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ABSTRACT
Tensegrity structures are stable 3-dimensional mechanical
structures which maintain their form due to an intricate
balance of forces between disjoint rigid elements and con-
tinuous tensile elements. Tensegrity structures can give rise
to lightweight structures with high strength-to-weight ratios
and their utility has been appreciated in architecture, engi-
neering and recently robotics. However, the determination
of connectivity patterns of the rigid and tensile elements
which lead to stable tensegrity is challenging. Available
methods are limited to the use of heuristic guidelines, hierar-
chical design based on known components, or mathematical
methods which can explore only a subset of the space. This
paper investigates the use of evolutionary algorithms in the
form-finding of tensegrity structures. It is shown that an
evolutionary algorithm can be used to explore the space of
arbitrary tensegrity structures which are difficult to design
using other methods, and determine new, non-regular forms.
It suggests that evolutionary algorithms can be used as the
basis for a general design methodology for tensegrity struc-
tures.

Categories and Subject Descriptors
Computer Applications, Computer Aided Engineering

General Terms
Algorithms

Keywords
Evolutionary Algorithms, Tensegrity Structures, Evolution-
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1. INTRODUCTION
Tensegrity structures were first discovered by Snelson in

1948 and formally patented by Buckminister Fuller in 1962
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[7], who coined the word tensegrity as an abbreviation of
tensile integrity. The general definition of a tensegrity struc-
ture is a structure that maintains a stable volume in space
through the use of discontinuous compressive elements (struts)
connected to a continuous network of tensile elements (ca-
bles) [19]. Figure 1 shows the schematic and simulation of
a simple tensegrity structure. Due to their design, tenseg-
rity structures were discovered to have the ability to form
the basis of lightweight and strong mechanical structures
using little material. This gained them widespread popu-
larity in architectural design for structures such as bridges
and geodesic domes [10], in engineering for lightweight space
structures such as deployable masts [8] and reflector anten-
nas [24][12] and in robotics for the design of robot manipu-
lators [22] and recently legged robots [18].

Figure 1: a) Schematic of a simple tensegrity struc-
ture. The thick black lines indicate the struts, the
grey lines indicate the cables. b) Simulation of the
three strut tensegrity prism.

There are various types of tensegrity structures. Con-
nelly and Black [4] describe tensegrity structures in which
vertices connected by a cable may be arbitrarily close, but
they may not be further than the length of the cable joining
them. Similarly two vertices joined by a strut cannot be
closer than the length of the strut. This definition works
well when the cables are made of inelastic material. How-
ever, when elastic cables are used, then the vertices may be
further apart than the rest length of the cable, if appropriate
force is applied. There are also variations in the level of spa-
tial proximity allowed between the struts. In the definition
of a class I tensegrity structure [1], the struts cannot share
common vertices, that is they must be physically separated
in space. However, the definition of a class II tensegrity
structure allows more than one strut to originate from a
vertex. Finally, although the canonical form of a tenseg-
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rity structure is composed of rigid struts and tensile cables,
tensegrity structures also exist in which the struts are elas-
tic and connected by cables or sheets of material1. In this
work, we are primarily concerned with the form-finding of
class I tensegrity structures.

Figure 2: A few examples of regular tensegrities
developed based on group theory by Connelly and
Black [4]. Reprinted with permission from American

Scientist.

The problem of form finding of a tensegrity structure, or
determining the geometrical configuration of a stable 3D
tensegrity structure, has received widespread attention. There
are two components to the problem of form-finding: Deter-
mining a connectivity pattern which will enable a stable
form to exist, and determining the lengths of the rigid and
tensile elements for a given connectivity pattern which re-
sult in a stable form. There have been numerous approaches
to form-finding which address one or both of these issues.
Early structures developed by Fuller and Snelson, used con-
vex polyhedra as the basis for form-finding. These methods
were focused on specifying connectivity patterns which could
enable tensegrity. This approach resulted in various config-
urations which were summarized by Pugh [19]. However,
these were all based on regular geometries. More recently
other methods were developed which primarily focused on
determining the length parameters of the rigid and tensile el-
ements in the stable configuration. These methods involved
the use of non-linear programming [20], dynamic relaxation
[15] and calculation of force density [21][13][26]. These meth-
ods did not provide guidelines for finding connectivity pat-
terns. Finally, Connelly and Black [3][4] developed a new
method for determining both connectivity patterns and pa-
rameters for structures based on group symmetries. Once
again, these resulted in only regular structures (Fig. 2). A
good review of these and other form finding methods can be
found in [25].

