
Dynamic-Probabilistic Particle Swarms
James Kennedy

US Bureau of Labor Statistics
Washington DC 20212

Kennedy_Jim@bls.gov

ABSTRACT
The particle swarm algorithm is usually a dynamic process, where
a point in the search space to be tested depends on the previous
point and the direction of movement. The process can be decom-
posed, and probability distributions around a center can be used
instead of the usual trajectory approach. A version that is both
dynamic and Gaussian looks very promising.

ACM Categories & Subject Descriptors
I.2.11 Distributed Artificial Intelligence
Multiagent systems

Keywords: Particle swarms

1. INTRODUCTION
 Since its introduction in 1995 (Kennedy and Eberhart,
1995; Eberhart and Kennedy, 1995), the particle swarm al-
gorithm has gone through many changes. Though early
results were surprisingly good, and though the method had
very few moving parts, it turned out to be quite difficult to
understand how it worked, in order to improve it. Over the
past decade, numerous modifications have been introduced,
several of which have turned out to cause genuine im-
provements in performance, and several of which have
helped to understand the dynamics of the swarm and how it
is able to solve problems.
The canonical particle swarm algorithm is given as:

For each population member i do
If eval(i) < pbesti then

For each dimension d do
pid=xid

End
pbesti=eval(i)

End
Identify best neighbor g
For each dimension d do

vid = khi× (vid +
rand×(phi/2)×(pid – xid) +
rand×(phi/2)×(pgd – xid))

xid=xid + vid
Next d

Next i

where khi is usually a constant 0.729, phi=4.1, and rand is a
uniform random number generator (Clerc and Kennedy,
2002; Kennedy and Eberhart, 2001).
 In the original versions, as well as in the current canoni-
cal version, there are three sources of bias toward improve-
ment. First, a particle is influenced by the best positions
itself and its neighbors have attained thus far. Second, in
standard versions the best-performing neighbor, or even the
best-performing particle in the entire population, is chosen
to be a source of influence on the particle. Finally, in most
standard versions the individual particle’s own previous best
is used as a source of “influence,” that is, the particle is at-
tracted to the point of its own previous success.
 The success of Mendes’ (e.g., Mendes, Kennedy, and
Neves, 2004; Kennedy and Mendes, 2002) fully-informed
particle swarm (FIPS) suggests that the second source of
bias toward improvement may be spurious. In FIPS, all of a
particle’s neighbors’ previous best positions are used, aver-
aged with random weighting, rather than only the best
neighbor. Thus it turns out not to be necessary to identify
and choose the best one. Further, in FIPS the individual’s
previous best is not a factor in adjusting its own trajectory.
FIPS is a demonstrably powerful algorithm which, when
implemented with an appropriate neighborhood topology,
outperforms the canonical particle swarm on test problems.
 FIPS modifies the canonical algorithm by changing the
velocity formula somewhat:

vid = khi× (vid +

sum (rand×phi×(pkd – xid)/K)

where the k subscript identifies the particle’s neighbors and
K is how many of them there are.

1.1 Dynamic trajectories
 The particle swarm is considered to model a general
theoretical perspective of socially situated minds (Smith and
Semin, 2004), that is, the human cognitive system as a par-
ticipant in a rich, dynamic social system where knowledge
and learning are collaborative dynamical processes. Simul-
taneously, the particle swarm has gained attention as a
method for engineering and applied mathematics, for its
ability to solve very difficult problems.
 The view of the particle as moving continuously through
space has never fit perfectly well with the psychological
model. Some theorists have suggested that thought can be
conceptualized in terms of trajectories through a cognitive

This paper is authored by an employee(s) of the United States
Government and is in the public domain.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

201

space, but there is little in the way of empirical evidence to
support the idea. True, an individual’s beliefs and attitudes,
etc. – their cognitive elements (Festinger, 1957) – are auto-
correlated from one moment in time to the next, with simi-
larity higher for proximal points in time than distal ones, but
it is difficult to argue that a change in mental state beginning
at point A and proceeding to E traverses all the points in
between. Partly this reflects difficulty in the assignment of
mental states to points on multidimensional continua, but
partly it reflects a real quality of minds, that they do in fact
sometimes make discontinuous changes, leaping from one
region of the cognitive space to another.
 The trajectory aspect of the particle swarm formulas
came from their origin in experiments with Reynolds’
(1987) boids and Heppner’s (Heppner and Grenander, 1990)
bird-flocking simulations, computer programs that repre-
sented the trajectories of birds on a computer screen. These
early models provided sudden and important insights into
the behaviors of flocking, schooling, and herding animals,
and provided momentum to the new field of complex adap-
tive systems that hoped to answer theoretical questions with
computer programs.
 But birds fly in three-dimensional space, and the kinds
of mathematical problems typically solved by the particle
swarm were unlimited in dimension. From the psychologi-
cal model, we would say that the problem space was the
space of mental elements, where collision of individuals was
agreement and not something painful to be avoided. Thus
the kinds of collision-avoiding algorithms needed to keep
birds afeather were not necessarily appropriate. And as
cognitive elements seem to be innumerable, dimension can
be high.

