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ABSTRACT 
In this paper, we present an approach that extends the Particle 
Swarm Optimization (PSO) algorithm to handle multiobjective 
optimization problems by incorporating the mechanism of 
crowding distance computation into the algorithm of PSO, 
specifically on global best selection and in the deletion method of 
an external archive of nondominated solutions. The crowding 
distance mechanism together with a mutation operator maintains 
the diversity of nondominated solutions in the external archive. 
The performance of this approach is evaluated on test functions 
and metrics from literature. The results show that the proposed 
approach is highly competitive in converging towards the Pareto 
front and generates a well distributed set of nondominated 
solutions.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, 
Control Methods, and Search – Heuristic Methods 

General Terms: Algorithms 
Keywords 
Multiobjective Optimization, Particle Swarm Optimization, 
Crowding Distance 

1. INTRODUCTION 
Many real-world optimization problems have multiple objectives 
which are not only interacting but even possibly conflicting. In 
general, a multiobjective minimization problem with m decision 
variables (parameters) and n objectives can be stated as: 

minimize ))(),...,(()( 1 xfxfxfy n==  

where Xxxx m ∈= ),...,( 1  

          Yyyy n ∈= ),...,( 1  

where x is called decision vector, X the parameter space, y  the 
objective vector and Y the objective space. The desired solution is 
in the form of “trade-off” or compromise among the parameters 
that would optimize the given objectives. The optimal trade-off 
solutions among objectives constitute the Pareto front. 
Multiobjective optimization deals with generating the Pareto front 
which is the set of non-dominated solutions for problems having 
more than one objective. A solution is said to be non-dominated if 
it is impossible to improve one component of the solution without 
worsening the value of at least one other component of the 
solution. The goals of multiobjective optimization are: (1) to 
guide the search toward the true Pareto front (non-dominated 
solutions) or approximate the Pareto optimal set, and (2) to 
generate a well-distributed Pareto front.  
Many evolutionary algorithms (EAs) have been developed in 
solving multiobjective optimization problems such as Micro-GA 
[2], NSGA-II [4], PAES [9] and SPEA2 [16]. These EAs are 
population-based algorithms which allow them to explore the 
different parts of the Pareto front simultaneously.  
Several multiobjective optimization algorithms are based on 
Particle Swarm optimization (PSO) [7] which was originally 
designed for solving single objective optimization problems. PSO 
is an algorithm inspired by the social behavior of bird flocking. 
The initial population of particles is initialized with random 
solutions. For every generation, each solution moves toward the 
global Pareto front by updating its velocity, the best solution a 
particle has achieved so far and follows the best solution achieved 
among the population of solutions. 
Among those algorithms that extend PSO to solve multiobjective 
optimization problems are Multiobjective Particle Swarm 
Optimization (MOPSO) [1], Nondominated Sorting Particle 
Swarm Optimization (NSPSO) [11], the aggregating function for 
PSO [12], the algorithm of Fieldsend and Singh [5] that uses an 
unconstrained archive and a data structure called a “dominated 
tree” and the use of multilevel sieve for constraint handling [13]. 
Several techniques have been incorporated into multiobjective 
optimization algorithms especially to PSO-based algorithms in 
order to improve convergence to the true Pareto front as well as 
produce a well-distributed Pareto front. These techniques are 
elitism, diversity operators, mutation operators, and constraint 
handling.  
The performance of different multiobjective algorithms that 
incorporate such optimization techniques was compared in [1] 
using five test functions. These algorithms are NSGA-II, PAES, 
Micro-GA and MOPSO. The results show that MOPSO was able 
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to generate the best set of nondominated solutions close to the true 
Pareto front in all test functions except in one function where 
NSGA-II is superior.  In terms of diversity of the nondominated 
solutions, NSGA-II produced the best results in all test functions 
but was not able to cover the entire Pareto front in all test 
functions. MOPSO was the only algorithm which was able to 
cover the entire Pareto front. 
This remarkable performance of MOPSO can be attributed to its 
use of an external repository or archive of nondominated solutions 
found in previous iterations and to its novel mutation operator that 
initially covers the entire population (including the range of each 
design variables) which it then gradually decreases during 
subsequent iterations. The mutation operator improves the 
exploratory capabilities of the algorithm and prevents premature 
convergence. This proves that PSO is a powerful optimization 
algorithm when extended to handle multiobjective optimization 
problems by using such techniques. 
However, it should be noted that the use of the crowded 
comparison operator, which basically is a computation of the 
crowding distance of each solution, as a diversity operator by 
NSGA-II was able to produce a better distribution of the 
generated nondominated solutions compared to the results 
generated by MOPSO that uses an adaptive grid in maintaining 
diversity of the generated solutions. This shows that while 
MOPSO is superior in converging to the true Pareto front, its 
diversity mechanism falls behind that of NSGA-II.  
The computation time of the algorithms was also observed and 
MOPSO has been found to have a vastly superior execution time 
compared to the other algorithms. This is attributed to the 
adaptive grid used by MOPSO which has lower computational 
cost [9] than the crowding distance used by NSGA-II combined 
with the nondominated sorting as suggested by Goldberg [6]. 
The proposed algorithm extends PSO in solving multiobjective 
optimization problems by incorporating the mechanism of 
crowding distance computation in the global best selection and the 
deletion method of the external archive of nondominated solutions 
whenever the archive is full. The crowding distance mechanism 
together with a mutation operator maintains the diversity of 
nondominated solutions in the external archive. 
The remainder of the paper is organized as follows. In Section 2, 
the proposed algorithm is discussed followed by a discussion of 
the implementation, experiments done on the algorithm and their 
results in Section 3. The impact of the mutation operator and 
replacement of nondominated solutions in the archive on the 
performance of the proposed algorithm is analyzed in Section 4. 
The paper closes with the Summary and Conclusion in Section 5. 