The general problem of determining a connectivity pat-
tern and set of parameter which lead to a stable tensegrity,

1The pop-up tent is a good example of such a tensegrity
structure.

Figure 3: (Top Left) a. A sample initial configura-
tion, before relaxation. (Top Right) b. Relaxation
into a 2D tensegrity structure. (Bottom) c. Relax-
ation into 1D.

for the entire space of structures, is an unsolved problem.
There is currently no direct mathematical way to derive the
form of an arbitrary tensegrity structure.

2. EVOLUTIONARY ALGORITHM
In this work, a genetic algorithm was used to evolve the

connectivity pattern and parameter values of a tensegrity
structure. The genotype utilized a direct encoding to spec-
ify the initial position of the vertices and the connectivity
pattern of the struts and cables(Fig. 3(a)). Following, this
a relaxation algorithm was applied such that all the cables
simultaneously contracted in length, by setting their rest
length to zero, and all struts were set to length 1. In many
cases, the structure would contract into a 2-D tensegrity
structure (Fig. 3(b)) on applying relaxation, and in others
it would collapse into a 1-D bundle of struts (Fig. 3(c)).
Only in some cases did the structure contract into a 3-D
tensegrity structure. The fitness of the structure was deter-
mined by fitting a tight rectangular bounding box around
the final configuration after relaxation and computing its
volume. The highest volume individuals were selected, and
mutation and crossover were applied. Iteration of this pro-
cess led to stable 3-D tensegrity structures with 6, 7, 8, 10
and 12 struts. The following sections will describe the algo-
rithm and its results.

2.1 Representation
In this study only class I tensegrity structures were of in-

terest. Furthermore, only tensegrity structures with three
cables originating from each vertex were used. Three is the
minimum number of cables required at each vertex to form
a tensegrity. If there are less than three cables, then the ver-
tex is not fully constrained in three dimensions and there-
fore does not maintain a stable position with respect to the
rest of the structure, violating the definition of a tenseg-
rity structure. Here, it was of interest to study whether the
evolutionary algorithm could design tensegrities using the
minimum number of cables required.
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A direct encoding was used to represent the the genotype
to phenotype mapping for the tensegrity structure. The
genome string was divided into three regions. The first re-
gion was used to specify the initial location of the vertices.
The number of vertices in a class I tensegrity structure is de-
termined by the number of struts. If there are n struts, then
by definition there are 2n vertices, as none of the struts can
share common vertices. Thus, the first part of the genome
string consisted of triples with floating point values between
0.0 and 1.0 corresponding to the initial [x,y,z] positions in
space for each of these 2n vertices. To translate the geno-
type to the actual location of the vertices in space, each
value was multiplied by a constant k (=40).
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Figure 4: (a) An example of a seed structure with 4
struts. The thick lines indicate struts and the thin
lines indicate cables. (b) A shuffle action in which
the endpoints of two struts are switched.

The initial location of the vertices was used to define a seed

structure (Fig. 4(a)). The connectivity pattern of the seed
structure was always the same. The vertices were labeled
from 1 to n. Each vertex was connected to the two following
vertices by links. Thus, for example vertex 1 was connected
by links to vertices 2 and 3, and vertex 7 was linked to 0
and 1. The links were labeled in the order they were created
from 1 to m, where m was the number of links (m = 4n).
Following the creation of the links, every link labeled as a
multiple of 4 was converted to a strut, and all the others were
converted to cables. This ensured the topological validity of
the structure: That no two struts shared a common vertex
and every vertex had exactly three cables originating from
it.

