
An Effective Use of Crowding Distance in Multiobjective
Particle Swarm Optimization

Carlo R. Raquel

Dept. of Mathematics and Computer Science
University of the Philippines-Baguio

Gov. Pack Road, Baguio City, Philippines
+(63-74) 442-7231

crraquel@up.edu.ph

Prospero C. Naval, Jr.
Dept. of Computer Science

University of the Philippines-Dilliman
Diliman, Quezon City, Philippines

+(63-2) 981-85-00 ext 3030

pcnaval@up.edu.ph

ABSTRACT
In this paper, we present an approach that extends the Particle
Swarm Optimization (PSO) algorithm to handle multiobjective
optimization problems by incorporating the mechanism of
crowding distance computation into the algorithm of PSO,
specifically on global best selection and in the deletion method of
an external archive of nondominated solutions. The crowding
distance mechanism together with a mutation operator maintains
the diversity of nondominated solutions in the external archive.
The performance of this approach is evaluated on test functions
and metrics from literature. The results show that the proposed
approach is highly competitive in converging towards the Pareto
front and generates a well distributed set of nondominated
solutions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search – Heuristic Methods

General Terms: Algorithms
Keywords
Multiobjective Optimization, Particle Swarm Optimization,
Crowding Distance

1. INTRODUCTION
Many real-world optimization problems have multiple objectives
which are not only interacting but even possibly conflicting. In
general, a multiobjective minimization problem with m decision
variables (parameters) and n objectives can be stated as:

minimize))(),...,(()(1 xfxfxfy n==

where Xxxx m ∈=),...,(1

 Yyyy n ∈=),...,(1

where x is called decision vector, X the parameter space, y the
objective vector and Y the objective space. The desired solution is
in the form of “trade-off” or compromise among the parameters
that would optimize the given objectives. The optimal trade-off
solutions among objectives constitute the Pareto front.
Multiobjective optimization deals with generating the Pareto front
which is the set of non-dominated solutions for problems having
more than one objective. A solution is said to be non-dominated if
it is impossible to improve one component of the solution without
worsening the value of at least one other component of the
solution. The goals of multiobjective optimization are: (1) to
guide the search toward the true Pareto front (non-dominated
solutions) or approximate the Pareto optimal set, and (2) to
generate a well-distributed Pareto front.
Many evolutionary algorithms (EAs) have been developed in
solving multiobjective optimization problems such as Micro-GA
[2], NSGA-II [4], PAES [9] and SPEA2 [16]. These EAs are
population-based algorithms which allow them to explore the
different parts of the Pareto front simultaneously.
Several multiobjective optimization algorithms are based on
Particle Swarm optimization (PSO) [7] which was originally
designed for solving single objective optimization problems. PSO
is an algorithm inspired by the social behavior of bird flocking.
The initial population of particles is initialized with random
solutions. For every generation, each solution moves toward the
global Pareto front by updating its velocity, the best solution a
particle has achieved so far and follows the best solution achieved
among the population of solutions.
Among those algorithms that extend PSO to solve multiobjective
optimization problems are Multiobjective Particle Swarm
Optimization (MOPSO) [1], Nondominated Sorting Particle
Swarm Optimization (NSPSO) [11], the aggregating function for
PSO [12], the algorithm of Fieldsend and Singh [5] that uses an
unconstrained archive and a data structure called a “dominated
tree” and the use of multilevel sieve for constraint handling [13].
Several techniques have been incorporated into multiobjective
optimization algorithms especially to PSO-based algorithms in
order to improve convergence to the true Pareto front as well as
produce a well-distributed Pareto front. These techniques are
elitism, diversity operators, mutation operators, and constraint
handling.
The performance of different multiobjective algorithms that
incorporate such optimization techniques was compared in [1]
using five test functions. These algorithms are NSGA-II, PAES,
Micro-GA and MOPSO. The results show that MOPSO was able

redistribute to lists, requires Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on
servers or to prior specific permission and/or a fee.
GECCO ’05, June 25-29, 2005, Washington DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 …$5.00.

