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ABSTRACT
Relative fitness, or “evaluation by tests” is one of the building
blocks of coevolution: the only fitness information available is a
comparison with other individuals in a population, therefore they
evolve in response to each other, without a global fitness to provide
a reference. This can lead to failure, in the form of Red Queen
Effect, or cycling. Numbers Games have been studied by several
authors as minimal models of intransitivities which could lead to
cycling. Here we carry out an analytical study of the dynamics of
minimalistic coevolutionary algorithms in the presence of intransi-
tivities, focusing on two-dimensional real-valued numbers games.
We show that depending on the characteristics of the problem, the
coevolutionary (1+1) hill-climber either makes good progress with
constant average speed, or fails, behaving as a random walk. Larger
populations fail to bring qualitative changes into those pathological
problems, but teacher-learner separation does. Thus this exercise
ends up revealing a fundamental difference between single- and
separate-population coevolutionary dynamics.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic Methods

; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Sorting and searching

General Terms
Algorithms, Theory

Keywords
Coevolution, intransitivity, numbers games, teacher-learner.

1. INTRODUCTION
The meaning of the word coevolution (for computer science) is

still being debated. Some suggest that coevolution should be used
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as a synonym for genotypical segregation between two or more
subpopulations. We prefer the definition given by de Jong and Pol-
lack [8] that coevolution “evolves individuals on an evolving set
of tests”. This notion focuses in the feedback loop inherent to the
process, where adaptations lose their benefits as the environment,
composed of a co-evolving set of tests, reacts to them.

Elitism can be used, in evolutionary algorithms, to guarantee that
the sequence of best individuals from each generation is a non-
decreasing one. But coevolution brings an uninvited guest, namely
the Red Queen effect: even though individuals in the next genera-
tion are better than those in the current one, they could actually be
worse than those from a few generations ago. In spite of an evolu-
tionary ladder that pushed for progress at each successive step, we
can end up back in the beginning.

This issue, of relative versus absolute notions of progress, brings
up the notion of intransitivity: what seems to be happening is that
generation n is better than generation n− 1 which is better than
generation n−2, but this does not necessarily imply that n is better
than n−2.

Watson and Pollack [11] proposed the Intransitive Numbers
Game (ING), an abstract model to study intransitivity in evolution-
ary algorithms. Others followed, studying variants of the problem
and the behavior of different algorithms [2]. De Jong and Pol-
lack [8] demonstrated a two population Pareto-ranking algorithm
capable of enforcing monotonic progress in at least one variant of
ING.

Here we study Watson and Pollack’s original ING, together with
an infinite family of related problems. We analyze the behavior
of different classes of algorithms under those landscapes. Interest-
ingly, we found a fundamental difference between one- and two-
population algorithms: with a single population (individuals are
both learners and teachers simultaneously) one cannot solve what
is in fact solvable by two populations (teachers and learners have
separate goals).

2. INTRANSITIVE GAMES
Two-player games are a natural domain for coevolution: there is

no obvious fitness function that could be used to rank game strate-
gies; instead, only paired comparisons are available. Therefore,
coevolving game players by having them adapt to each other is rel-
atively straightforward, as opposed to trying to come up with some
kind of external evaluator.

A coevolutionary algorithm, working on a two-player game,
evolves a set of strategies. The individuals in each generation are
used to create a local fitness to select the parents of the next one.
This can be done either using a single population (“single popu-
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lation coevolution”), or multiple ones. A common setup involves
co-evolving two populations, “teachers” and “learners”.

In the single population case, the word coevolution refers to the
fact that individual and landscape are changing together. Two or
more populations can be thought of as virtual species changing in
response to each other.

Definition 1. Let Y be an optimization or “genotype” space for
evolution, with a suitable mutation operator M. A test function
(or “coevolutionary game”) over Y is a function f : Y × Y →
{−1,0,1}.

As a fitness evaluator, the role of f is to tell us if a given strat-
egy y ∈ Y is heuristically better than y′ ∈ Y ( f (y,y′) < 0) or not
( f (y,y′) ≥ 0). In game terminology, f (y,y′) = −1 ,0, 1 correspond
to y winning, drawing and losing against y′.