The second region of the genome string encoded the final
connectivity of the struts through a sequence of pairwise
shuffle actions to be performed on struts of the seed struc-
ture. In a shuffle action, two struts S1 and S2 were selected.
If strut S1 was located between two vertices a1 and b1 and
strut S2 was located between two vertices a2 and b2, one of
these vertices was selected on each strut as the target of the
shuffle action and the locations of these two vertices were
switched. Thus for example, as shown in Fig. 4(b), the
struts labeled as 4 and 12 have been selected as targets of
the shuffle action. The endpoint of strut 4, originally located
at vertex 2, is moved to vertex 6. Correspondingly, the end-
point of strut 12, originally located at vertex 6, is moved
to vertex 2. As can be seen, such an action gives rise to a
new connectivity pattern, which can in turn specify a new
tensegrity structure. Thus, the second region of the genome
string consisted of 4-tuples representing pairs of struts s1

and s2 and vertices p1 and p2 which were to be shuffled.
The number of shuffle actions represented was equal to two
times the number of struts.

The third region of the genome string encoded the final
location of the cables through a sequence of similar shuffle
actions. Thus, it consisted of 4-tuples of floating point values
representing pairs of cables c1 and c2 and their vertices p1

and p2 that were to be switched. The number of shuffle
actions performed on the cables was equal to two times the
number of cables. The total length of the genome string
was therefore 3n + 8s+ 8c, where n = 2s was the number of
vertices, s the number of struts, and c the number of cables.

2.2 Relaxation Algorithm
In order to find the equilibrium state of the tensegrity

structure a kinematic relaxation algorithm was applied [14].
It was comprised of two steps, applied iteratively. The first
step computed the total force on each joint; this was the
residual force, since these forces would be zero if the struc-
ture was in perfect equilibrium. The second step adjusted
the position of each vertex so as to reduce the residual force
acting upon it. These two steps were repeated until the
maximum residual force went below a desired threshold.

As each vertex was connected to four links corresponding
to three cables and one strut, each of these links applied
a force on the vertex at each time step. Each cable was
set to contract to zero length, and each strut to a length
of 1. Thus, at each time step each cable applied a force
proportional to its length, and each strut applied a force
proportional to the difference of its length from 1.

The effective stiffness of each joint was estimated by sum-
ming all the stiffnesses of all links connected to it. Given
the residual force acting on each joint and its effective stiff-
ness, the displacement of each joint was computed as the
component-wise ratio between residual force and stiffness.
The vertex positions were then adjusted by a fraction of this
displacement. For greater computational efficiency, many of
the above steps can be calculated concurrently. A detailed
description and sample code for the kinematic relaxation
solver is provided in [14].

2.3 Fitness Criteria

2.3.1 Bounding Box
The first fitness criterion selected was the volume of the

bounding box encompassing the structure. To determine
a tight bounding box, the volume spanned by a candidate
tensegrity structure is usually computed using the convex
hull spanned by its vertices. The convex hull can be found
using a number of algorithms, such as the Incremental, Gift
Wrap, Divide and Conquer, and QuickHull methods that
run in O(nlogn) time [5]. We used a tight bounding-box
approach that provides an upper bound on the convex-hull
volume, but amplifies any gradient towards generating a vol-
umetric tensegrity because any deviation from a plane is
multiplied by the plane’s area. The current fastest algo-
rithm for calculating a 3D minimal volume bounding box
runs in O(n3) time [17], although faster approximate meth-
ods exist [2]. Here we used an implementation that is based
on the property of a bounding box that at least one face of
the box contains a face of the convex hull, and at least one
edge of the bounding box contains an edge of the convex
hull.

We calculated the volume of a bounding box leaning against
each triplet of points of the convex hull structure in O(n4)
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time. Each triplet of vertices of the structure was consid-
ered in turn, without repetitions or permutations in O(n3)
time. Each triplet defines a plane, and each pair defines an
orientation of a candidate bounding-box coordinate system.
A min-max bounding box was computed for each candidate
orientation in O(n) time, and the minimal one selected as
the overall tightest bounding box.

2.3.2 Ordered Tetrahedra
Although the bounding box criterion was elegant in its

simplicity and ability to demonstrate the power of evolution
for the design of tensegrity structures, it was not the best
criteria. As the bounding box was only determined by the
extremal points of the structure, the actual volume of the
structure itself could vary greatly within the space of the
bounding box. Thus, structures with significantly different
volumes could recieve the same fitness value, confounding
the gradient necessary for evolutionary search.