1.2 Probabilistic Search
 Analysis of particle behavior with fixed “previous best”
points found that the particle oscillated around a point that
was the mean of the two bests, with a standard deviation that
was proportional to, in fact about equal to, the distance be-
tween them. Kennedy (2003) demonstrated that a Gaussian
random number generator could be substituted for the veloc-
ity formula with good results. That early version eliminated
the dynamical trajectory that had seemed definitive of the
algorithm.
 But performance in the Gaussian version was not as
good as the canonical algorithm. The next paper in the se-
ries of investigations found that the canonical particle
swarm search trajectory contained bursts of outliers, that is,
series of iterations with extreme values (Kennedy, 2004).
Artificially adding such bursts improved the performance to
a point comparable – almost – with the canonical algorithm.
 Thus it appeared possible that a random number genera-
tor could be substituted for the velocity formula without
losing the essential quality of the particle swarm algorithm.
That essence was found in the collaborative sharing of suc-
cesses among population members, with an individual’s
search influenced by its neighbors.

1.3 Dynamic-Probabilistic Search: Trimmed
Uniform Probabilities
 The question is how the particle chooses the next point
in the search space to sample. While the points chosen are
distributed symmetrically around the mean of the previous
bests, the position at time t is dependent on the particle’s
position at t-1. This is what is meant by the term dynamic in
this discussion: the particle’s movement over time is defined
as a series of points, each selected on the basis of the previ-
ous one.
 The probabilistic models described in Kennedy (2003;
2004) are not dynamic in this sense. Those models select
the next point solely on the basis of the previous bests, using
a random number generator to produce a candidate problem
solution vector from a probability distribution. The previous
position of the particle is not taken into account. This is
what is meant in this discussion by probabilistic.
 In the canonical particle swarm, the choice of the next
point x(t+1) is determined by reference to:
• x(t), the “current” or last-tested position of the particle
• pi, the particle’s previous best point
• pg, some neighborhood or population best
• khi and phi, which are coefficients that control conver-

gence
• v, the current velocity

The two “p” or previous best vectors vary among im-
plementations. The FIPS formula can be considered a gen-
eralized model, where the various neighbors summed may
be self and best neighbor, as in lbest versions; self and popu-
lation best, as in gbest versions; or all neighbors, in FIPS.
Further, the velocity component can be eliminated algebrai-
cally. In the usual formulation, there is a line that says:

x = x + v

This assignment statement means that x(t+1) = x(t) +
v(t+1). From this we can see that v(t+1) = x(t+1) – x(t).
Since the same thing happened on the previous time-step,
we know that v(t)=x(t)-x(t-1). Thus the two formulas of the
algorithm can be compressed into one by substitution:

x(t+1) = x(t) +
khi× (x(t) – x(t-1)) +
khi×phi× (sum(rand×(pk – x(t)))/K)

 This reformulation shows us that the dynamical system
is dependent on three terms summed. The first is x(t), the
particle’s current position in the search space; the second is
a weighted difference term representing the direction that
the particle is already going; and the third includes the influ-
ence of the previous bests.
 It is noteworthy that the random number function is ap-
plied only to the last term of the formula. We can use that
knowledge to calculate an expected value of x(t+1). Since
rand is a uniform RNG in (0,1), its mean value is 0.5 or one
half, we can write the expected position at t+1 as:

202

E(x(t+1)) = x(t) +
khi× (x(t) – x(t-1)) +
khi×phi× (sum(0.5× (pk – x(t)))/K)

Figure 1. Typical histogram of points sampled by averaging
three random numbers drawn uniformly from different ranges,
compared to the normal pdf.