2. PROPOSED APPROACH 
The proposed algorithm which we shall call MOPSO-CD extends 
the algorithm of the single-objective PSO to handle multiobjective 
optimization problems. It incorporates the mechanism of 
crowding distance computation into the algorithm of PSO 
specifically on global best selection and in the deletion method of 
an external archive of nondominated solutions. The crowding 
distance mechanism together with a mutation operator maintains 
the diversity of nondominated solutions in the external archive. 
MOPSO-CD also has a constraint handling mechanism for solving 
constrained optimization problems. 

2.1 MOPSO-CD Algorithm 
 

1. For i = 1 to M (M is the population size) 
a. Initialize P[i] randomly  

(P is the population of particles) 
b. Initialize V[i]  = 0 (V is the speed of each particle) 
c. Evaluate P[i] 
d. Initialize the personal best of each particle 

PBESTS[i] = P[i] 
e. GBEST = Best particle found in P[i] 

2. End For 
3. Initialize the iteration counter t = 0 
4. Store the nondominated vectors found in P into A  

(A is the external archive that stores nondominated 
solutions found in P) 

5. Repeat 
a. Compute the crowding distance values of each 

nondominated solution in the archive A 
b. Sort the nondominated solutions in A in descending 

crowding distance values 
c. For i = 1 to M 

i. Randomly select the global best guide for P[i] 
from a specified top portion (e.g. top 10%) of 
the sorted archive A and store its position to 
GBEST. 

ii. Compute the new velocity: 
    V[i] = W x V[i] + R1 x (PBESTS[i] – P[i]) + 

R2 x (A[GBEST] – P[i]) 
   (W is the inertia weight equal to 0.4) 
    (R1 and R2 are random numbers in the range 

[0..1]) 
    (PBESTS[i] is the best position that the 

particle i have reached) 
     (A[GBEST] is the global best guide for each 

nondominated solution) 
iii. Calculate the new position of P[i]:  

              P[i] = P[i] + V[i] 
iv. If P[i] goes beyond the boundaries, then it is 

reintegrated by having the decision variable 
take the value of its corresponding lower or 
upper boundary and its velocity is multiplied 
by -1 so that it searches in the opposite 
direction. 

v. If (t < (MAXT * PMUT),  
    then perform mutation on P[i]. 
    (MAXT is the maximum number of iterations) 
    (PMUT is the probability of mutation) 

vi. Evaluate P[i] 
d. End For 
e. Insert all new nondominated solution in P into A if 

they are not dominated by any of the stored 
solutions. All dominated solutions in the archive by 
the new solution are removed from the archive. If 
the archive is full,  the solution to be replaced is 
determined by the following steps: 
i. Compute the crowding distance values of each 

nondominated solution in the archive A 
ii. Sort the nondominated solutions in A in 

descending crowding distance values 
iii. Randomly select a particle from a specified 

bottom portion (e.g. lower 10%) which 
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comprise the most crowded particles in the 
archive then replace it with the new solution 

f. Update the personal best solution of each particle 
in P. If the current PBESTS dominates the position 
in memory, the particles position is updated using 
PBESTS[i] = P[i] 

g. Increment iteration counter t 
6. Until maximum number of iterations is reached 

 

2.2 Crowding Distance Computation 
The crowding distance value of a solution provides an estimate of 
the density of solutions surrounding that solution [4]. Figure 1 
shows the calculation of the crowding distance of point i which is 
an estimate of the size of the largest cuboid enclosing i without 
including any other point.  
 