257

to generate the best set of nondominated solutions close to the true
Pareto front in all test functions except in one function where
NSGA-II is superior. In terms of diversity of the nondominated
solutions, NSGA-II produced the best results in all test functions
but was not able to cover the entire Pareto front in all test
functions. MOPSO was the only algorithm which was able to
cover the entire Pareto front.
This remarkable performance of MOPSO can be attributed to its
use of an external repository or archive of nondominated solutions
found in previous iterations and to its novel mutation operator that
initially covers the entire population (including the range of each
design variables) which it then gradually decreases during
subsequent iterations. The mutation operator improves the
exploratory capabilities of the algorithm and prevents premature
convergence. This proves that PSO is a powerful optimization
algorithm when extended to handle multiobjective optimization
problems by using such techniques.
However, it should be noted that the use of the crowded
comparison operator, which basically is a computation of the
crowding distance of each solution, as a diversity operator by
NSGA-II was able to produce a better distribution of the
generated nondominated solutions compared to the results
generated by MOPSO that uses an adaptive grid in maintaining
diversity of the generated solutions. This shows that while
MOPSO is superior in converging to the true Pareto front, its
diversity mechanism falls behind that of NSGA-II.
The computation time of the algorithms was also observed and
MOPSO has been found to have a vastly superior execution time
compared to the other algorithms. This is attributed to the
adaptive grid used by MOPSO which has lower computational
cost [9] than the crowding distance used by NSGA-II combined
with the nondominated sorting as suggested by Goldberg [6].
The proposed algorithm extends PSO in solving multiobjective
optimization problems by incorporating the mechanism of
crowding distance computation in the global best selection and the
deletion method of the external archive of nondominated solutions
whenever the archive is full. The crowding distance mechanism
together with a mutation operator maintains the diversity of
nondominated solutions in the external archive.
The remainder of the paper is organized as follows. In Section 2,
the proposed algorithm is discussed followed by a discussion of
the implementation, experiments done on the algorithm and their
results in Section 3. The impact of the mutation operator and
replacement of nondominated solutions in the archive on the
performance of the proposed algorithm is analyzed in Section 4.
The paper closes with the Summary and Conclusion in Section 5.

2. PROPOSED APPROACH
The proposed algorithm which we shall call MOPSO-CD extends
the algorithm of the single-objective PSO to handle multiobjective
optimization problems. It incorporates the mechanism of
crowding distance computation into the algorithm of PSO
specifically on global best selection and in the deletion method of
an external archive of nondominated solutions. The crowding
distance mechanism together with a mutation operator maintains
the diversity of nondominated solutions in the external archive.
MOPSO-CD also has a constraint handling mechanism for solving
constrained optimization problems.

2.1 MOPSO-CD Algorithm

1. For i = 1 to M (M is the population size)
a. Initialize P[i] randomly

(P is the population of particles)
b. Initialize V[i] = 0 (V is the speed of each particle)
c. Evaluate P[i]
d. Initialize the personal best of each particle

PBESTS[i] = P[i]
e. GBEST = Best particle found in P[i]

2. End For
3. Initialize the iteration counter t = 0
4. Store the nondominated vectors found in P into A

(A is the external archive that stores nondominated
solutions found in P)

5. Repeat
a. Compute the crowding distance values of each

nondominated solution in the archive A
b. Sort the nondominated solutions in A in descending

crowding distance values
c. For i = 1 to M

i. Randomly select the global best guide for P[i]
from a specified top portion (e.g. top 10%) of
the sorted archive A and store its position to
GBEST.

ii. Compute the new velocity:
 V[i] = W x V[i] + R1 x (PBESTS[i] – P[i]) +

R2 x (A[GBEST] – P[i])
 (W is the inertia weight equal to 0.4)
 (R1 and R2 are random numbers in the range

[0..1])
 (PBESTS[i] is the best position that the

particle i have reached)
 (A[GBEST] is the global best guide for each

nondominated solution)
iii. Calculate the new position of P[i]:

 P[i] = P[i] + V[i]
iv. If P[i] goes beyond the boundaries, then it is

reintegrated by having the decision variable
take the value of its corresponding lower or
upper boundary and its velocity is multiplied
by -1 so that it searches in the opposite
direction.

v. If (t < (MAXT * PMUT),
 then perform mutation on P[i].
 (MAXT is the maximum number of iterations)
 (PMUT is the probability of mutation)

vi. Evaluate P[i]
d. End For
e. Insert all new nondominated solution in P into A if

they are not dominated by any of the stored
solutions. All dominated solutions in the archive by
the new solution are removed from the archive. If
the archive is full, the solution to be replaced is
determined by the following steps:
i. Compute the crowding distance values of each

nondominated solution in the archive A
ii. Sort the nondominated solutions in A in

descending crowding distance values
iii. Randomly select a particle from a specified

bottom portion (e.g. lower 10%) which

258

comprise the most crowded particles in the
archive then replace it with the new solution

f. Update the personal best solution of each particle
in P. If the current PBESTS dominates the position
in memory, the particles position is updated using
PBESTS[i] = P[i]

g. Increment iteration counter t
6. Until maximum number of iterations is reached