 Though the exact position of the particle at t+1 is de-
pendent on the output of the RNG, its probabilities are dis-
tributed around E(x(t+1)). If there were twenty or more
neighbors, and each of their bests was equidistant from the
particle’s current position x, then the probability distribution
for picking a point around E(x) would be normal. If there
were a smaller number, the search would sample from a t
distribution, and if there were two, for instance, self and best
other, then the sample would be t-distributed with one de-
gree of freedom, also known as Cauchy.
 It would be handy if we could simply simulate the algo-
rithm by sampling from a Cauchy distribution, as many soft-
ware packages have Cauchy RNGs. There are several prob-
lems with this, however, the most important being that the
two random terms being averaged are almost never drawn
from the same interval, that is, (pi-x) is almost never equal to
(pg-x). Further, both values (or all values in the FIPS ver-
sion) will have changed by the next iteration. Each number
then is drawn from an independent Cauchy or other t distri-
bution, each with unique parameters. Empirical trials show
that the effective probability distribution, as seen in Figure
1, is a truncated triangle, with uniform probability across the
middle, decreasing in the tails.
 This can be approximated by using a uniform RNG and
trimming off the tails.
 Having seen what the expect value of the particle will
be, we need to determine minimum and maximum values
for x at the next time-step. This will be determined by a
couple of things. First, a certain limit is found when all ran-
dom numbers equal 0.0, and another when they equal 1.0.
In fact, if all terms averaged are of the same sign, then those
set the limits for the iteration:

x(t+1) = x(t) +
khi× (x(t) – x(t-1)) +
0

and
x(t+1) = x(t) +

khi× (x(t) – x(t-1)) +
khi×phi× (sum((pk – x(t)))/K)

 It is possible, though, that some previous bests are
greater than x, and some are less than it. For instance, it is
possible that, with both random numbers equal to 1.0, one
(rand×(p-x)) will cancel out another, and the mean will be
zero. We can account for both kinds of instances, by use of
a program such as the following:

 lim1=pi – xi
 lim2=pg – xi

 * OPPOSITE SIGN;
 if sign(lim1) ne sign(lim2) then do;
 center=(lim1+lim2)/2;
 width=abs(lim1-lim2);
 end;

 * SAME SIGN;
 else do;
 center=(lim1+lim2)/2;
 width=abs(lim1+lim2);
 end;

 This code defines the center of the probability distribu-
tion and its range, or width. Points may be sampled then,
from an area within width/2 units of center.
 This algorithm may then be run, using the RNG like this:

 ranvar=center+ (rand×2-1) ×width/2;

 x=x +

khi× (x - x(t-1)) +
khi× (phi/2) × ranvar;

In other words, take a random number in (-1,+1), multiply
width by that, divide the product by two, and add it to
center.
 As seen in Figure 1 though, the distribution we want to
simulate is not uniform over its entire range. In fact, if the
algorithm is run sampling uniformly within width/2
units of the center, the algorithm does not perform well.
Variables quickly explode out of the range of their data type,
and the program crashes.
 Trimming off the tails is accomplished easily by divid-
ing width by a number greater than 2. Dividing by 2.2
prevents crashing, but does not provide good optimization
results. It appears that values near 2.5 allow the algorithm
to perform well: results will be given in a later section.
This version will be called the trimmed-uniform particle
swarm (TUPS).

203

1.4 Dynamic-Probabilistic Search: Gaussian
Probabilities
 Another approach is to focus the search most intensively
in the region of the expected value of x, with probabilities
decaying for positions more distant from it. A Gaussian
distribution fills the need here. The center can be at the ex-
pected value:

E(x(t+1)) = x(t) +
khi × (x(t) – x(t-1)) +
khi×phi× (sum(0.5× (pk – x(t)))/K)

and the standard deviation should be a function of the spatial
distribution of the previous bests. Some experimentation
found that a measure formed by summing the absolute val-
ues of the differences (pi – pk), and dividing by the number
of them (this is called frange), gave good results. The
traditional values of khi and phi lose their meanings in this
fundamental reworking of the algorithm, so they were re-
placed by arbitrary weights which could be tweaked:

x(t+1) = x(t) +
W1 × (x(t)-x (t-1))+
W2× (avgp-x(t)) + G(0,1) × (frange/2.0)

 In the tests that are reported below, W1 retained its pre-
vious value of 0.729, and W2=2.187. This algorithm will be
called the Gaussian-dynamic particle swarm (GDPS).

2. EXPERIMENTS
 Six functions were selected that are part of the traditional
testbed for evolutionary computation and present a variety
of well-known difficulties to a problem-solver. These are
shown in the Appendix. All functions were initialized in the
range shown in the third column of the table in the Appen-
dix, in order not to capitalize too much on the happy oppor-
tunity of the optimal solution falling within the initial ranges
of the variables.
 All populations consisted of 20 individuals. The canoni-
cal particle swarm was connected by a Square topology
(Kennedy, 1999), which has been shown to be a relatively
good one, and the FIPS versions were connected using the
“gr.2ed2” topology, a randomly generated network which
performed very well in the FIPS research reported in Men-
des (2004), and which is shown in Figure 2. Trials were run
for 3,000 iterations, and were repeated 20 times in each
condition.