To alleviate this problem a second fitness criterion was de-
signed, which involved considering the volumes of tetrahedra
formed by points of the structure. The vertices of the struc-
ture, which were the endpoints of the struts, were ordered
from left to right along the x-axis. Then going through these
points in order, tetrahedra were formed by connecting the
point to its three following points, and the volumes of these
tetrahedra were calculated and summed. This ensured, for
example, that if the tensegrity structure was composed of
two 2D tensegrity structures attached at an angle, then the
fitness would still be low, as considering the points in sets of
four would reveal that various parts of the tensegrity were
flat. This criterion was used to compare the performance of
the algorithm against random search and gradient ascent.

2.4 Evolution
A fixed length genetic algorithm was used to evolve the

controllers. Each run of the genetic algorithm was con-
ducted for 20 generations, using a population size of 20.
At the end of each generation, the 10 most fit genomes were
preserved; the others were deleted. Tournament selection
with a tournament size of three, was employed to proba-
bilistically select genotypes from among those remaining for
mutation and crossover. 2 pairwise one-point crossings pro-
duced 4 new genotypes: the remaining 6 new genotypes were
mutated copies of genotypes from the previous generation.
The mutation rate was set to generate an average of n mu-
tations for each new genome created, where n was defined
as a function of the genome length gl, as nn=gl/100. Muta-
tion involved the replacement of a single value with a new
random value. The floating-point values were rounded to
two decimal places and thus ranged between 0.00 and 1.00.

3. RESULTS
Two evolutionary trials were initially performed with 7

struts. The history of the best fitness and the average fit-
ness in each generation is shown in Figure 5. The best fitness
at the end of 20 generations on the first trial was a volume
of 45876.7 and on the second trial it was 45602.5 indicating
that the two trials had found very similar tensegrity struc-
tures. The final form of the tensegrity structures found by
the algorithm is shown in Figures 6.

Following these trials which indicated that evolution could
be used to discover new tensegrity structures, a more sys-
tematic evaluation of the performance of the algorithm with

(a)

(b)

Figure 5: (a) Best 3D tensegrity structure evolved
in evolutionary trial 1. Volume = 45876 (b) Best 3D
tensegrity structure evolved in evolutionary trial 2.
Volume = 45603

respect to the number of struts was carried out. In this set
of experiments, the algorithm was run for 6, 8, 10 and 12
struts respectively for 100 generations each. The fitness his-
tory that resulted in each of these experiments is presented
in Fig. 8. The best fitness achieved at the end of 100 gener-
ations was 32040 with 6 struts, 58534 with 8 struts, 71734
with 10 struts, and 95296 with 12 struts. These structures
are shown in Fig. 6(a)-(d). The fact that the volume was
observed to increase with the number of struts was not sur-
prising as a larger space can usually be spanned with a larger
number of elements, if the elements are of the same average
size, as is the case in the experiments.

A more interesting characteristic of these graphs is the
shape of the curve of best fitness. In the experiment with 6
struts, a large increase in fitness occurs relatively early (ap-
proximately at generation 18), followed only by insignificant
changes. In the experiment with 8 struts, a large increase in
fitness occurs around generation 29, after which no further
changes occur. However, the size of this change is smaller
than the increase at generation 18 with six struts. In the
experiment with 10 struts, the size of the increments are
smaller than the large jumps seen in the previous graphs,
and continue until generation 50. Finally, in the experi-
ment with 12 struts, the changes are smaller on average and
continue until generation 70. Thus, the trend seems to be
that at lower dimensions larger but more infrequent changes
occur early in the evolutionary timeline, while at higher di-
mensions the changes are smaller, but more frequent and
continue for a longer duration of the evolutionary timeline.
The latter is a characteristic pattern of successful evolu-
tionary optimization, while the former is characteristic of
performance hindered by isolated relative maxima.
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Figure 7: Best and average fitnesses plotted for each generation for evolutionary trials with 6, 8, 10 and
12 struts. The x-axis shows the generation number. The y-axis shows the fitness, which is the volume of
a minimum bounding box that can be fitted around the structure, given in terms of unit length (ul). The
length of the error bars along the plots of average fitness represent the standard deviation.

