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ABSTRACT 
Any computational approach to design, including the use of 
evolutionary algorithms, requires the transformation of the 
domain-specific knowledge into a formal design representation.  
This is a difficult and still not completely understood process.  Its 
critical part is the choice of a type of design representation.  The 
paper addresses this important issue by presenting and discussing 
results of a large number of design experiments in which 
parameterized and generative representations were used.  
Particularly, their computational and design related advantages 
and disadvantages were investigated and compared.  

Evolutionary design experiments reported in this paper considered 
two classes of structural design problems, including the design of 
a wind bracing system and the design of an entire structural 
system in a tall building. Parameterized and generative 
representations of the structural systems were introduced and their 
basic features discussed.  The generative representations 
investigated in the paper were inspired by the processes of 
morphogenesis occurring in nature. Specifically, one-dimensional 
cellular automata were used to develop, or ‘grow,’ structural 
designs from the corresponding ‘design embryos.’   

The conducted research led to three major conclusions. First, 
generative representations based on cellular automata proved to 
scale well with the size of the considered design problems.  
Second, generative representations outperformed parameterized 
representations in minimizing weight of the structural systems in 
our problem domain by generating better designs and finding 
them faster.  Finally, extensive experimental studies showed 
significant differences in optimal settings for evolutionary design 
experiments for the two representation types.  The rate of 
mutation operator, the size of the parent population, and the type 
of the evolutionary algorithm were identified as the evolutionary 
parameters having the largest impact on the performance of 
evolutionary design processes in our problem domain. 
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1. INTRODUCTION 
Appropriate choice of a design representation is one of the most 
important and difficult aspects of any evolutionary design (ED) 
application.  Although traditionally employed parameterized 
representations have proved to perform well for many structural 
optimization problems, they are considered inadequate when 
novel designs are sought.  They have also experienced some 
scaling-up issues as the design application problems increased in 
size and complexity.  

For this reason, alternative ways of representing engineering 
systems have been proposed [3, 4, 9].  These representations, 
contrary to the parameterized representations, do not encode 
complete design concepts but rather rules on how to develop, or 
‘grow,’ these designs.  It has been shown that these generative 
representations improve the scalability of ED systems [5] and 
produce novel designs exhibiting interesting and qualitatively 
different patterns from known designs [6].   

There are still, however, many unanswered questions regarding 
comparative advantages of both approaches.  It is not clear for 
what types of problems generative representations should, or 
should not, be used.  Similarly, we still don’t know much about 
‘optimal’ evolutionary computation (EC) settings for generative 
systems and their relationship to the best EC parameter values 
used in traditional ED applications.  This paper presents an 
empirical comparison of these two types of representations in the 
context of two complex structural design problems.  It also 
provides initial recommendations on how to choose the 
appropriate type of encoding and its preferred values of EC 
parameters.   

2. BACKGROUND 
2.1 Evolutionary Design Representations 
Selection of the best type of design knowledge representation and 
the development of a problem specific encoding are one of the 
key elements of any computational design activity.  A choice of a 
particular representation of an engineering system is highly 
influenced by the designer’s goal, i.e., whether the emphasis is on 
optimality in terms of numerical values in the context of a specific 
design concept, or on the generation of novel design concepts.  
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Design representations in conceptual design are usually expressed 
in terms of symbolic attributes (they take values from an 
unordered or partially ordered set).  On the other hand, numerical 
attributes are used mostly in the detailed design stage [2].  
Traditionally, structural design applications were focused strictly 
on design optimization issues.  Hence, the vast majority of 
applications of evolutionary methods used simple 
parameterizations of engineering systems encoded in terms of 
binary, real, or integer-valued attributes [7]. 

Recently, there has been a growing interest in applying 
evolutionary methods to conceptual design problems in which one 
of the important objectives is the development of novel designs of 
structural systems.  This has been coupled with significant 
research efforts within the EC community focused on studying 
alternative ways of representing designs. Several researchers 
investigated generative representations which do not encode 
complete design concepts but rather rules which determine how to 
construct these designs [3, 5].   

As a result of this research, several novel ways of encoding 
structural designs have been proposed, including Voronoi-based 
representations and IFS representations based on fractal theory 
[4], tree-based representations [11], and cellular automata [9].  
The state-of-the-art of evolutionary computation and design 
representations in structural engineering can be found in [7]. 