Definition 2. A test function f : Y ×Y →−1,0,1 is symmetric
if for every pair (y,y′) ∈ Y ,

f (y,y′) = − f (y′,y) (1)

NOTATION 1. A test function defines a relation ≤ in the geno-
type space Y by

y ≤ y′ ⇔ f (y,y′) ≥ 0

and conversely, any relation ≤ on Y defines a test function by

f (y,y′) =







1 if y ≤ y′ and not y′ ≤ y
−1 if y ≥ y′ and not y′ ≥ y
0 otherwise.

(2)

In the rest of this paper we use the notations f (y,y′) ≥ 0 (resp.
f (y,y′) ≤ 0, f (y,y′) > 0, f (y,y′) < 0) and y ≤ y′ (resp. y ≥ y′,
y < y′, y > y′) interchangeably.

2.1 Intransitivity
A consequence of having a two-player fitness function is the pos-

sibility of internal cycles or “intransitivities”, as in the well-known
rock, paper, scissors game:

f(x,y) rock paper scissors
rock 0 1 -1
paper -1 0 1

scissors 1 -1 0

Definition 3. A test function is transitive if and only if for all
A,B,C ∈ Y

f (A,B) = 1∧ f (B,C) = 1 ⇒ f (A,C) = 1 (3)

and intransitive if it is not transitive. In other words, f is transitive
when the induced relation satisfies

A < B∧B < C ⇒ A < C

(< is a preorder in this case) so if B beats A and C beats B then C
beats A.

2.2 Number Games
As mentioned in the introduction, the first papers in coevolution

had to deal with a kind of intransitivity across generations: even
though generation n+1 is always better in some sense than genera-
tion n (with respect to the fitness of generation n), it is possible to
have later generations that are in fact worse than earlier ones.

This issue gave rise to the concept of Red Queen effect: the land-
scape is changing, so it is conceivable that the coevolutionary al-
gorithm, like the Red Queen of Lewis Carrol, is going nowhere
fast [5].

“Number games” for the study of coevolutionary dynamics were
proposed first by Watson and Pollack and later analyzed by oth-
ers [2, 3, 7, 9–11]. The idea is that intransitivity in the fitness eval-
uation, as with an intransitive game for example, can lead to a se-
quence of generations that do not show overall improvement. A
carefully designed algorithm should able to avoid this trap, creat-
ing new generations that are in fact better than all previous ones.

The first example was the intransitive numbers game [11, eq. 3]:

(x1,y1)≤ (x2,y2) ⇐⇒







|x1 − x2| ≤ |y1 − y2| and x1 ≤ x2
or

|x1 − x2| ≥ |y1 − y2| and y1 ≤ y2

(4)

ING was designed to illustrate the fact that, even when there is a
straightforward way to “improve” — namely, increasing the values
of both x and y — there can be an twist. Two points are compared
only on the basis of their most similar dimension. If they are closer
on x they will be compared with respect to x and if they are closer
in y they will be compared in y. There is no confusion if one player
beats the other in both dimensions, but if one pair is better than
the other only in one dimension, then the most similar dimensions
prevails. This twist leads to intransitivities, for example: (0,0) ≥
(−1,2) and (−1,2) ≥ (2,1) but (2,1) ≥ (0,0).

Bucci [2] studies the intransitive numbers game as well as the
focusing game he defines, which is not symmetric:

f ((x1,y1),(x2,y2)) = 1 ⇐⇒
{

x2 > x1 or y2 > y1 (5)

For contrast we can define the sum game, a game that is both
transitive and symmetric1,

(x1,y1) < (x2,y2) ⇐⇒ x1 + y1 < x2 + y2 (6)

2.3 Positive Regions
Numbers games like the ones above are fully characterized by

their positive regions.

Definition 4. The positive region of a fixed point y0 ∈ Y is the
set of all elements in the genotype space that are “better” than y0,

C+(y0) = {y ∈ Y : y0 < y} (7)

and conversely, the negative region is C−(y0) = {y ∈ Y : y0 > y}

Positive regions for the three games above (and two others) are
shown in figure 1.