2.2 Crowding Distance Computation
The crowding distance value of a solution provides an estimate of
the density of solutions surrounding that solution [4]. Figure 1
shows the calculation of the crowding distance of point i which is
an estimate of the size of the largest cuboid enclosing i without
including any other point.

Crowding distance is calculated by first sorting the set of solutions
in ascending objective function values. The crowding distance
value of a particular solution is the average distance of its two
neighboring solutions. The boundary solutions which have the
lowest and highest objective function values are given an infinite
crowding distance values so that they are always selected. This
process is done for each objective function. The final crowding
distance value of a solution is computed by adding the entire
individual crowding distance values in each objective function.
The pseudocode of crowding distance computation is shown
below.

1. Get the number of nondominated solutions in the
external repository

a. n = | S |
2. Initialize distance

a. FOR i=0 TO MAX
b. S[i].distance = 0

3. Compute the crowding distance of each solution
a. For each objective m
b. Sort using each objective value

S = sort(S, m)
c. For i=1 to (n-1)
d. S[i].distance = S[i].distance + (S[i+1].m –

S[i-1].m)
e. Set the maximum distance to the boundary

points so that they are always selected
S[0].distance = S[n].distance = maximum
distance

2.3 Global Best Selection
The selection of the global best guide of the particle swarm is a
crucial step in a multiobjective-PSO algorithm. It affects both the
convergence capability of the algorithm as well as maintaining a
good spread of nondominated solutions. In MOPSO-CD, a
bounded external archive stores nondominated solutions found in
previous iteration. We note that any of the nondominated
solutions in the archive can be used as the global best guide of the
particles in the swarm. But we want to ensure that the particles in
the population move towards the sparse regions of the search
space.
In MOPSO-CD, the global best guide of the particles is selected
from among those nondominated solutions with the highest
crowding distance values. Selecting different guides for each
particle in a specified top part of the sorted repository based on a
decreasing crowding distance allows the particles in the primary
population to move towards those nondominated solutions in the
external repository which are in the least crowded area in the
objective space.
Also, whenever the archive is full, crowding distance is again
used in selecting which solution to replace in the archive. This
promotes diversity among the stored solutions in the archive since
those solutions which are in the most crowded areas are most
likely to be replaced by a new solution.

2.4 Mutation
The mutation operator of MOPSO was adapted because of the
exploratory capability it could give to the algorithm by initially
performing mutation on the entire population then rapidly
decreasing its coverage over time [1]. This is helpful in terms of
preventing premature convergence due to existing local Pareto
fronts in some optimization problems.

2.5 Constraint Handling
In order to handle constrained optimization problem, MOPSO-CD
adapted the constraint handling mechanism used by NSGA-II due
to its simplicity in using feasibility and nondominance of
solutions when comparing solutions. A solution i is said to
constrained-dominate a solution j if any of the following
conditions is true:

1. Solution i is feasible and solution j is not.
2. Both solutions i and j are infeasible, but solution i has a

smaller overall constraint violation.
3. Both solutions i and j are feasible and solution i

dominates solutions j.
When comparing two feasible particles, the particle which
dominates the other particle is considered a better solution. On the
other hand, if both particles are infeasible, the particle with a
lesser number of constraint violations is a better solution.

2.6 The Time Complexity of MOPSO-CD
The computational complexity of the algorithm is dominated by
the objective function computation, crowding distance
computation and the nondominated comparison of the particles in
the population and in the archive. If there are M objective
functions and N number of solutions (particles) in the population,
then the objective function computation has O(MN)
computational complexity. The costly part of crowding distance
computation is sorting the solutions in each objective function. If

F2

Cuboid

i+1

i
i-1

F1

Figure 1. Crowding distance computation.

259

there are K solutions in the archive, sorting the solutions in the
archive has O(M K log K) computational complexity. If the
population and the archive have the same number of solutions, say
N, the computational complexity for the nondominated
comparison is O(MN2). Thus, the overall complexity of MOPSO-
CD is O(MN2).