 
 
 
 
 
 
 
 
 
Crowding distance is calculated by first sorting the set of solutions 
in ascending objective function values. The crowding distance 
value of a particular solution is the average distance of its two 
neighboring solutions. The boundary solutions which have the 
lowest and highest objective function values are given an infinite 
crowding distance values so that they are always selected. This 
process is done for each objective function. The final crowding 
distance value of a solution is computed by adding the entire 
individual crowding distance values in each objective function. 
The pseudocode of crowding distance computation is shown 
below. 

1. Get the number of nondominated solutions in the 
external repository 

a. n = | S |    
2. Initialize distance  

a. FOR i=0 TO MAX 
b. S[i].distance = 0 

3. Compute the crowding distance of each solution 
a. For each objective m 
b. Sort using each objective value 

S = sort(S, m)           
c. For i=1 to (n-1) 
d. S[i].distance = S[i].distance + (S[i+1].m –  

S[i-1].m) 
e. Set the maximum distance to the boundary 

points so that they are always selected 
S[0].distance = S[n].distance = maximum 
distance 

2.3 Global Best Selection 
The selection of the global best guide of the particle swarm is a 
crucial step in a multiobjective-PSO algorithm. It affects both the 
convergence capability of the algorithm as well as maintaining a 
good spread of nondominated solutions. In MOPSO-CD, a 
bounded external archive stores nondominated solutions found in 
previous iteration. We note that any of the nondominated 
solutions in the archive can be used as the global best guide of the 
particles in the swarm. But we want to ensure that the particles in 
the population move towards the sparse regions of the search 
space.  
In MOPSO-CD, the global best guide of the particles is selected 
from among those nondominated solutions with the highest 
crowding distance values. Selecting different guides for each 
particle in a specified top part of the sorted repository based on a 
decreasing crowding distance allows the particles in the primary 
population to move towards those nondominated solutions in the 
external repository which are in the least crowded area in the 
objective space.  
Also, whenever the archive is full, crowding distance is again 
used in selecting which solution to replace in the archive. This 
promotes diversity among the stored solutions in the archive since 
those solutions which are in the most crowded areas are most 
likely to be replaced by a new solution. 

2.4 Mutation 
The mutation operator of MOPSO was adapted because of the 
exploratory capability it could give to the algorithm by initially 
performing mutation on the entire population then rapidly 
decreasing its coverage over time [1]. This is helpful in terms of 
preventing premature convergence due to existing local Pareto 
fronts in some optimization problems. 

2.5 Constraint Handling 
In order to handle constrained optimization problem, MOPSO-CD 
adapted the constraint handling mechanism used by NSGA-II due 
to its simplicity in using feasibility and nondominance of 
solutions when comparing solutions. A solution i is said to 
constrained-dominate a solution j if any of the following 
conditions is true: 

1. Solution i is feasible and solution j is not. 
2. Both solutions i and j are infeasible, but solution i has a 

smaller overall constraint violation. 
3. Both solutions i and j are feasible and solution i 

dominates solutions j. 
When comparing two feasible particles, the particle which 
dominates the other particle is considered a better solution. On the 
other hand, if both particles are infeasible, the particle with a 
lesser number of constraint violations is a better solution. 

2.6 The Time Complexity of MOPSO-CD 
The computational complexity of the algorithm is dominated by 
the objective function computation, crowding distance 
computation and the nondominated comparison of the particles in 
the population and in the archive. If there are M objective 
functions and N number of solutions (particles) in the population, 
then the objective function computation has O(MN) 
computational complexity. The costly part of crowding distance 
computation is sorting the solutions in each objective function. If 

F2 

Cuboid 

i+1 

i 
i-1 

F1 

Figure 1. Crowding distance computation.  
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there are K solutions in the archive, sorting the solutions in the 
archive has O(M K log K) computational complexity. If the 
population and the archive have the same number of solutions, say 
N, the computational complexity for the nondominated 
comparison is O(MN2). Thus, the overall complexity of MOPSO-
CD is O(MN2). 
 

3. EXPERIMENTS 
The performance of the proposed algorithm is compared to 
MOPSO using three test functions and two performance metrics. 
The computational time of the two algorithms is also evaluated. 