2.1 Experiment One: TUPS
 The trimmed-uniform particle swarm is compared in
Figure 3 with the canonical and FIPS versions.

Figure 2. Topology “gr.2ed2” used for FIPS versions in the ex-
periments reported below.

Figure 3. Comparison of TUPS with canonical and FIPS ver-
sions of particle swarms on some standard test functions.

Sphere

-23

-18

-13

-8

-3

2

0 1000 2000 3000

Canonical
TUPS
FIPS

Griewank30

-3.8

-2.8

-1.8

-0.8

0.2

1.2

2.2

0 500 1000 1500 2000 2500 3000

Griewank10

-2

-1.5

-1

-0.5

0

0 500 1000 1500 2000 2500 3000

204

Figure 3. (continued)
f6

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

0 500 1000 1500 2000 2500 3000

Rastrigin

1.4

1.6

1.8

2

2.2

2.4

2.6

0 500 1000 1500 2000 2500 3000

Rosenbrock

1.4

2.4

3.4

4.4

5.4

6.4

7.4

0 500 1000 1500 2000 2500 3000

 As can be seen, TUPS behaved quite similarly to the
canonical algorithm, and FIPS outperformed both.

2.2 Experiment Two: GDPS
GDPS found better solutions than the others on all functions
except the 10-dimensional Griewank, where FIPS per-
formed best. It also found them faster. The graphs show that
the algorithm was still progressing even when the runs were
terminated after 3,000 iterations; this version seems resistant
to premature convergence.

Figure 4. Comparing the Gaussian-dynamic particle swarm to
the canonical and FIPS versions.

Sphere

-23

-18

-13

-8

-3

2

0 1000 2000 3000

Canonical
FIPS
GDPS

Griewank30

-3.8

-2.8

-1.8

-0.8

0.2

1.2

2.2

0 500 1000 1500 2000 2500 3000

Griewank10

-1.9
-1.7

-1.5
-1.3
-1.1
-0.9

-0.7
-0.5
-0.3
-0.1

0 500 1000 1500 2000 2500 3000

f6

-4.6

-4.1

-3.6

-3.1

-2.6

-2.1

0 1000 2000 3000

205

Figure 4. (continued)

Rastrigin

1.38

1.58

1.78

1.98

2.18

2.38

0 500 1000 1500 2000 2500 3000

Rosenbrock

1.5

2.5

3.5

4.5

5.5

6.5

7.5

0 500 1000 1500 2000 2500 3000

 As each trial went for 3,000 iterations, data from the last
iteration were compared using t-tests, between algorithms.
The results are seen in Table 1.

Table 1. P-values from t-tests comparing algorithms on the test
functions. P<0.05 is considered significant.

 TUPS GDPS
Func. Canon FIPS Canon FIPS

Sphere 0.0290* 0.0295* 0.0006x <.0001x

Grie,30 0.2098 0.0003* <.0001x 0.5162

Grie.10 0.7425 <.0001* 0.0040x 0.0342*

F6 0.3888 1.0000 0.0385x 0.1678

Rast. 0.2166 <.0001* <.0001x 0.0301x

Ros. 0.5169 0.8614 0.6697 0.7306

* “Old” algorithm was significantly better; x New algorithm was bet-
ter.

 As can be seen, TUPS differed from the canonical PSO
only on the sphere function, and was significantly inferior to
FIPS on four of the six test functions. GDPS was signifi-
cantly better than the canonical algorithm on all but one
function, and was significantly better than FIPS on two, with
FIPS better than it on one function.

3. DISCUSSION
 The particle is often conceptualized in terms of its trajec-
tory through the problem space, its position at each point in
time stochastically dependent on its position at the previous
moment. It moves in an oscillatory pattern centered around
the centroid of the previous bests that influence the particle;