3. EXPERIMENTS
The performance of the proposed algorithm is compared to
MOPSO using three test functions and two performance metrics.
The computational time of the two algorithms is also evaluated.

3.1 Test Functions
The first test function proposed by Kita [8] is a multiobjective
maximization function which has three constraints. This is the
only constrained problem used in the experiments.
Maximize)),(),,((21 yxfyxfF = , where

1
2
1),(,),(2

2
1 ++=+−= yxyxfyxyxf

subject to

3050,
2

15
2
10,

2
13

6
10 −+≥−+≥−+≥ yxyxyx

and x, y ≥ 0 with a range of 0 ≤ x, y ≤ 7.

The second test function was introduced by Kursawe [11] which
has three disconnected Pareto curves. Its solution mapping in the
objective space is very convoluted.

Minimize ∑ −
= ++−−= 1

1
2

1
2

1))2.0exp(10()(n
i ii xxxf r

Minimize ∑ = += n
i ii xxxf 1

38.0
2))sin(5|(|)(r

where -5 ≤ x1, x2, x3 ≤ 5.

The third test function used was proposed by Deb [3] has a
bimodal function g(x2) which has local and global minimum
values.
Minimize 1211),(xxxf =

Minimize
1

2
212

)(
),(

x
xg

xxf =




















 −
−−




















 −
−−=

2
2

2
2

2 04.0
6.0

exp8.0
004.0

2.0
exp0.2)(

xx
xg

and 0.1 ≤ x1, x2 ≤ 1.0.

3.2 Performance Metrics
The two performance metrics used for the experiments are the two
set coverage and spacing metric. The two set coverage metric (C)
proposed by Zitzler et al. maps the ordered pair (A, B) to the
interval [0,1] using the following equation:

{ }
B

baAaBb
BAC

f:;
),(

∈∃∈
=

The value C(A,B) =1 means that all solutions in B are weakly
dominated by A while C(A,B) = 0 represents the situation when
none of the solutions in B are weakly dominated by A. Note that
always both directions have to be considered, since C(A,B) is not
necessarily equal to 1 – C(B,A). In the case that 0 < C(A,B) < 1
and 0 < C(A,B) < 1, then we say that neither A weakly dominates
B nor B weakly dominates A. We can say that sets A and B are
incomparable or that A is not worse than B.
The spacing metric [14] aims at assessing the spread (distribution)
of vectors throughout the set of nondominated solutions. This
metric is defined as

2
1)(

1
1

i
n
i dd

n
S −

−
= ∑ =

where |))()(||)()(min(| 1111 xfxfxfxfd jiji
i

rrrr −+−= , i ,j = 1,

…, n, d is the mean of all di , and n is the number of
nondominated vectors found. The desired value for this metric is
zero which means that the elements of the set of nondominated
solutions are equidistantly spaced.
The proposed algorithm was compared to MOPSO. In the
experiments conducted, both MOPSO and MOPSO-CD used 100
particles, a repository size of 100 particles and a mutation rate of
0.5. MOPSO used 30 divisions for its adaptive grid while the
proposed algorithm selects the global best from the top 10%1
sorted repository and replaces one of the nondominated solutions
in the bottom 10% of the repository. To restrict the influence of
random effects, the experiments were repeated thirty times for
each test function. Each experiment uses a different randomly
generated initial population.

3.3 Results and Discussion
The following are the results of the 30 independent runs of both
algorithms. In Figures 2 to 7, the graphical results show the
median result with respect to the coverage metric value produced
by each algorithm. It can be seen that both MOPSO-CD and
MOPSO were able to converge to the true Pareto front and were
able to cover the entire Pareto fronts of the three test functions.
Tables I to III show the numerical results produced by both
algorithms in terms of the two performance metrics considered
and their computational time.
The results for the coverage metric show that C(MOPSO-
CD,MOPSO) < 1 and C(MOPSO,MOPSO-CD) < 1 which mean
that the average performance of the two algorithms are
incomparable.
In terms of solution diversity, MOPSO-CD has a better
distribution of the generated nondominated solutions than
MOPSO in all three test functions. The performance of the
proposed algorithm is almost twice better than that of MOPSO.

1 This percentage value was determined after performing

experiments on the proposed algorithm.