All the numbers games mentioned so far are uniform, in the sense
that the shape of the positive regions is the same in any point in
space,

Definition 5. A test function f over R
n is uniform if and only if

∀y,y′,z ∈ Y : f (y,y′) = f (y+ z,y′ + z) (8)

REMARK 2. A uniform test function f is fully characterized by
the positive region of zero. Given a black and white coloring of Y ,
f is reconstructed by

f (y,y′) =







1 if y− y′ is white and y′− y is black
−1 if y− y′ is black and y′− y is white
0 otherwise

In fact, all that is required is a coloring of the region M0 that can
be reached from 0 ∈ Y in a single mutation.
1Also in [11, eq. 2]
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Figure 1: Positive regions: (a) Watson and Pollack’s intransitive numbers game (eq. 4); (b) Bucci and Pollack’s focusing game (eq.
5); (c) sum game (eq. 6); (d) balanced game and (e) deceiving game. A pair (x,y) at the center, is defeated by all strategies in the gray
area (positive region), and in turn defeats the strategies in the white area (negative region). Game (b) is asymmetric – A beats B does
not imply that B loses to A — because opposite areas do not have opposite colors. (c) is symmetric and transitive. (a, d and e) are
symmetric but not transitive. The x marks the center of mass (see theorem 7).

NOTE 3. In this paper we use uniform random mutations in the
unitary ball, so M0 = B0(1) = {(x,y) : ||(x,y)|| < 1}.

Definition 6. A test function f is a pie game if and only if f
is defined, as in the symmetric examples above, by a pie-shaped
positive region. Formally, there are angles 0 = α0 < α1 < .. . <
α2k = 2π such that αi+k = π+αi and ∀y0,y ∈ R

2

f (y0,y) = 1 ⇔∃i : α2i < θ < α2i+1

where θ = ]{y0 +(0,1),y0,y}.

3. EVOLUTION OR RANDOM WALK?
In order to do an analytical study of the dynamics of coevolution

in the presence of intransitivities, we started with simplest kind of
coevolutionary setup possible.

Definition 7. The coevolutionary hillclimber C(1+1) is the fol-
lowing algorithm:

Given a fitness test f : Y ×Y → {−1,0,1}

1. Take an initial point y ∈ Y
2. Repeat forever:

(a) Generate a random mutation y′ of y

(b) Replace y with y′ whenever y ≤ y′

We only need to consider steps in the positive regions of the game.
That is, even though all mutations are equally likely to occur, only
those which improve the fitness are kept. Therefore it is useful to
think only in terms of the steps taken,

Definition 8. C∗(1+1) is the following algorithm: Replace step
2(a) in def. 7 above with

2 (a)’ Generate a random mutation y′ of y such that y′ beats y

In C∗ we only increment the generation counter when the mutation
has been successful.

We want to analyze if a population is evolving in some sense.
With these geometrical problems, there are two notions we can use,

• Victories: newer generations should be better than previous
ones.

• Exploration: the newer generations should move within the
problem space, as opposed to wandering aimlessly.

The first notion defines progress in terms of the fitness function
exclusively. The second notion is a geometric one that is specific
to these problems. ING and related problems are interesting pre-
cisely because the geometrical aspect gives us a bird’s eye view of
evolutionary progress.

Definition 9. Red Queen Property (RQ) Let y0,y1, . . . be the
sequence of the (best) individuals from each generation in a coevo-
lutionary run. The sequence has the Red Queen Property if early
generations defeat an infinite number of future generations. For-
mally, for all k ∈ N0,

∀n > k : ∃m > n : yk defeats ym (9)

This definition agrees with the notion first proposed by Cliff and
Miller [5], that coevolutionary progress can be measured by the
increased frequency by which the best individual of the last gener-
ation beats the best individuals of earlier generations. We propose
to define RQ as the opposite property: progress stagnates and, no
matter the number of generations, the evolutionary process keeps
generating individuals that are no better than the previous ones.