the probability distribution of points sampled around this
centroid however is complex and so far has not been suc-
cessfully simulated using random number generators. If
such a technique is found, it would result in a particle swarm
that could be described as probabilistic, and not dynamic.
Some parameters, for instance, locations of previously dis-
covered good solutions, would simply be passed from the
searchers to the RNG, and a new candidate solution would
be generated.
 The versions described in this paper used a RNG to gen-
erate a point in a probability distribution which was centered
around the expected position on a dimension, assuming
knowledge of the previous position of the particle and what
direction it was already moving. The first of these at-
tempted to simulate the canonical two-term particle swarm
by mimicking the trimmed uniform probability distribution
that emerges from the particle trajectory in the standard ver-
sion. Results on some test problems suggested that it was a
pretty good copy.
 The second version improved on existing particle
swarms by taking what had been learned and extending it.
Understanding that the expected value of a particle’s posi-
tion on a dimension at time t was a function of various fac-
tors including its position at time t-1, the Gaussian-dynamic
particle swarm sampled from a normal distribution around
the expected position of the particle at the next iteration.
 The TUPS version, while it emulated a canonical parti-
cle swarm, is limited in its searching ability. The point to be
chosen always falls within a certain range – this is true of
the canonical algorithm, as well. Both always sample from
a hyperrectangular range of values in the problem space.
The Gaussian model, though, can jump out of that area on
any given iteration; search is focused around the expected
value of x, with tails extending theoretically to infinity. This
strategy for problem solving seems superior to the standard
one, and may be better than the FIPS.

4. REFERENCES
Clerc, M. and Kennedy, J. (2002). The particle swarm: ex-

plosion, stability, and convergence in a multi-
dimensional complex space. IEEE Transactions on Evo-
lutionary Computation, vol. 6, p. 58-73.

Eberhart, R. C. and Kennedy, J. (1995). A new optimizer
using particle swarm theory. Proceedings of the Sixth In-
ternational Symposium on Micromachine and Human
Science, Nagoya, Japan. pp. 39-43.

Festinger, L. (1957). A Theory of Cognitive Dissonance.
Evanston IL: Row, Peterson.

Heppner, F., and Grenander, U. (1990). A stochastic nonlin-
ear model for coordinated bird flocks. In S. Krasner
(Ed.), The Ubiquity of Chaos. Washington DC: AAAS
Publications.

Kennedy, J. (1999). Small worlds and mega-minds: effects
of neighborhood topology on particle swarm perform-
ance. Proc. Congress on Evolutionary Computation

206

1999, 1931–1938. Piscataway, NJ: IEEE Service Cen-
ter.

Kennedy, J. (2003). Bare bones particle swarms. Proceed-
ings of the IEEE Swarm Intelligence Symposium 2003
(SIS 2003), Indianapolis, Indiana, USA. pp 80-87.

Kennedy, J. (2004). Probability and dynamics in the parti-
cle swarm. Proceedings of the 2004 IEEE Congress on
Evolutionary Computation, Portland, OR, 340-347.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm op-
timization. Proc. IEEE Int'l. Conf. on Neural Networks,
IV, 1942–1948. Piscataway, NJ: IEEE Service Center.

Kennedy, J., and Eberhart, R. C., with Shi, Y. (2001).
Swarm Intelligence. San Francisco: Morgan Kaufmann/
Academic Press.

Kennedy, J., and Mendes, R. (2002). Population Structure
and Particle Swarm Performance. Proceedings of the
2002 World Congress on Computational Intelligence.

Mendes, R. (2004). Population Topologies and Their Influ-
ence in Particle Swarm Performance. Ph.D. Thesis,
Escola de Engenharia, Universidade do Minho, Portugal.

Mendes, R., Kennedy, J., and Neves, J. (2004). The fully
informed particle swarm: Simpler, maybe better. IEEE
Transactions on Evolutionary Computation, 8, 204-210.

Reynolds, C. W. (1987). Flocks, herds, and schools: A dis-
tributed behavioral model. Computer Graphics, 21, 25-
34.

Smith, E.R., and Semin, G.R. (2004). Socially situated cog-
nition: Cognition in its social context. Advances in Ex-
perimental Social Psychology, 36, 53 - 117.

Functions used in experiments. Populations were initialized in the range between the two values under “Init. Range.”

Function Formula Init.
Range

Sphere ∑= =
n
i ixxf 1

2
1)(
r 50, 100

Schaffer’s f6
))(001.00.1(

5.0)(sin
5.0)(

22 2

22

6
yx

yxxf
++

−+
+=

r
50, 100

Griewank 1))100(cos()100(
4000

1)(11
2

7 +∏ −−∑ −= ==
n
i

in
i i i

xxxf
r 300, 600

Rosenbrock))1()(100()(2

1
2

1
2

9 −+∑ −=
=

+ xxxxf i
n

i
i

r 15, 30

Rastrigin []∑ +−= =
n
i ii xxxf 1

2
10 10)2cos(10)(πr 2.56, 5.12

207