260

This shows that using crowding distance not only provides a well-
distributed set of nondominated solutions, it also helps in the
convergence of the algorithm to the true Pareto front.
As expected, MOPSO is significantly faster computational time
than MOPSO-CD. In the first and second test functions, MOPSO
is almost twice faster than MOPSO-CD while MOPSO is seven
times faster than MOPSO-CD in the third test function. This is
attributed to the adaptive grid used by MOPSO which can be
computed faster than crowding distance where the relative
distances of each solution in the archive is computed whenever
the global best solution is selected and when selecting a solution
to be replaced by new solutions. Despite this, the proposed
algorithm is still competitive because aside from being able to
converge to the Pareto front, it also produced a well distributed set
of the nondominated solutions.

Figure 2. Pareto front produced by MOPSO-CD for the first
test function.

Figure 3. Pareto front produced by MOPSO for the first test
function.

Figure 4. Pareto front produced by MOPSO-CD for the
second test function.

Figure 5. Pareto front produced by MOPSO for the second
test function.

Figure 6. Pareto front produced by MOPSO-CD for the third
test function.

7.4

7.6

7.8

8

8.2

8.4

8.6

-5 0 5 10
F1

F2

Pareto Front MOPSO-CD

7.4

7.6

7.8

8

8.2

8.4

8.6

-5 0 5 10
F1

F2

Pareto Front MOPSO

-14
-12
-10

-8
-6
-4
-2
0
2

-25 -20 -15 -10 -5 0

F1

F2

Pareto Front MOPSO-CD

-14
-12
-10

-8
-6
-4
-2
0
2

-25 -20 -15 -10 -5 0

F1

F2

Pareto Front MOPSO

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5
F1

F2

Pareto Front MOPSO-CD

261

Figure 7. Pareto front produced by MOPSO for the third test
function.

Table I. Results of the coverage (C) metric for the three test
functions where A is the result of MOPSO-CD and B is the

result of MOPSO.
Test

Function C C(A,B) C(B,A)

Average 0.114333333 0.191
Median 0.105 0.19 1

Std. Dev. 0.040486978 0.043735096

Average 0.195333333 0.179333333
Median 0.2 0.18 2

Std. Dev. 0.043607444 0.045480828

Average 0.036 0.033333333
Median 0.04 0.03 3

Std. Dev. 0.012484473 0.010933445

Table II. Results of the spacing (SP) metric for the three test
functions.

Test
Function SP MOPSO-CD MOPSO

Average 0.060737708 0.117535722
Median 0.038596099 0.064703038 1

Std. Dev. 0.070809635 0.170367787

Average 0.090331351 0.0917268
Median 0.094115425 0.099084673 2

Std. Dev. 0.013925502 0.021873167

Average 0.025085152 0.049055135
Median 0.025050008 0.048681657 3

Std. Dev. 0.001324037 0.007868645

Table III. Results of the computational time (in seconds) for
the three test functions.

Test
Function Time MOPSO-CD MOPSO

Average 0.5481 0.3099
Median 0.5545 0.312 1

Std. Dev. 0.030488381 0.0202184

Average 0.7787 0.4776
Median 0.7735 0.469 2

Std. Dev. 0.045782959 0.0243998

Average 8.331733333 1.1239
Median 8.3595 1.125 3

Std. Dev. 0.165887983 0.0204034

4. ALGORITHM PARAMETERS
Experiments were performed to analyze the effect of mutation in
the algorithm as well as the effect or replacing nondominated
solutions whenever the archive is full.

4.1 Impact of the Mutation Operator
The impact of using the mutation operator on the proposed
algorithm is analyzed by comparing the result of the running
MOPSO-CD with and without the mutation operator using the
same set of parameters used in Section 3. The results are shown in
Tables IV and V. The result show that running MOPSO-CD with
and without mutation are incomparable. In terms of diversity,
there is a significant improvement in the first test function, a
constrained optimization problem, with MOPSO-CD with
mutation. The rest have only marginal differences in their
performance. This is also true with regard to the computational
time. The use of mutation operator is recommended.

Table IV. Results of the coverage (C) metric for the three test
functions in determining the impact of the mutation operator

on the proposed algorithm where A is MOPSO-CD with
mutation and B is MOPSO-CD without mutation.

