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ABSTRACT 
Gene libraries have been added to Artificial Immune Systems in 
analogy to biological immune systems, but to date no careful 
study of their effect has been made. This work investigates the 
contribution of gene libraries to Artificial Immune Systems by 
reproducing and extending an earlier system that used gene 
libraries.  Performance on a job-shop scheduling problem is 
evaluated empirically with and without gene libraries, and with 
many different library configurations.  We propose that gene 
libraries encourage diversity in a population of solutions and that 
the number of components in the gene library parameterises this 
effect. The number of gene libraries used is found to affect 
solution fitness and indeed using larger numbers of libraries (and 
therefore libraries of smaller components) enables higher fitness 
to be attained. We conclude that gene libraries are likely to be of 
use in applications where there is a need to maintain the diversity 
of solutions. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – heuristic methods, scheduling. 

General Terms 
Algorithms, Performance, Design, Experimentation, Theory 

Keywords 
Artificial Immune Systems, Gene Libraries, Job Shop Scheduling, 
Solution Diversity 

1. INTRODUCTION 
Artificial Immune Systems (AIS) (see [1, 2]) are computational 
systems that use metaphors and processes derived from the 
biological immune system [3].  Typically these are taken from the 
adaptive immune system; one of a number of layers that defend 
the body against invading organisms and toxins (pathogens). 

Once pathogens enter the body, the adaptive immune system 
attempts to identify and eradicate them.  This is not a simple task 
given the limited resources of the immune system and the vast and 
varying pathogens that it constantly has to defend against.  The 
identification of foreign molecules (antigen) is performed by 
lymphocyte white blood cells that circulate around the blood and 
lymph systems.  Antibody regions of the lymphocytes form a 
chemical bond to molecules they encounter and if the bond is 
sufficiently strong then the lymphocyte is likely to have 
encountered an antigen.  An immune response is then induced 
which leads to the destruction of the pathogens. 

Lymphocyte antibodies are produced through a pseudo-random 
combinational process utilising a set of inherited gene libraries 
[4].  This enables the body to maintain a diverse set of antigen 
detectors as the antibodies produced on one lymphocyte are likely 
to be different from those on any other lymphocyte.  The body’s 
lymphocyte population is also dynamic as lymphocytes normally 
live for just a few days before being replaced and so the new 
population identifies a constantly changing subset of antigens.  In 
[1] it was estimated that every 10 days there is a completely new 
repertoire of lymphocytes in the human immune system.  These 
two mechanisms ensure the body’s adaptive immune system 
defence is kept dynamic and diverse, and maximises the 
effectiveness of its resources.  Although humans and mice have 
fewer than 105 genes in their entire genome, through the use of 
gene libraries the immune systems of these species have been 
found to produce approximately 1011 different antibodies ([5, 6]). 
Hart et al. [7] applied this biological analogy to the shop-floor 
environment to produce schedules for a job-shop scheduling 
problem (JSSP) that were robust to foreseeable and unforeseeable 
delays.  In the main, work on JSSPs has concentrated on 
producing systems that generate optimal schedules (see [8, 9]), 
which attempt to minimise some criterion such as make-span or 
job tardiness.  In the real world however optimal schedules can be 
extremely fragile; a slight delay caused by a machine breakdown 
for example may render the schedule extremely sub-optimal and 
require the costly process of rescheduling to take place ([10, 11]).  
Uniquely Hart et al.’s system employed a genetic algorithm to 
evolve populations of AIS capable of generating reasonable 
schedules robust to possible delays and so avoiding or 
considerably reducing the rescheduling problem. 

Hart et al. focussed on a benchmark JSSP from [12] of 15 jobs (j) 
and 5 machines (m).  Each job of a JSSP had an associated arrival 
date and due date, and consisted of a number of operations each 
of which required a different machine for a fixed period of time.  
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The fitness of a schedule was defined as the tardiness of the latest 
operation to finish after the job’s due date. 

In Hart et al. antibodies were considered to indirectly represent 
schedules and antigens to be synonymous with possible delays.  
AIS gene libraries were evolved to produce antibodies, and 
therefore schedules, aimed at minimising job-tardiness on a 
training set of antigens (foreseeable delays).  An immune response 
could then be induced to rapidly generate good schedules from an 
AIS to combat new antigens (unforeseen delays). 

Typical AIS implementations do not evolve gene libraries that 
then produce antibodies but rather directly evolve the antibodies.  
This latter approach is simpler, and there has been to date no 
principled study of what characteristics gene libraries can 
contribute to an AIS application. 