Definition 10. Random Walk (RW) y0,y1 . . . ,yn, . . . is a ran-
dom walk if it wanders around the starting point without going in
any particular direction. Formally,

lim
n→∞

1
n

n

∑
k=0

yk = 0

Random walks have the curious property of recurrence: they go
back to the starting point an infinite number of times. In fact,

Definition 11. Recurrent Random Walk (RW’) y0,y1 . . . is a
recurrent random walk when it visits all open regions U of the
space:

∀n ∈ N0,U ⊆ Y open,∃m ≥ n : yn ∈U (10)

REMARK 4. For uniform test functions in R
n, each point starts

an identical stochastic process, thus the RW and RQ properties
above are valid for all k ≥ 0 if and only if they are valid for a
single k.

Number games have been defined geometrically. We intuitively
feel that progress must mean movement in some direction (as op-
posed to just wandering around the starting point).
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THEOREM 5. In pie games, RW ⇒ RQ (with probability one)

Proof. Let Yn be a random variable representing the n-th generation
element of C∗(1 + 1) and let Xn = Yn+1 −Yn. Then {Xn}n∈N is a
sequence of independent, identically distributed random variables.
The strong law of large numbers says that P( 1

nYn → E(X)) = 1
(where X = X0). Therefore, if RW is observed, with probability 1
we know that E(X) = 0. Furthermore, by the central limit theorem,
Yn converges in distribution to N(0,σ

√
n), where σ is the standard

deviation of X .
Consider the negative region C− =C−(0). The probability

P(Yn ∈C−) of Yn falling in the negative region converges to P(N ∈√
nC−) for N normal with mean 0 and variance σ2. Therefore,

if there is an ε > 0 such that P(N ∈ √
nC−) > ε for all n, then

P(Yn ∈C−) > ε
2 for all n greater than some n0. Thus the probabil-

ity that Yn lies within C− for some n ≥ n0 is 1.
In pie games, negative (and also positive) regions are circular

sectors, and thus
√

nC− = C− , concluding the proof.

PROPOSITION 6. For test functions with open negative regions,
RW’ =⇒ RQ (with probability one).

Let yk be such that yk > y0. Since y0 is in the negative region of
yk, which is open, there is an open neighborhood of y0 contained in
the negative region of yk. A strong random walk visits such neigh-
borhood an infinite number of times, therefore yk defeats an infinite
number of future generations.

THEOREM 7. Let f be a pie-shaped numbers game in R
2. Then

the algorithm C(1+1):

1. Is RW if and only if the center of mass is zero

2. Moves in the direction of the center of mass with speed pro-
portional to its norm.

3. If f is a pie game, it is RQ if and only if the center of mass
lies outside C+

Definition 12. We define the center of mass as the expected
value E(X) of the mutation operator

E(X) =

Z

(x,y)∈C+∩B0(1)
(y,x)dxdy (11)

Proof of theorem 7. As shown in the proof to theorem 5, a random
walk happens (with probability one) if and only if E(X) = 0.

For part 2, the central limit theorem tells us that Yn converges in
probability to N(µ,σ

√
n), with µ = E(X). Therefore, the expected

location Yn of the algorithm after n steps is nµ with a variance pro-
portional to

√
n.

Finally, if the center of mass is in the interior of the winning re-
gion for Y0, the distance between nE(X) and the winning region
grows linearly, but the variance only with the square root of n,
therefore the probability of the process visiting the losing region
approaches zero. Conversely, if the center of mass is inside the los-
ing region of zero, then the probability that Yn is beaten by zero
approaches 0.

REMARK 8. For a general class of uniform test functions
in R and R

2 (with open negative regions), the convergence to
N(0,σ

√
n), implies that the steps taken by the algorithm vibrate

uniformly in all directions, generating a stochastic process with the
recurrence property, visiting every open set in the plane (see [1,4]).
Therefore, part 1 of theorem 7 is in fact true for RW’ and for uni-
form test functions with open negative regions.