3.1 Test Functions 
The first test function proposed by Kita [8] is a multiobjective 
maximization function which has three constraints. This is the 
only constrained problem used in the experiments. 
Maximize )),(),,(( 21 yxfyxfF =  , where 

1
2
1),(,),( 2

2
1 ++=+−= yxyxfyxyxf  

subject to 

3050,
2

15
2
10,

2
13

6
10 −+≥−+≥−+≥ yxyxyx  

and x, y ≥ 0 with a range of 0 ≤ x, y ≤ 7.  
 
The second test function was introduced by Kursawe [11] which 
has three disconnected Pareto curves. Its solution mapping in the 
objective space is very convoluted. 

Minimize ∑ −
= ++−−= 1

1
2

1
2

1 ))2.0exp(10()( n
i ii xxxf r  

Minimize ∑ = += n
i ii xxxf 1

38.0
2 ))sin(5|(|)(r  

where -5 ≤ x1, x2, x3 ≤ 5. 

 
The third test function used was proposed by Deb [3] has a 
bimodal function g(x2) which has local and global minimum 
values. 
Minimize 1211 ),( xxxf =  

Minimize 
1

2
212

)(
),(

x
xg

xxf =  




















 −
−−




















 −
−−=

2
2

2
2

2 04.0
6.0

exp8.0
004.0

2.0
exp0.2)(

xx
xg  

and 0.1 ≤ x1, x2 ≤ 1.0. 

3.2 Performance Metrics 
The two performance metrics used for the experiments are the two 
set coverage and spacing metric. The two set coverage metric (C) 
proposed by Zitzler et al. maps the ordered pair (A, B) to the 
interval [0,1] using the following equation: 

{ }
B

baAaBb
BAC

f:;
),(

∈∃∈
=  

The value C(A,B) =1 means that all solutions in B are weakly 
dominated by A while C(A,B) = 0 represents the situation when 
none of the solutions in B are weakly dominated by A. Note that 
always both directions have to be considered, since C(A,B) is not 
necessarily equal to 1 – C(B,A). In the case that 0 < C(A,B) < 1 
and 0 < C(A,B) < 1, then we say that neither A weakly dominates 
B nor B weakly dominates A. We can say that sets A and B are 
incomparable or that A is not worse than B. 
The spacing metric [14] aims at assessing the spread (distribution) 
of vectors throughout the set of nondominated solutions. This 
metric is defined as 

2
1 )(

1
1

i
n
i dd

n
S −

−
= ∑ =

 

where |))()(||)()(min(| 1111 xfxfxfxfd jiji
i

rrrr −+−= , i ,j = 1, 

…, n, d  is the mean of all di , and n is the number of 
nondominated vectors found. The desired value for this metric is 
zero which means that the elements of the set of nondominated 
solutions are equidistantly spaced.  
The proposed algorithm was compared to MOPSO. In the 
experiments conducted, both MOPSO and MOPSO-CD used 100 
particles, a repository size of 100 particles and a mutation rate of 
0.5. MOPSO used 30 divisions for its adaptive grid while the 
proposed algorithm selects the global best from the top 10%1 
sorted repository and replaces one of the nondominated solutions 
in the bottom 10% of the repository.  To restrict the influence of 
random effects, the experiments were repeated thirty times for 
each test function. Each experiment uses a different randomly 
generated initial population. 

3.3 Results and Discussion 
The following are the results of the 30 independent runs of both 
algorithms. In Figures 2 to 7, the graphical results show the 
median result with respect to the coverage metric value produced 
by each algorithm. It can be seen that both MOPSO-CD and 
MOPSO were able to converge to the true Pareto front and were 
able to cover the entire Pareto fronts of the three test functions.  
Tables I to III show the numerical results produced by both 
algorithms in terms of the two performance metrics considered 
and their computational time.   
The results for the coverage metric show that C(MOPSO-
CD,MOPSO) < 1 and C(MOPSO,MOPSO-CD) < 1 which mean 
that the average performance of the two algorithms are 
incomparable. 
In terms of solution diversity, MOPSO-CD has a better 
distribution of the generated nondominated solutions than 
MOPSO in all three test functions. The performance of the 
proposed algorithm is almost twice better than that of MOPSO. 