Although Hart et al.’s system did make use of gene libraries, no 
experiments were reported comparing alternative library 
configurations or indeed what gene libraries contributed to the 
system. 

In this investigation Hart el al.’s system was reproduced and 
extended to use configurable gene libraries. Significant 
experimentation was performed with various configurations to 
ascertain the effects of varying the number and size of gene 
libraries and to identify exactly what gene libraries can contribute 
to AIS applications. 

2. SYSTEM OVERVIEW 
Gene libraries are coded in the DNA of biological organisms and 
as a result are heritable and provide an initialisation bias to 
offspring.  A single gene library consists of a number of 
components or gene fragments (c) of equal size (s).  Antibodies 
are generated from a number of gene libraries (l) by randomly 
selecting a fragment from each library in a defined order and 
concatenating them.   

This structure and process was simulated by Hart et al. and 
therefore in the replicated system.  Individual AIS were defined as 
having 5 gene libraries (l=5) containing 5 components (c=5) of 
15 elements (s=15) and so producing antibody representations of 
length jm.  An AIS therefore contained lcs elements and could 
generate up to cl antibodies of ls elements.  This was denoted the 
potential antibody repertoire.  Figure 1 shows a simplified 
version of the combination process using 3 libraries of 3 
components, with fragments of length 3 (l=3, c=3, s=3). 

 

 
Figure 1.  An example of how an antibody is generated from 3 
gene libraries (l=c=s=3). 
 

An antibody was used to indirectly represent a schedule using a 
method devised by Fang et al. in [10].  Each antibody 
representation consisted of a sequence of letters where each letter 
related to a job, allowing JSSPs of up to 26 jobs to be modelled.  
The order of the letters was used to define which unscheduled job 
task should be sequenced next.  To ensure that a solution could be 
modelled in which all of the j jobs were completed using the m 
machines, the antibody was of length jm with each job appearing 
an equal number of times.  For example, the antibody constructed 
in figure 1 is valid for a 3 job and 3 machine JSSP as it contains 3 
occurrences of jobs A, B and C, one for each machine, and the 
constraint jm=ls is satisfied. 

An antigen was used to describe a set of arrival dates for the jobs 
to commence.  The arrival dates were (with probability Pu) tardy 
variations of each job’s expected arrival date and could be up to 
300 units of time later than the original, subject to the constraint 
that the new arrival date allowed sufficient time for all of the job’s 
tasks to complete (processing time required) before the due date.  
Antigens therefore represented a set of possible delays.  During 
training an AIS could be exposed to 10 generated antigens from 
the benchmark 5x15 JSSP with Pu = 0.2, which formed the 
Antigen Universe (AU). 

Because of the computational costs involved only a subset of an 
individual AIS’s potential antibody repertoire was expressed (N 
antibodies).  This was denoted the expressed antibody repertoire 
and corresponds to the set of schedules an AIS can express. 
Additionally, each antibody expressed was only exposed to a 
subset of the AU (K antigens, corresponding to K variations on 
the expected arrival dates.).  As the fitness for an AIS was based 
on a sample of its potential repertoire (i.e. its expressed repertoire) 
against a sample of the AU, an individual’s fitness is based on an 
incomplete sampling of the environment. Indeed, selection 
pressure using this method only operates on the phenotype (the 
schedules produced).  From investigations such as [13], however, 
it has been shown that this is sufficient to drive changes in the 
genotype. 

The ability of an antibody to create a schedule that met the fixed 
due dates of the JSSP given the arrival dates of an antigen 
determined its MatchScore.  The MatchScore was taken to be the 
tardiness of the latest job to finish after its due date (Tmax).  A 
match score of zero therefore indicated an antibody produced a 
schedule that enabled all of the jobs to be completed by their due 
dates.  To define this more precisely; if each job j has a due date 
of Dj and completes at time Cj then the maximum tardiness Tmax 
of a job was: 

( )jj DCTMatchScore −== ,0maxmax  

Figure 2 gives an illustration of how the MatchScore was 
calculated for an antibody given a JSSP and an antigen selected 
from an AU. 

The ability of an AIS to produce quality schedules for a particular 
antigen was denoted the AntigenScore.  This was simply 
calculated as the lowest MatchScore found from a set of expressed 
antibodies on a single antigen: 

)min( maxTreAntigenSco =  
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Figure 2.  An illustration of how a schedule was derived from 
a JSSP, an antibody and the antigens it is exposed to.  The 
match score is calculated from this schedule as the tardiness of 
the latest job. 