Test
Function C C(A,B) C(B,A)

Average 0.186333333 0.175333333
Median 0.19 0.17 1

Std. Dev. 0.04429395 0.043844029

Average 0.178333333 0.190666667
Median 0.17 0.19 2

Std. Dev. 0.042024897 0.041848111

Average 0.452666667 0.054
Median 0.05 0.03 3

Std. Dev. 0.486896812 0.179954017

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5
F1

F2

Pareto Front MOPSO

262

Table V. Results of the spacing (SP) metric for the three test
functions in determining the impact of the mutation operator

on the proposed algorithm.
Test

Function SP
MOPSO-CD

With Mutation
MOPSO-CD
No Mutation

Average 0.060737708 0.126501245
Median 0.038596099 0.046363484 1

Std. Dev. 0.070809635 0.221058691

Average 0.090331351 0.09098054
Median 0.094115425 0.094548829 2

Std. Dev. 0.013925502 0.01348027

Average 0.025085152 0.032361478
Median 0.025050008 0.027762782 3

Std. Dev. 0.001324037 0.008215267

Table VI. Results of the computational time (in seconds) for
the three test functions in running MOPSO-CD with and

without mutation.

Test
Function Time

MOPSO-CD
With Mutation

MOPSO-CD
No Mutation

Average 0.5481 0.6172333
Median 0.5545 0.625 1

Std. Dev. 0.030488381 0.082852

Average 0.7787 0.9389667
Median 0.7735 0.9375 2

Std. Dev. 0.045782959 0.055951

Average 8.331733333 12.5938
Median 8.3595 12.516 3

Std. Dev. 0.165887983 1.1052102

4.2 Impact of Replacement of Nondominated
Solutions in the Archive
Tables VII to IX show the results of the 30 independent runs of
MOPSO-CD with and without replacing a nondominated solution
with a new nondominated solution whenever the archive is full.
With regard to the coverage metric, the results show that both
MOPSO-CD with and without replacement are incomparable.
There is a significant improvement in the diversity of the first test
function while second and third test function have only marginal
improvement when running MOPSO-CD with replacement. There
is a significant decrease in computational time when running
MOPSO-CD without replacement. This is attributed to the
crowding distance computation of the algorithm when replacing
nondominated solutions in the archive.

Table VII. Results of the generational distance (GD) metric
for the three test functions in determining the impact of the

replacement of nondminated solutions in the archive where A
is the MOPSO-CD with replacement on and B is MOPSO-CD

without replacement.
Test

Function C C(A,B) C(B,A)

Average 0.076 0.226666667
Median 0.08 0.225 1

Std. Dev. 0.029077779 0.044515269

Average 0.093666667 0.238333333
Median 0.09 0.245 2

Std. Dev. 0.040299169 0.054461839

Average 0.029333333 0.033666667
Median 0.03 0.03 3

Std. Dev. 0.014125871 0.015196037

Table VIII. Results of the spacing (SP) metric for the three
test functions in determining the impact of the of the

replacement of nondominated solutions in the archive.
Test

Function SP
MOPSO-CD

With
replacement

MOPSO-CD
Without

Replacement
Average 0.060737708 0.100363804
Median 0.038596099 0.051070457 1

Std. Dev. 0.070809635 0.09468505

Average 0.090331351 0.10886873
Median 0.094115425 0.108453288 2

Std. Dev. 0.013925502 0.007306683

Average 0.025085152 0.035545694
Median 0.025050008 0.034899382 3

Std. Dev. 0.001324037 0.005956281

263

Table IX. Results of the computational time (in seconds) for
the three test functions in running MOPSO-CD with and

without replacement of nondominated solutions.

Test
Function Time

MOPSO-CD
With

replacement

MOPSO-CD
Without

Replacement
Average 0.5481 0.6172333
Median 0.5545 0.625 1

Std. Dev. 0.030488381 0.082852

Average 0.7787 0.9389667
Median 0.7735 0.9375 2

Std. Dev. 0.045782959 0.055951

Average 8.331733333 12.5938
Median 8.3595 12.516 3

Std. Dev. 0.165887983 1.1052102

5. SUMMARY AND CONCLUSION
This paper has presented an approach called MOPSO-CD that
extends the Particle Swarm Optimization (PSO) algorithm to
handle multiobjective optimization problems. The mechanism of
crowding distance is incorporated into the algorithm of PSO
specifically on global best selection and in the deletion method of
an external archive of nondominated solutions. The diversity of
nondominated solutions in the external archive is maintained by
using the mechanism of crowding distance together with a
mutation operator. The performance of this approach is evaluated
on test functions and metrics from literature. The results show that
MOPSO-CD is highly competitive in converging towards the
Pareto front and has generated a well-distributed set of
nondominated solutions.