3.1 Comments
Theorem 7 shows that the basic coevolutionary algorithm moves

in a reasonable direction, with linear speed, avoiding the Red
Queen Effect, for most problems. That is, problems where the cen-
ter of mass is located inside a positive region.

Well-behaved problems include the original ING and Bucci’s fo-
cusing game and of course, all transitive problems. Looking back
at figure 1, we can characterize the behavior of a pie game by look-
ing at the position of x that indicates the center of mass. “Good
problems” are those for which the x is inside a dark region.

This supports the conclusion of [6] in the sense that intransitivity
in the problem domain does not pose such a big problem. In reality,
generic problems avoid the RW/RQ effects and simply progress
towards the most promising direction.

However, pathological problems with center of mass at zero do
lead to hopeless random walks. Problems with the center of mass in
the wrong place (e.g. the “deceiving” problem of fig. 1e), confused
by opposing intransitivities, go deep into the losing region. This
is the worst kind of intransitivity, with the probability of losing vs.
earlier generations approaching 1.

Can we use larger populations to escape from RW/RQ behavior?
Below we analyze two simple algorithms: C(1+N), where instead
of a random opponent it is the winner of a tournament of mutants
that is chosen, and also C<(N + 1) which tries to escape RQ by
means of a finite archive.

4. LARGER POPULATIONS

4.1 C(1+N)
A straightforward improvement to C(1+1) is to generate several

mutants, instead of one, and choose the winner of a tournament as
the next generation. This will have the effect of concentrating the
probabilities into the largest winning sector, provided there is one,
and the periphery of the mutation region (figure 2).

This could turn a deceptive problem (fig 1e) into a non-deceptive
one (provided one of the regions is larger than the other) but it
cannot break the symmetry when the center of mass is at the center.

We have left the details of the proof that the probability mea-
sure concentrates in the largest sector out for reasons of space and
clarity. However, it should be obvious that, because of symmetry,
no matter how many mutants are chosen, an initially symmetrical
situation will remain symmetric, as in figure 2 (bottom row), and
therefore, not much can be gained from C(1+N) when the problem
is balanced.

4.2 C<(N+1)
Keeping a finite archive seems like a good idea: perhaps we can

break RQ by remembering some of the previous steps, and then
moving forward if and only if we know that we can beat all the pre-
vious cases. The question is: is there a memory size large enough
that it can guarantee monotonic progress?

Definition 13. C<(N +1) is the following algorithm: given a set
of initial points {y1, ...,yN}

1. Generate a mutant yN+1 of yN such that yN+1 beats yi for all
1 ≤ i ≤ N

2. Replace {y1, .....,yN} with {y2, .....,yN+1}.

THEOREM 9. If f is a pie-shaped, symmetric game such that
C(1+1) is a random walk, then C<(1+N) is also RW for all N.

518



k=1 k=5 k=10 k=50

Figure 2: C(1+N): Probability density of beating (0,0) plus k random opponents for increasing k in ING (top row) and balanced
game (bottom row). The probabilities of movement become more concentrated for larger populations, but remain equilibrated in
the balanced case, leading to a random walk.
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Figure 3: Sample runs of C<(N + 1) for a balanced problem.
N = 2(top) and N = 5 (bottom). Direction changes become less
frequent with higher N but do not disappear.

Proof. If the problem is symmetric, the center of mass EN of
C<(1 + N) is always 0 because the algorithm is unbiased. In other
words, if Ci, i = 1, . . .m are the disjoint sectors or “cones” that make
up C+, the algorithm must choose any of them with equal proba-
bility.

It is conceivable that the memory mechanism could, in spite of
initial symmetry, lead to monotonic improvement. Once the first
few moves are made, the remainder of the algorithm could manage
to “choose” a single direction and stick to it.

If, however, notwithstanding how many steps have been taken
in a given direction, there remains a non-vanishing probability of
switching to a different direction, then such direction switches will
continue to occur forever, and the algorithm is a random walk.

LEMMA 10. In the conditions of theorem 9, the probability of
changing directions does not approach zero.