Fig. 8 presents bar graphs of the number of 3D, 2D and
1D structures in the population at every generation, during
the first 20 generations of the four experiments. The graphs
are presented in order to compare the ease with which 3D
structures can be generated in the various trials. With 6
struts, it is observed that for the first 15 generations, a large
number of 2D tensegrity structures are produced, and the
remainder are 1D structures. Only in generation 16 is the
first 3D tensegrity structure found. Compared to this, in
the graph of the experiment with 8 struts, a 3D tensegrity
structure is already found in generation 1, purely as result
of random search. Subsequently, in the graph of the exper-
iment with 10 struts, 4 are found in generation 1, and with
12 struts, 7 are found. Thus, the number of 3D tensegrities
found purely as a result of random search seems to increase
with the number of struts.

The reverse trend is observed for 1D structures. In the
graph of the experiment with 6 struts, 14 of the 20 genera-
tions have a non-zero value for the number of 1D structures,
with the highest value being 5. In the experiment with 8
struts, 11 have a non-zero value, with the highest value be-
ing 3. With 10 struts, 11 have a non-zero value, with the
highest value equal to 2. Finally, with 12 struts only 1 of
the generations produces a 1D structure. This suggests that
fewer 1D solutions exist at higher dimensions.

As Fig. 8 showed the total number of tensegrity structures
of a given dimensionality it was possible that in each genera-
tion some of the individuals shared the same genotype, thus
confounding the estimate of the relative frequency of the
various dimensional structures in the solution space. Thus,

the number of unique 3D structures created in every gener-
ation was extracted for the four experiments, and plotted in
Fig. 9. Although, for this set of experiments, the evolution-
ary trial with 6 struts produced more unique structures than
8, the number of unique structures produced with 10 struts
was almost double, and with 12 struts almost triple that of
the one with 6 struts, suggesting once again that there may
be some positive correlation between the number of struts
and the number of unique 3D tensegrity structures that can
be found.

In order to determine whether evolution could perform
better than random search and gradient ascent, the ordered
tetrahedron fitness criterion was used to compare the perfor-
mance of both algorithms on the design of 12 strut tensegrity
structures. Three experiments were run for both conditions.
The results are shown in Fig. 10. In these graphs it is clear
that evolutionary optimization performs better than both
random search and gradient ascent.

Finally, as a proof of concept that the structures designed
in simulation translate to the real world, a physical tenseg-
rity structure was implemented based on the connectivity
pattern specified by a model obtained from simulation. The
resulting tensegrity structure is shown in Fig. 11. The ge-
ometry of the structure did not resemble the simulation ex-
actly as the length and pre-stress parameters of the cables
were not replicated exactly. However, it showed that the
connectivity patterns which gave rise to successful tenseg-
rity structures in simulation, could translate to equivalent
structures in the real world.
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Figure 8: Number of 3D, 2D and 1D structures in the population during the first 20 generations of the
evolutionary experiments with 6, 8, 10 and 12 struts.

4. DISCUSSION
The preliminary results are promising as they show that

evolutionary search can be useful in the design of new tenseg-
rity structures. In the experiments, the search algorithm
was able to find stable 3D tensegrity structures for all the
dimensions that were tested, including for 6, 7, 8, 10 and
12 struts. For 6 struts, 81 unique tensegrity structures were
found, for 8, 52 were found, for 10, 143 were found and for
12, 240 structures were found as a result of a single evolu-
tionary search. It is likely that running a large number of
evolutionary experiments could be used to efficiently search
a large region of the space of solutions, potentially much
larger than what was possible using previous methods.

However, there are a few areas in which evolutionary search
may have difficulties in the form-finding of tensegrity struc-
tures. The results suggest that at lower dimensions the fit-
ness landscape becomes more rugged, with isolated relative
maxima surrounded by deep troughs. This is also seen by
directly performing mutations on a successful genome. For
example, taking the genome string which leads to the best
fitness of 48576.7 for 7 struts, and inducing a single mutation
in a parameter which encodes a cable in a pairwise shuffle,
leads to fitnesses of 0.0, 9.541, 42696.9 and 1.435. Three out
of four of these represent a drastic decline in performance in-
dicating that the fitness landscape has very abrupt changes.
Such landscapes are typically challenging for evolutionary
and other gradient based search methods.