 

To adapt the gene libraries, populations of individual AIS were 
evolved using a genetic algorithm, in which an individual’s 
chromosome codes its gene library.  The genetic algorithm used 
tournament selection, as well as probabilistic uniform crossover 
and mutation operators.  Based on the findings of [2, 14, 15] the 
initial population was randomly generated to aid the rate of fitness 
increase (which we might call the learning rate).  The fitness of 
each individual AIS in a population was calculated using the 
algorithm: 

For each AIS 

Express N antibodies at random from the AIS 

Select K antigens at random with replacement from AU 

For each of the K antigens 

 Calculate the MatchScores for the N antibodies 

 Assign the antigen the AntigenScore 

End For 

AIS fitness level = the average AntigenScore 

End For 

A low fitness (tardiness) value therefore indicated an individual 
had a large probability of being selected for proliferation into the 
next generation. The fitness of a population was measured as the 
average fitness of the AIS it contained. 

The Hamming Distance of an AIS was computed by comparing 
the best schedules it produces (in response to an exposed antigen) 
pair wise, counting the number of places they differed and 
averaging the results. The Hamming distance for the population 
was taken as the average of the individual distance, and used as an 
indication of its diversity.   

The same 5x15 JSSP (jb11) from [12] focused on by Hart et al. 
was used for all experimentation detailed in this paper. 

Following [7] we have scaled fitnesses to lie in the range 0 to 1, 
where a higher value indicates a fitter individual.  Optimal 

schedules therefore have a fitness value of 1.  The exact scaling 
method used by Hart et al. was not detailed and could not be 
obtained.  The following formula was therefore used to calculate 
the adjusted fitness (a) from the individual’s (i) raw fitness (r). 

max

)(1)(
r

iria −=  

In graphs, curve labels are ordered by the corresponding curve’s 
final value in the accompanying key. 

 

3. MODEL VERIFICATION 
The system developed by Hart et al. was based on the AIS model 
described by Hightower et al. in [14] but extended to use gene 
libraries.  Hart et al. replicated some of Hightower et al.’s 
experiments, and we replicated these same experiments to ensure 
the systems exhibited similar characteristics.  Populations of 100 
AIS (l=5, c=5, s=15) were evolved over 200 generations on the 
5x15 JSSP with an AU of 10 antigens generated with Pu=0.2.  
Each experiment was repeated 10 times, and the results averaged. 

In experiments varying antibody expression rates (N) using a 
constant antigen exposure level (K=2), our system demonstrated 
the same characteristics found by the two earlier studies. 
Specifically, by using higher antibody exposure rates higher 
fitness was attainable (figure 3a).  It was further found that 
increasing the antibody exposure rates however caused the 
number of fitness evaluations to increase linearly.  The diversity 
of the schedules was largely unaffected by the number of 
antibodies expressed.  Through evolution, the diversity of the 
populations reduced as fitness increased indicating that the 
antibodies produced became more effective and specialised in 
combating the antigens in the AU (figure 3b).  

 

  
(a) (b) 

Figure 3.  (a) Fitness when varying antibody expression rate N 
(%), with constant antigen exposure K=2.  (b) Corresponding 
Hamming distance. 
 

To this point, all three systems behaved in the same way. 
However, when antigen exposure levels (K) were varied while the 
antibody expression rate was static (N=15) Hart et al.’s results 
contradicted those of Hightower et al. Hart et al. found that 
increasing antigen expression rates reduced fitness while 
Hightower et al. found the opposite.  Results of our replication 
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agreed with those of Hightower et al.: increasing antigen 
expression rates increased fitness.   This can be seen in figure 4. 

Notably we found that increasing antigen exposure levels also 
linearly increased the number of fitness evaluations required.  
Furthermore this study revealed that AIS evolved at lower levels 
of K exhibited higher amounts of diversity.  We attributed this to 
the lower fitness, as the AIS were not able to specialise 
sufficiently in the 200 generations.  Oprea and Forrest in [2] 
further hypothesised that other sources were more likely to play a 
greater contribution to antibody diversity than the antigens an 
individual is exposed to during its lifetime. 

 

  
(a) (b) 

Figure 4.  (a) Fitness for varying antigen exposure rates K (%) 
of an antigen universe of 10 antigens, at a constant antibody 
expression rate N=15 (0.005%).  (b) Results from [14] for a 
similar experiment where antigen exposure was varied 
between 1 and 128 antigen. 
 