Proof. Let yk be the k-th step in a C<(N + 1) run. We can assume
without loss of generality that the current direction of movement is
C1. yk+N must beat yk, so yk+N ∈C+ +yk. The algorithm continues
in the “good” direction if and only if yk+N ∈C1 +yk, but it switches
directions if yk+N falls in a different subsector of C+ + yk. Without
memory, we would have the probability of Xk+1 lying in “bad”
sector C2proportional to the relative area of C2. We can write this
as: P1(Xk+1 ∈ C2) = p2 > 0, (with Xi defined as in the proof to
theorem 5), where Pi denotes the probability measure associated
with the algorithm C<(1+ i).

Assuming all previous steps also went in the correct direction
C1, the region C1 + yk is contained in C1 + yk− j for all 1 ≤ j ≤ N,
because they are a succession of pie slices contained in each other.

Let p = P1{X ∈ Bε/N(0)∩C1} for a given ε. The probability that
by chance, all steps k + 1, . . . ,k + N are all very short, advancing ε
or less, is pN or more, and therefore, the probability that N steps
together advance a distance of no more than Nε is at least pN : pN ≤
PN{Xk+1 + . . .+ Kk+N−1 ∈ BNε(yk)}. pN is a lower bound for the
probability of taking a succession of small steps, so that we remain
very close to yk after N more steps.

Take ε small enough so that P1(X +u ∈C2) ≥ 1
2 p2∀u ∈ BNε(0).

Therefore, P(Xk+N ∈ C2) ≥ 1
2 pN p2. This lower bound does not

depend on either k nor ykand we conclude that a change of direction
occurs with a non-vanishing frequency.

Therefore, C<(N +1) is RW for all N (see fig 3).
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5. TEACHER-LEARNER DYNAMICS
De Jong [8] described the Delphi algorithm, based in two popu-

lations called learners and evaluators. These populations coevolve
against each other using Pareto dominance as the fitness criterion.
Delphi, as opposed to the algorithms described above, is able to
break the symmetry and make steady progress by focusing in a sin-
gle positive sector, thus avoiding the Red Queen effect.

We introduce a minimalistic teacher-learner setup in order to
show the essence of the symmetry-breaking mechanism involved.

Definition 14. TL(2,1) is the following algorithm:

1. Initialize T0 = T1 = L to the same starting point in Y
2. Generate random mutants T ′

0,T ′
1,L′ of each member

3. Replace (T0,T1,L) with (T ′
0,T ′

1,L′) If and only if:

(a) L′ beats both T ′
0and T ′

1 , and
(b) T ′

0 and T ′
1both defeat L

The difference between teachers and learners here is that learners
are generalists (they must defeat both teachers) but teachers are
allowed to specialize, beating the learner but not the other teachers.

The requirement that a new learner, better than the two new
teachers, must be found simultaneously is given because, other-
wise, teachers could move too fast, creating an impossible situation
for the learner.

The TL algorithm enforces learnability by moving only when
it can find two new challenges and a solution at the same time,
keeping the teachers in the “proximal zone”.

THEOREM 11. TL(2,1) is not RQ for any pie problems.

Proof. We offer only the sketch of a proof.
The algorithm works because at some point the teachers end up

delimiting a single region for the learner, from far away.
Assuming the teachers and learners are away from each other, a

disengaged situation occurs when the movements of the three par-
ticipants can only take place within a single cone of their counter-
parts’ positive region (fig. 4).

If such disengaged situation is reached, the directions of move-
ment for the three members are limited to one particular, transitive
subregion for each one of them. Without reachable intransitivities,
the RQ property is avoided as long as disengagement is maintained.

Given that T1,T2 are defeated by L, but move to defeat it in the
next step, we can assume without loss of generality the position
of T1 and look at where T2 can be located with respect to T1 and
L. There are five cases, labelled A through E in the figure. The
corresponding moves for L are labelled a through e.

Observe that in all cases, L necessarily moves within a single
sector of the positive region, and cannot change while the same
configuration remains, because the alternative sectors are farther
than one step away.