The landscape is also determined to some extent by the
encoding scheme. As in the current encoding scheme the
connectivity is specified by a direct encoding, a mutation
induces a change in the position of a vertex or the location
of two struts or two cables. While, the position of a single
vertex does not significantly affect the final configuration

of the tensegrity structure, a change in the location of two
struts or two cables represents a drastic change in the config-
uration, and can be expected to lead to drastic consequences
in terms of fitness. Thus, for lower dimensionality alternate
encoding schemes may also prove effective.

However, the results suggest that for higher dimensional-
ity, evolution using a direct encoding scheme is suitable for
generating a multitude of unique solutions. This is ideal for
the purposes of design, as it is only at higher dimensions
that the other design techniques fail in the free-form gener-
ation of structures. Evolution can be used to overcome this
limitation, and provide an effective tool for design.

The trend observed in the relationship between scale and
evolvability is interesting as it is the opposite of what is usu-
ally found with a direct encoding. Usually, a direct encoding
performs well at lower dimensions and its performance drops
off as the dimensionality of the problem increases. In other
words, it does not scale well with size. For higher dimen-
sional problems it has often been found that modular and
hierarchical encoding schemes are more effective. However,
in this particular problem it seems that the direct encod-
ing performs better as the dimensionality of the problem
increases. The unexpected result that it is able to find a
larger number of 3D structures sooner on the evolutionary
timeline suggests that perhaps in this particular problem
space, more solutions exist at higher dimensions than at
lower dimensions.

5. CONCLUSION
The form-finding of tensegrity structures, particularly of

an irregular nature, has been a difficult problem, which has
not easily yield itself to direct mathematical analysis. Thus,
so far the existing methods for the free-form design of tenseg-
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(a)
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Figure 6: Best 3D tensegrity structures evolved with
(a) 6 struts (volume = 32040) (b) 8 struts (volume
= 58534) (c) 10 struts (volume = 71734) and (d) 12
(volume = 95296) struts.

rity structures have been limited. The goal of this paper
was to attempt to surpass this limitation by applying evolu-
tionary computation to the problem of form-finding. Using
a direct encoding to represent the connectivity pattern of

a tensegrity, it was shown that an evolutionary algorithm
could successfully explore the space of irregular structures
and give rise to new unknown configurations. These prelim-
inary results suggest that evolutionary search may serve as a
powerful tool in the free-form design of tensegrity structures.

6. ACKNOWLEDGEMENTS
This research has been supported by the DCI Postdoctoral

Research Fellowship Program, award number NMA501-03-
1-2013.

7. REFERENCES
[1] R. Adhikari, R. E. Skelton, and W. J. Helton,

Mechanics of Tensegrity Beams, UCSD Structural
Systems and Control Lab, Report No. 1998-1, 1998

[2] Gill Barequet, and Sariel Har-Peled (1999) Efficiently
Approximating the Minimum-Volume Bounding Box of
a Point Set in Three Dimensions, Tenth Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA’99)

[3] Connelly, R. and Terrell M. Globally rigid symmetric
tensegrities. Structural Topology 21 (1995), pp 59-78

[4] Connelly, R. and Black, A. “Mathematics and
Tensegrity,” American Scientist, Vol. 86, 1998

[5] Mark De Berg, Marc Van Kreveld, Mark Overmars,
Otfried Schwarzkopf (1997) Computational Geometry :
Algorithms and Applications, Springer-Verlag

[6] Fuller, R. (1961). Tensegrity. Portfolio and Artnews
Annual, 4, 112–127.

[7] Fuller, R. B., Tensile-integrity structures, United States
Patent 3,063,521, November 13, 1962.

