and steps like NMS are very much specific to the 
image processing domain. 

We have carried out a number of runs to evolve individuals using 
a training set and compared the validation error using optimal 
“feature extractor” with the validation error from the Canny edge 
detector. The operating point which naturally emerges from our 
GP algorithm is that which minimizes the misclassification error. 
For the “Canny” algorithm we need to set the decision threshold 
which minimizes the Bayes risk and this can be obtained 
straightforwardly from the receiver operating characteristic 
(ROC) plot calculated over the validation set. The operating 
point which minimizes the Bayes risk is given by the tangent 
point of the line of slope, k  [14, 17]: 

 ( )1T N FP

T P FN

C C P
k

C C P

− −
= ×

−

 
 
 

 …(1) 

where T NC , FPC , T PC , FNC  are costs for true-negative, false-
positive, true-positive and false-negative, respectively and P is 
the prior probability of edges (here, 0.05) [14]. We have used a 
cost ratio of one since in the edge detection problem we have no 
basis for regarding one sort of error as more or less important 

A 

A’ 

A’’ 

B 

Figure 2a Edge pattern Figure 2b Non-obvious 
non-edge pattern 
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than another. The ROC plot for the “Canny” detector with the 
filter width set to the popular value of σ = 1 is shown in Figure 3 
from which it is clear that the optimal operating point is very 
poor. The “Canny” error is 0.0496 which contrasts with the error 
of 0.05 which can be obtained by simply labeling every patch a 
non-edge without considering the input data at all. In fact, the 
main contribution to this error is the poor true positive (TP) 
figure. 

The poor apparent performance of the “Canny” algorithm was 
something of a surprise here. Replotting the ROC curve using the 
ground truth labeled real image data from Heath et al. [9] 
produced almost identical results implying that the synthetically 
generated edge data is not responsible for the poor showing of 
the “Canny” algorithm. In fact, we have been unable to identify 
any previous work to determine the operating point for this 
detector which minimizes the Bayes risk, as opposed to finding a 
minimum misclassification rate [e.g. 9]. The fact that workers in 
the field routinely obtain ‘sensible’ edge maps from the Canny 
algorithm implies that users are sub-consciously imposing 
significant cost ratios (see eqn. 1) when they select an “optimal” 
threshold. 

The corresponding misclassification error for the GP edge 
detector is shown in Table 2 along with the Bayes error estimate 
computed over the edge and non-edge likelihood distributions. 
We have calculated the confidence intervals at a 95% confidence 
level for both the Bayes error and the validation error and 
conclude that the differences between the GP and “Canny” 
detectors are statistically significant. Clearly the GP performance 
is superior. It is also clear that the “Canny” algorithm does not 
achieve particularly good class separation for case of a cost ratio 
of unity considered here. 
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Typical results from a range of optimization runs which display 
the smallest classification errors are shown in Table 3 from 
which it is clear that for many of the evolved trees, the 
misclassification error is quite close to the Bayes error estimates. 
This implies that the feature extraction sequences obtained are 
consistently close to being Bayes optimal. 

By way of illustrating a typical GP tree obtained here, Figure 5 
shows a tree obtained at generation 81 which contains 45 nodes. 

The Bayes error estimate for this tree is 0.028970 and the 
validation error is 0.029430. 

Table 2 Comparison 

Method Bayes Error Classification Error 

GP 0.0248 0.0264 

Canny 0.0489 0.0496 
 

Table 3 Run list 

Generation Nodes BE Error 
25 3 0.0203 0.03544 

169 59 0.02472 0.02482 
94 31 0.02899 0.02978 
99 21 0.02242 0.02312 

105 29 0.029 0.02928 
73 38 0.02819 0.02876 
39 99 0.02572 0.02606 
62 93 0.02699 0.02805 
90 60 0.01987 0.02189 

110 30 0.02337 0.02398 
52 28 0.0129 0.01291 

109 34 0.03359 0.03552 
88 110 0.02625 0.02664 
85 120 0.02724 0.02752 

136 52 0.02206 0.02226 
In order to examine the labeling performance on real image data, 
we have applied the GP feature extractor shown in Figure 5 to 
images taken from the ground truth labeled USF dataset [9] and 
drawn comparison with the “Canny” edge detector. We have 
determined the optimal thresholds for the “Canny” detector for 
each image in turn from the ROC curves plotted for each image 
and using the appropriate edge prior for each test image. The 
labeling performance for minimum Bayes risk for the “Canny” 
detector is summarized in Table 4 from which it is clear that the 
poor performance of this algorithm on the validation dataset is 
repeated on real image data. 