From our replication of earlier experiments we concluded that our 
system was consistent with the model of Hightower et al.  

4. EFFECTS OF GENE LIBRARIES 
To understand the role of gene libraries and what they contributed 
to the replicated application, comparisons were drawn between a 
version that used gene libraries and versions that did not.   

By removing gene libraries each individual AIS in the population 
contained a single antibody and so therefore required a single 
fitness evaluation per antigen.  In contrast, using the benchmark 
gene library configuration (l=5, c=5, s=15) and an expression 
level of N=15 (0.005% of the potential repertoire), 15 evaluations 
were required for each antigen exposed to an individual AIS. We 
compared runs between the two configurations with populations 
of 100 individuals, an antigen exposure rate of K=2 (0.2% of the 
AU), and averaged over 10 runs. Despite the large difference in 
the number of evaluations required the surprising results shown in 
figure 5 were produced. 

 

  
(a) (b) 

Figure 5.  (a) Fitness (population average) results comparing a 
system with (L=5) and without (L=0) gene libraries.  (b) The 
corresponding Hamming distance. 
 
It was apparent that even though considerably fewer evaluations 
(800,000 compared to 12,000,000) were performed by the version 
without gene libraries it was able to generate fitter populations 
that produced schedules of far greater similarity. These 
experiments showed that gene libraries encourage diversity at a 
cost in fitness. 

5. DIVERSITY INVESTIGATION 
To identify which mechanism in gene libraries was the primary 
diversity contributor, experiments were performed on various 
gene library configurations.  For all of the remaining experiments 
detailed in this report AUs generated with Pu = 0.4 were used, the 
antigen exposure rate was set to K= 4 (0.4% of the potential 
repertoire), and results were averaged over 10 runs.  By altering 
Pu and K in this way we hoped to amplify any identifiable trends.  
Initially we investigated the effects of varying component 
quantities. 5 gene libraries were used for all configurations while 
the number of components c was varied.  N was set to expose 15 
antibodies as per usual. 
 

  
(a) (b) 

Figure 6.  (a) Comparison of Hamming distance and fitness of 
AIS with different numbers of components (b) Hamming 
distance of the schedules produced.   
 
Although varying the number of components c had little effect on 
the ultimate fitness or the rate at which it was reached (figure 6a) 
it impacted the diversity of the generated schedules (figure 6b).  It 
appeared that increasing the number of components meant that 
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more diversity could be maintained for longer i.e. increasing the 
diversity.  The effect was quite dramatic and so the quantity of 
components used in gene libraries was identified as potentially 
being the main diversity contributor in AIS.  Altering the number 
of components however also affected the size of the potential 
repertoire as does altering the numbers of gene libraries used. 
Further experiments were therefore carried out to ascertain if it 
was the size of the potential repertoires that affected diversity. 

As the potential repertoire could be defined by cl, the 
configurations detailed in tables 1 and 2 were used to test 
potential repertoires of 32,768 and 14,348,907 different 
antibodies.  Both sets of experiments produced the same trends.  
The graphs shown in figure 7 were generated from the 32,768 
antibody experiments. 

 
Tables 1 and 2.  Gene library configurations required for 
creating potential repertoires of 32,768 and 14,348,907 
antibodies. 

 

Configurations for a Potential 
Repertoire of 14,348,907 

Antibodies 
Libraries 3 5 15 

Components 243 27 3 

 

Configurations for a Potential 
Repertoire of 32,768 

Antibodies 
Libraries 3 5 15 

Components 32 8 2 

 
The slope of the fitness curves (such as figure 7a) appeared to 
increase with the number of libraries used and to plateau at a 
higher level.  This is investigated further in section 5.  Comparing 
the fitness curves (figure 5a for the 32,768 antibody experiment) 
between the two sets of experiments it was found that higher 
fitness was attained with the smaller potential repertoire.  This 
compliments the findings of [2].  We hypothesise that smaller 
repertoires achieve more rapid increases in fitness when the 
expression level is constant because a larger proportion of the 
potential repertoire is expressed. 

It was evident from the diversity results in figure 7b that although 
each configuration had the same size potential repertoire the 
distance trajectories differed.  This suggested that it was not the 
size of the potential repertoire that affected the diversity as similar 
trajectories would have been found if that were the case.  Of 
course, to generate differently configured AIS that had the same 
sized potential repertoire it was necessary to change the number of 
libraries used.  To determine whether altering the number of 
libraries had affected the results experiments were carried out on 
configurations that contained the same number of components but 
different numbers of gene libraries.  