[8] H. Furuya, “Concept of Deployable Tensegrity
Structures in Space Applications,” Int. J. Space
Structures, 7:2, pp 143-151, 1992

[9] Hanaor, A. “Tensegrity: Theory and Application”
Beyond the Cube: The Architecture of Space Frames
and Polyhedra, edited by J. Francois Gabriel, John
Wiley and Sons, Ic, 1997 pp 385-408.

[10] Hanaor, A. “Aspects of Design of Double Layer
Tensegrity Domes” International Journal of Space
Structure, Vol. 7, No. 2, 1992 pp 101-103

[11] Kenner, H. Geodesic math and how to use it.
Berkeley, University of California Press, 1976

[12] Knight, B.F., Deployable Antenna Kinematics using
Tensegrity Structure Design, Doctor of Philosophy
Dissertation, University of Florida, Gainesville, 2000.

[13] Linkwitz, K., Formfinding by the “direct approach”
and pertinent strategies for the conceptual design of
pre-stressed and hanging structures, International
Journal of Space Structures, 14(2), 1999, 73-87

[14] Lipson H. (2006) ”A relaxation method for simulating
the kinematics of compound nonlinear mechanisms”,
ASME Journal of Mechanical Design, in press.

[15] Motro, R., Forms and Forces in Tensegrity Systems, in
H. Nooshin, ed., Proceedings of the Third International
Conference on Space Structures, Elsevier, Amsterdam,
1984, 180-185

[16] Motro R., “Tensegrity Systems: The State of the
Art”, International Journal of Space Structures, Vol. 7,
No. 2, 1992 pp 75-84

9



0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

Generation

N
um

be
r 

of
 U

ni
qu

e 
S

tr
uc

tu
re

s
6 struts
8 struts
10 struts
12 struts

Figure 9: Number of unique tensegrity structures
found by Generation n, for the experiments with 6,
8, 10 and 12 struts.

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6
x 10

4

Number of Evaluations

F
itn

es
s 

(V
ol

um
e)

E 

E 

E 

R 

R 

R 

H 

H , H 

Figure 10: Comparison of performance of evolution
vs. random search and gradient ascent. The results
of the evolutionary algorithm are indicated by thick
lines and labelled as (E), those of random search are
indicated by thin lines labelled as (R), and those
of gradient ascent (hill climber) are indicated by
dashed lines labelled as (H).

[17] J. O’Rourke. Finding minimal enclosing boxes.
International Journal of Computer and Information
Sciences, 14(3):183-199, June 1985

[18] Paul, C., Lipson, H., and Valero-Cuevas, F.J. Gait
Production in a Tensegrity Based Robot. In Proc. Int.

Conf. on Advanced Robotics, to be held in Seattle, WA,
USA, July 2005.

[19] Pugh, A., An Introduction to Tensegrity, University of
California Press, 1976.

[20] Pellegrino, S. Mechanics of kinematically
indeterminate structures, PhD. dissertaion, University of
Cambridge, U.K., 1986.

[21] Schek, H. J., The force density method for form

Figure 11: Real world implementation of tensegrity
structure based on connectivity pattern specified by
simulation. (The geometry of the structure does not
match simulation exactly as cable lengths and pre-
stress parameters were roughly approximated.)

finding and computation of general networks, Computer
Methods in Applied Mechanics and Engineering, 3, 1974,
115-134

[22] Aldrich, J. B., Skelton, R. E. and Kreutz-Delgado, K.
Control Synthesis for a Class of Light and Agile Robotic
Tensegrity Structures, Proceedings of the IEEE
American Control Conference, Denver, Coloradao, USA,
June 4-6, 2003

[23] Snelson, K. D., Continuous tension, discontinuous
compression structures, United States Patent 3,169,611,
February 16, 1965.

[24] Tibert, G. Deployable Tensegrity Structures for Space
Applications, PhD Thesis, Department of Mechanics,
Royal Institute of Technology (KTH), Sweden, 2002

[25] Tibert A. G. and Pellegrino, S. “Review of
Form-Finding Methods for Tensegrity Structures”,
International Journal of Space Structures, 18:4(2003), pp
209-223

[26] Vassart, N., and Motro, R., “Multiparametered
form-finding method: Application to tensegrity systems.
International Journal of Space Structure, 14:2(1999), pp
147-154

10