At least one of the configurations (E) is stable in the sense that
the average direction of movement of T1,T2 and L takes them move
away from each other, reducing with each step the probability that
they will meet again in the future.

The remaining configurations are unstable, because the agents
do not tend to separate, and will eventually produced new engaged
situations, where agents are close to each other.

All the “engaged” configurations are unstable, because when the
characters are close to each other their positive regions overlap in
several subsectors, leading to opportunities for moving in all direc-
tions.

The stable configuration thus is attractive, and the eventually the
system must find it and remain there.
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Figure 5: Sample run of TL(2,1) in a uniform intransitive prob-
lem. Teachers’ trajectories are shown in black, and learner in
gray. The direction of movement changes a few times in the
beginning but, once the system falls into a stable configuration
(see text), they continue making improvements along a single
positive sector. Delphi [8] has a similar specialization property.

6. CONCLUSIONS
The notion that intransitivity between generations, due to coevo-

lution between population and fitness landscape (Red Queen ef-
fect), can originate from a problem domain that is intransitive, is
not always true, as is shown in [8]: there can be intransitive gener-
ations without intransitive problems, and intransitive problems do
not necessarily lead to intransitive generations.

Here we studied a family of intransitive problems in the eu-
clidean plane, inspired Watson and Pollack’s Intransitive Numbers
Game. We analyzed the simplest algorithm first, which is the co-
evolutionary hillclimber, showing that in general, it is not fooled by
the intransitivities in the domain.

We characterized the pathological problems of the “Watson fam-
ily”, namely, balanced and deceiving cases (d and e in fig. 1) inves-
tigating the behavior of other coevolutionary algorithms in those
cases.

We found the interesting property that finite memory algorithms
(section 4.2) are equally incapable of dealing with a balanced situ-
ation. They also generate random walks in spite of their (finite)
archive of previous states. It is therefore not sufficient to have
A1 < A2 < .. . < Ak, for any k, to guarantee that A1 < Ak+1. Even
more interesting is the fact that the simplest teacher-learner coevo-
lutionary algorithm, with just one teacher and two learners, is suf-
ficient to break the Red Queen effect, producing sustainable im-
provement.

This led us to an important conclusion: there is a qualitative
difference between one- and two-population coevolution. The
teacher-learner setup is fundamentally different from the learner-
learner case because teachers can focus in subareas, subdimensions
of the problem, in ways that learners cannot, because they are re-
quired to be generalists.

Pie-shaped games do have a claim to generality. If we assume
that fitness comparisons originate in a continually differentiable
test function f (y1,y2) : R

k ×R
k → R, then the implicit function

theorem implies that, in a neighborhood around y1,there is a k−1-
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Figure 4: Disengaged situations for TL(2,1). The learner L is at the center, with the radial lines delimiting the different positive (C+)
and negative (C-) regions. Both teachers T1,T2 are currently inside C-, but their mutants jump to C+ in the direction of the arrows.
T2 can be located in 5 different regions A, B, C, D, E with respect to T1. The corresponding directions of movement for L are labeled
a, b, c, d, e. The only stable configuration is E, where all distances tend to increase.

dimensional submanifold that divides the space between winners
( f (y1,y) > 0) and losers ( f (y1,y) < 0).

Therefore, if f is differentiable at y1, then the problem is locally
transitive and shaped as in figure 1c. Local intransitivities corre-
spond to saddle points of f , and are shaped like the pies we have
studied here. Uniform intransitive problems are extreme in this re-
spect, because the test function is saddle-shaped in a large area, not
just a in a single-point singularity.

It remains to be seen whether it is possible to design an algo-
rithm that can discover the alternative directions of progress, and
explore them all. Both our TL(2,1) algorithm and de Jong’s Del-
phi [8] succeed because their are able to choose a single direction
and maintain it. They are incapable, however, of discovering and
exploring the other alternatives. A direct application of Pareto tech-
niques does not help in this case because intransitive number games
are non-dominated in all points in the plane, thus the Pareto front
can grow indefinitely without ever leaving a small area around the
starting point — creating a “Brownian dust”, a cloud of particles
performing random walks.
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