In Figure 4.1 to Figure 4.3, “a” denotes the original images from 
the USF dataset, “b” shows the ground truth data, “c” shows the 
labeling results from the “Canny” detector using image-specific  
“optimal” threshold and “d” shows images labeled with the GP 
feature extractor illustrated in Figure 5.  

The comparisons in Figure 4.1 to 4.3 are made on the basis of 
adjusting the “Canny” threshold to give the minimum Bayes risk 
whereas the GP results were obtained  for the feature extractor 
trained on a fixed prior of 0.05, i.e. not completely optimal with 
respect to the priors. 

The most striking result is that the “Canny” algorithm fails to 
label almost all the edges; Figure 4.1(c) contains just six labeled 
pixels in the top right hand corner of the image. 

The GP results on Figures 4.1 – 4.3 are summarized in Table 5 
from which it can be seen that this detector attains a significantly 
higher true positive (TP) figure. The high false positive figure of 
the GP detector is consistent with the thick edges labeled in 
Figures 4.1(d), and particularly Figure 4.2(d) and Figure 4.3(d). 

Figure 3. ROC plot for the "Canny" algorithm 
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(a) 

(Such this edges could be thinned by non-maximal suppression 
post-processing which has not been applied to these results.) 

 
 

 

 
 

 

 
Table 4 Canny [TP, FP] operating points on test images 

Figure Edge Prior TP FP 

4.1 0.043 0.00029 0.0001 

4.2 0.025 0.0142 0.0063 

4.3 0.034 0.0320 0.0045 
 

Table 5 GP [TP, FP] operating points on test images 

Figure TP FP 

4.1 0.6295 0.1834 

4.2 0.7600 0.1500 

4.3 0.8807 0.3400 
 

5. DISCUSSION AND FUTURE WORK 
We have demonstrated that multi-objective genetic programming 
is able to evolve an “optimal” feature extractor to transform input 
patterns into a feature space in which we could obtain maximum 
separability. In the present work we have projected the input 
pattern to a one-dimensional decision space since this 
transformation naturally arises from a genetic programming tree. 
Potentially, superior classification performance can be obtained 
by projecting the input features to a multi-dimensional decision 
space and this is currently an area of active research. 

 
 

 

 

 
 

 

 
 

   
 

The use of multiple objectives, particularly multiple 
classification error objectives has been shown to be effective in 
guiding the optimization. It is interesting that GP was able to 
meet its goals of minimizing the overlap of the two likelihoods 
in a way which was both unintended and unwanted. Clearly the 
straightforward concept of separabilty needs to be very 
carefully framed for GP to avoid evolving opportunistic and 
unhelpful solutions. 

(b) 

(c) (d) 

(b) (a) 

(d) (c) 

(b) (a) 

(d) (c) 

Figure 4.1 (a)-(d). See text for details 

Figure 4.2 (a)-(d). 

Figure 4.3 (a)-(d). 
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The node number objective employed penalizes an individual 
according to its complexity. This appears to be essential both in 
order to prevent tree bloat as well suppressing over-fitting of the 
training set leading to poor generalization. 
 

 
 

 
Although the present work was not intended as a feature 
selection method, we have presented the optimization with a 13 
× 13 image patch. Since one of our simultaneous objectives was 
to minimize the node count – and by implication the number 
input features used – it is interesting to note that in all cases the 
GP selected the pixels from around the center of the image patch 
which is intuitively pleasing. One would expect most of the edge 
‘information’ is located around the center of the patch. 
Another area of ongoing work is the interpretation of evolved 
tree. Certainly the tree shown in Figure 5 is quite unlike any 
conventional edge detection algorithm although given that the 
Canny algorithm – widely held to be the best conventional edge 
detector performs so poorly in a like-for-like comparison - this is 
not surprising. 
Finally, we plan to apply the present methodology to other 
classification problems such as corner detection in image 
processing as well as more general problems. 

6. CONCLUSIONS 
In this paper we have presented a domain-independent multi-
objective genetic programming methodology to evolve near-
optimal feature extraction algorithms. We have employed both an 
estimate of Bayes error and misclassification error to drive the 
optimization since the combination of these two results in faster 
convergence and better generalization performance. 
As a demonstration vehicle, we have examined the problem of 
edge detection in image processing and made quantitative 
comparison with the pre-processing stages of the well-known 
Canny algorithm. One surprising (and incidental) outcome of this 
work has been that the operating point for the Canny algorithm 
which minimizes Bayes risk is very poor. In direct comparison 
with the Canny algorithm, the feature detector evolved using 
genetic programming performs significantly better. 
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