 

  
(a) (b) 

Figure 7.  (a) Fitness of AIS with the same size potential 
repertoire (32,768).  (b) The corresponding Hamming distance 
of the schedules produced.   
 
To produce valid schedules the antibody produced had to be of 
length jm (in this case 75) and so the gene library constraint ls = 
jm had to be observed.  Only library quantities that were factors of 
jm could therefore produce valid results.  The diversity results for 
varying numbers of libraries of 5 and 8 components are shown in 
figure 8.   
 

  
(a) (b) 

Figure 8.  Hamming distance for experiments using varying 
number of libraries consisting of (a) 5 components and (b) 8 
components in each gene library. 
 
Our results show that the number of libraries used had only a 
marginal effect on diversity and so could not have caused the 
large diversity changes found previously. The number of 
components contained in the gene libraries was hence determined 
to be the primary diversity mechanism of gene libraries with no 
significant detrimental effect on the rate of fitness development.  
No further computational cost is incurred either as the number of 
antibody-antigen encounters, and therefore fitness evaluations, 
remains static. 

6. FITNESS INVESTIGATIONS 
It had been hypothesised in section 5 that the number of gene 
libraries used affected the fitness of the population. To investigate 
this, experiments were carried out on AIS systems using varying 
numbers of gene libraries consisting of 5 components, subject to 
the constraint ls = jm. 
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(a) (b) 

Figure 9.  (a) The fitness of AIS with varying quantities of 
libraries and static number of components (b) The Hamming 
distance and fitness of the schedules produced.  
 
The results (figure 9) showed that using more libraries enabled a 
higher ultimate fitness to be attained and indeed improved the rate 
at which it was reached. These results are supported by [2] and 
[16] which hypothesised that using more gene libraries could 
increase the rate of fitness increase as the size of the blocks 
(components) to optimise were smaller and therefore easier to 
optimise.  The findings of these experiments support this 
hypothesis.  A slight computational overhead is notable when 
increasing the number of gene libraries, as more crossovers are 
required during proliferation. 

7. CONCLUDING SUMMARY 
We found that gene libraries enabled significantly higher levels of 
diversity to be maintained although at the expense of reduced 
fitness.  In investigating the mechanics of gene libraries it was 
further found that altering the number of library components used 
enabled diversity to be controlled.  A greater number of 
components lead to higher diversity incurring only a marginal 
reduction in fitness.  AIS that used more gene libraries were found 
to evolve to higher fitness more quickly with a marginal negative 
effect on diversity.  
Previous studies [14, 17] hypothesised that species evolve gene 
libraries to respond best to the pathogens individuals are likely to 
face during their lifetime and that if the pathogen set is 
sufficiently large gene libraries evolve to generate antibodies that 
maximally cover the pathogen set.  In our opinion, antigen 
coverage is maintained to prevent the situation where a specific 
set of pathogens is effectively targeted but the species becomes 
vulnerable to a large set of other pathogens.  Our experiments 
further suggest that coverage is influenced by the diversity of the 
antigen produced.  We might therefore suspect that species 
constantly under attack from a large number of pathogens will 
have gene libraries with a greater number of components than 
species exposed to relatively few pathogens 
In this study gene libraries of uniform length and equal size 
components were used.  In nature this is not necessarily the case 
as often gene libraries contain different numbers of gene 
fragments and indeed the size of gene fragments can differ from 
library to library.  Further studies could simulate this to 
investigate when jagged libraries may be beneficial.  Following 
our findings we hypothesise that smaller libraries would develop 

more specific areas of the antibody than larger libraries, subject to 
the antibody representation. 
A number of minor factors were found to influence the fitness and 
diversity of the schedules produced e.g. antigen exposure rates.  
Further investigation could identify the bounds of these influences 
and indeed suggest when parameters ought to be altered with 
regard to the costs incurred. 
In our implementation standard genetic operators were used by 
the genetic algorithm i.e. uniform crossover and mutation.  
Specialised genetic operators could be developed to improve the 
likelihood of producing quality antibodies and schedules.  
Examples of specialised recombination operators can be found in 
[18] and [19].  
Gene libraries can be thought of as storing fragments of good 
antibodies evolved over generations.  To make use of the 
fragments to solve problems such as rescheduling it is possible 
that combing immune system techniques with other methods such 
as case based reasoning could produce fruitful results. 
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