                                                                 
1 This percentage value was determined after performing 

experiments on the proposed algorithm. 
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This shows that using crowding distance not only provides a well-
distributed set of nondominated solutions, it also helps in the 
convergence of the algorithm to the true Pareto front. 
As expected, MOPSO is significantly faster computational time 
than MOPSO-CD. In the first and second test functions, MOPSO 
is almost twice faster than MOPSO-CD while MOPSO is seven 
times faster than MOPSO-CD in the third test function. This is 
attributed to the adaptive grid used by MOPSO which can be 
computed faster than crowding distance where the relative 
distances of each solution in the archive is computed whenever 
the global best solution is selected and when selecting a solution 
to be replaced by new solutions. Despite this, the proposed 
algorithm is still competitive because aside from being able to 
converge to the Pareto front, it also produced a well distributed set 
of the nondominated solutions. 
 

Figure 2.  Pareto front produced by MOPSO-CD for the first 
test function. 

 
 

Figure 3. Pareto front produced by MOPSO for the first test 
function. 

 
 
 
 

Figure 4. Pareto front produced by MOPSO-CD for the 
second test function. 

Figure 5. Pareto front produced by MOPSO for the second 
test function. 

 
 

Figure 6. Pareto front produced by MOPSO-CD for the third 
test function. 
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Figure 7. Pareto front produced by MOPSO for the third test 
function. 

 
Table I. Results of the coverage (C) metric for the three test 
functions where A is the result of MOPSO-CD and B is the 

result of MOPSO.  
Test 

Function C C(A,B) C(B,A) 

Average 0.114333333 0.191 
Median 0.105 0.19 1 

Std. Dev. 0.040486978 0.043735096 
 

Average 0.195333333 0.179333333 
Median 0.2 0.18 2 

Std. Dev. 0.043607444 0.045480828 
 

Average 0.036 0.033333333 
Median 0.04 0.03 3 

Std. Dev. 0.012484473 0.010933445 
 
 
 

Table II.  Results of the spacing (SP) metric for the three test 
functions.  

Test 
Function SP MOPSO-CD MOPSO 

Average 0.060737708 0.117535722 
Median 0.038596099 0.064703038 1 

Std. Dev. 0.070809635 0.170367787 
 

Average 0.090331351 0.0917268 
Median 0.094115425 0.099084673 2 

Std. Dev. 0.013925502 0.021873167 
 

Average 0.025085152 0.049055135 
Median 0.025050008 0.048681657 3 

Std. Dev. 0.001324037 0.007868645 
 

Table III. Results of the computational time (in seconds) for 
the three test functions. 

Test 
Function Time MOPSO-CD MOPSO 

Average 0.5481 0.3099 
Median 0.5545 0.312 1 

Std. Dev. 0.030488381 0.0202184 
 

Average 0.7787 0.4776 
Median 0.7735 0.469 2 

Std. Dev. 0.045782959 0.0243998 
 

Average 8.331733333 1.1239 
Median 8.3595 1.125 3 

Std. Dev. 0.165887983 0.0204034 

 
4. ALGORITHM PARAMETERS 
Experiments were performed to analyze the effect of mutation in 
the algorithm as well as the effect or replacing nondominated 
solutions whenever the archive is full. 

4.1 Impact of the Mutation Operator 
The impact of using the mutation operator on the proposed 
algorithm is analyzed by comparing the result of the running 
MOPSO-CD with and without the mutation operator using the 
same set of parameters used in Section 3. The results are shown in 
Tables IV and V. The result show that running MOPSO-CD with 
and without mutation are incomparable. In terms of diversity, 
there is a significant improvement in the first test function, a 
constrained optimization problem, with MOPSO-CD with 
mutation. The rest have only marginal differences in their 
performance. This is also true with regard to the computational 
time. The use of mutation operator is recommended. 
 
Table IV. Results of the coverage (C) metric for the three test 
functions in determining the impact of the mutation operator 

on the proposed algorithm where A is MOPSO-CD with 
mutation and B is MOPSO-CD without mutation. 

Test 
Function C C(A,B) C(B,A) 

Average 0.186333333 0.175333333 
Median 0.19 0.17 1 

Std. Dev. 0.04429395 0.043844029 
 

Average 0.178333333 0.190666667 
Median 0.17 0.19 2 

Std. Dev. 0.042024897 0.041848111 
 

Average 0.452666667 0.054 
Median 0.05 0.03 3 

Std. Dev. 0.486896812 0.179954017 
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Table V.  Results of the spacing (SP) metric for the three test 
functions in determining the impact of the mutation operator 

on the proposed algorithm. 
Test 

Function SP 
MOPSO-CD 

With Mutation 
MOPSO-CD 
No Mutation 

Average 0.060737708 0.126501245 
Median 0.038596099 0.046363484 1 

Std. Dev. 0.070809635 0.221058691 
 

Average 0.090331351 0.09098054 
Median 0.094115425 0.094548829 2 

Std. Dev. 0.013925502 0.01348027 
 

Average 0.025085152 0.032361478 
Median 0.025050008 0.027762782 3 

Std. Dev. 0.001324037 0.008215267 

 
 

Table VI. Results of the computational time (in seconds) for 
the three test functions in running MOPSO-CD with and 

without mutation. 