6. REFERENCES
[1] Coello, C., Pulido, G., and Salazar, M. Handling

multiobjectives with particle swarm optimization. In IEEE
Transactions on Evolutionary Computation, vol. 8, pp. 256-
279, June 2004.

[2] Coello, C. and Pulido, G. Multiobjective optimization using a
micro-genetic algorithm. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO 2001), L.
Spector, E. D. Goodman, A.Wu,W. B. Langdon, H.-M.
Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H.
Garzon, and E. Burke, Eds., San Francisco, CA, pp. 274–
282, 2001.

[3] Deb, K. Multi-objective genetic algorithms: problem
difficulties and construction of test problems. Evolutionary
Computing, vol. 7, pp. 205–230, Fall 1999.

[4] Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T. A fast
elitist nondominated sorting genetic algorithm for multi-
objective optimization: NSGA-II. In Proc. Parallel Problem
Solving from Nature VI Conference, pp. 849–858, 2000.

[5] Fieldsend, J. and Singh, S. A multi-objective algorithm based
upon particle swarm optimization, an efficient data structure
and turbulence. In Proc. 2002 U.K. Workshop on
Computational Intelligence, Birmingham, U.K., pp. 37–44,
Sept. 2002.

[6] Goldberg, D., Genetic Algorithms in Search, Optimization
and Machine Learning. Reading, MA: Addison-Wesley,
1989.

[7] Kennedy, J. and Eberhart, R.. Particle Swarm Optimization.
In Proceedings of the Fourth IEEE International Conference
on Neural Networks, Perth, Australia, 1995.

[8] Kita, H., Yabumoto, Y., Mori, N., and Nishikawa, Y. Multi-
objective optimization by means of the thermodynamical
genetic algorithm. In Parallel Problem Solving From
Nature—PPSN IV, H.-M. Voigt,W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, Eds. Berlin, Germany: Springer-Verlag,
Lecture Notes in Computer Science, pp. 504–512, Sept.
1996.

[9] Knowles, J. and Corne, D. Approximating the nondominated
front using the Pareto archived evolution strategy. Evol.
Computing, vol. 8, pp. 149–172, 2000.

[10] Kursawe, F. A variant of evolution strategies for vector
optimization. In Lecture Notes in Computer Science, H. P.
Schwefel and R. Männer, Eds. Berlin, Germany: Springer-
Verlag, vol. 496, Proc. Parallel Problem Solving From
Nature, 1st Workshop, PPSN I, pp. 193–197, Oct 1991.

[11] Li, X. et al. A nondominated sorting particle swarm
optimizer for multiobjective optimization. In Lecture Notes
in Computer Science, vol. 2723, Proc. Genetic and
Evolutionary Computation, GECCO 2003, Part I, E. Cantú-
Paz et al., Eds. Berlin, Germany, pp. 37–48, July 2003.

[12] Parsopoulos, K. and Vrahatis, M. Particle swarm
optimization method in multiobjective problems. In Proc.
2002 ACM Symp. Applied Computing (SAC’2002), Madrid,
pages 603–607, Spain, 2002.

[13] Ray, T. and Liew, K. A swarm metaphor for multiobjective
design optimization. Engineering Opt., vol. 34, no. 2, pp.
141–153, March 2002.

[14] Schott, J. Fault Tolerant Design Using Single and
Multicriteria Genetic Algorithm Optimization. Master's
thesis, Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1995.

[15] Van Veldhuizen, D. and Lamont, G. Multiobjective
evolutionary algorithm research: A history and analysis.
Dept. Elec. Comput. Eng., Graduate School of Eng., Air
Force Inst. Technol., Wright-Patterson AFB, OH, Tech. Rep.
TR-98-03, 1998.

[16] Zitzler, E., Laumanns, M. and Thiele, L. SPEA2: Improving
the strength Pareto Evolutionary algorithm. In Proc.
EUROGEN 2001. Evolutionary Methods for Design,
Optimization and Control With Applications to Industrial
Problems,K. Giannakoglou, D. Tsahalis, J. Periaux, P.
Papailou, and T. Fogarty, Eds., Athens, Greece, Sept. 2000.

264