Test 
Function Time 

MOPSO-CD 
With Mutation 

MOPSO-CD 
No Mutation 

Average 0.5481 0.6172333 
Median 0.5545 0.625 1 

Std. Dev. 0.030488381 0.082852 
 

Average 0.7787 0.9389667 
Median 0.7735 0.9375 2 

Std. Dev. 0.045782959 0.055951 
 

Average 8.331733333 12.5938 
Median 8.3595 12.516 3 

Std. Dev. 0.165887983 1.1052102 
 
 

4.2 Impact of Replacement of Nondominated 
Solutions in the Archive 
Tables VII to IX show the results of the 30 independent runs of 
MOPSO-CD with and without replacing a nondominated solution 
with a new nondominated solution whenever the archive is full. 
With regard to the coverage metric, the results show that both 
MOPSO-CD with and without replacement are incomparable. 
There is a significant improvement in the diversity of the first test 
function while second and third test function have only marginal 
improvement when running MOPSO-CD with replacement. There 
is a significant decrease in computational time when running 
MOPSO-CD without replacement. This is attributed to the 
crowding distance computation of the algorithm when replacing 
nondominated solutions in the archive. 

Table VII. Results of the generational distance (GD) metric 
for the three test functions in determining the impact of the 

replacement of nondminated solutions in the archive where A 
is the MOPSO-CD with replacement on and B is MOPSO-CD 

without replacement. 
Test 

Function C C(A,B) C(B,A) 

Average 0.076 0.226666667 
Median 0.08 0.225 1 

Std. Dev. 0.029077779 0.044515269 
 

Average 0.093666667 0.238333333 
Median 0.09 0.245 2 

Std. Dev. 0.040299169 0.054461839 
 

Average 0.029333333 0.033666667 
Median 0.03 0.03 3 

Std. Dev. 0.014125871 0.015196037 
 
 
 
 
 
 

Table VIII.  Results of the spacing (SP) metric for the three 
test functions in determining the impact of the of the 

replacement of nondominated solutions in the archive. 
Test 

Function SP 
MOPSO-CD 

With 
replacement 

MOPSO-CD 
Without  

Replacement 
Average 0.060737708 0.100363804 
Median 0.038596099 0.051070457 1 

Std. Dev. 0.070809635 0.09468505 
 

Average 0.090331351 0.10886873 
Median 0.094115425 0.108453288 2 

Std. Dev. 0.013925502 0.007306683 
 

Average 0.025085152 0.035545694 
Median 0.025050008 0.034899382 3 

Std. Dev. 0.001324037 0.005956281 
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Table IX. Results of the computational time (in seconds) for 
the three test functions in running MOPSO-CD with and 

without replacement of nondominated solutions. 

Test 
Function Time 

MOPSO-CD 
With 

replacement 

MOPSO-CD 
Without  

Replacement 
Average 0.5481 0.6172333 
Median 0.5545 0.625 1 

Std. Dev. 0.030488381 0.082852 
 

Average 0.7787 0.9389667 
Median 0.7735 0.9375 2 

Std. Dev. 0.045782959 0.055951 
 

Average 8.331733333 12.5938 
Median 8.3595 12.516 3 

Std. Dev. 0.165887983 1.1052102 
 
 

5. SUMMARY AND CONCLUSION 
This paper has presented an approach called MOPSO-CD that 
extends the Particle Swarm Optimization (PSO) algorithm to 
handle multiobjective optimization problems. The mechanism of 
crowding distance is incorporated into the algorithm of PSO 
specifically on global best selection and in the deletion method of 
an external archive of nondominated solutions. The diversity of 
nondominated solutions in the external archive is maintained by 
using the mechanism of crowding distance together with a 
mutation operator. The performance of this approach is evaluated 
on test functions and metrics from literature. The results show that 
MOPSO-CD is highly competitive in converging towards the 
Pareto front and has generated a well-distributed set of 
nondominated solutions.  
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