2.2 Structural Systems in Tall Buildings 
Design of steel skeleton structures in tall buildings is considered 
as one of the most complex structural engineering problems.   
These types of structures are usually designed as a system of 
vertical members called columns, horizontal members called 
beams, and various diagonal members called wind bracings, since 
they are added to brace columns and beams in order to increase 
the flexural rigidity of the entire system. 

Skeleton structures are designed to provide a structural support 
for tall buildings.  They have to satisfy numerous requirements 
regarding the building’s stability, transfer of loads (gravity and 
wind), deformations, etc.  For this reason, the design of structural 
systems in tall buildings requires the analysis of their behavior 
under various combinations of loading and the determination of 
optimal configurations (topologies) of structural members, i.e., 
configurations of beams, columns, wind bracings, and supports.   

The two design problems considered in this paper represent two 
classes of conceptual design problems characterized by distinct 
levels of their structural complexity.  First, a relatively simpler 
problem of designing a wind bracing system in a tall building is 
investigated.  In this problem, an optimal topology of only wind 
bracing members is sought assuming the same configurations of 
beams, columns, and supports throughout an entire design 
process.  In this case, however, cross-sections of all members 
(including beams, columns, and wind bracings) are optimized 
during the detailed design stage (sizing optimization).  Second, a 
more complex problem of designing entire steel structural systems 
in tall buildings is investigated in which optimal configurations of 
all structural members are sought, followed, as before, by the 
sizing optimization. 

3. DESIGN REPRESENTATIONS 
In this section, we introduce two types of representations of steel 
structural systems in tall buildings, i.e., a parameterized 

representation with integer-valued attributes and a generative 
representation based on one-dimensional cellular automata. 

3.1 Parameterized Representations 
In parameterizations of engineering systems, the attributes 
describing an engineering system are directly encoded as genes 
and their alleles are evolved using evolutionary algorithms (EAs). 
This is illustrated in Figure 1, which shows a parameterized 
representation of a steel structural system (see Figure 1b).  In this 
case, symbolic attributes (representing types of structural 
members) are encoded directly in a parameterized representation.  

The 16-story building with 5 bays shown in Figure 1 is 
represented by a genome consisting of 166 genes.  80 genes 
encode attributes representing wind bracing elements (see Figure 
2), 80 genes encode beams (see Figure 3), and 6 genes represent 
supports (see Figure 3).  Similarly as in [10], column members of 
a structural system are not evolved but assumed the same 
(continuous columns) during the entire evolutionary processes. 
In this paper, fixed-length genotypes are used to represent wind 
bracing systems and entire steel structural systems in tall 
buildings.  The length of a genotype used in a given situation, 
however, depends on the design problem being studied (a wind 
bracing system or the entire steel structural system) and on the 
number of stories and bays in the structural system being 
considered.   For example, the 16-story building with 5 bays (see 
Figure 1) is represented by a genome of length of 166, while a 30-
story building with the same number of bays requires 306 genes. 
Once the design problem and topological properties of a tall 
building are determined, then the length of the genotype is 
completely defined and does not change during the ED process. 

 
Figure 1. Parameterized representation of a structural system 

in a tall building 
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Figure 2. Phenotypic and genotypic representation of wind 

bracing elements  

 
Figure 3. Phenotypic and genotypic representation of beams 

and supports  

3.2 Generative Representations 
The generative representations of steel structural systems in tall 
buildings investigated in this paper have been initially proposed in 
[8] and [9].  The inspiration for these design representations 
comes from the processes of morphogenesis occurring in nature.  
Nature manipulates rules for growing complex organisms, called 
‘genetic plans,’ rather than the complex organisms themselves.  
The organisms are then built from the plans via a developmental 
process (morphogenesis).   

The generative representations of steel structural systems 
investigated in this paper are based on similar principles.  Each 
subsystem of a steel structure, i.e., a subsystem of wind bracings, 
and a subsystem of beams, is developed from its initial ‘design 
embryo.’ Thus, the complete configuration of all members of a 
given subsystem is not directly encoded in the representation (as 
in the parameterized representation) but rather it is gradually built 
by applying a ‘design rule’ to its corresponding design embryo (a 
developmental process).    

Figure 4a provides a schematic overview of the structure of a 
genome.  It consists of 5 distinct parts.  The first two parts encode 
the design embryo and the design rule which generate the 
subsystem of wind bracings.  The following two parts encode the 
design embryo and the design rule, which build the subsystem of 
beams. Finally, the last part of the genome encodes the 
configuration of supports.  In this case no design rule is necessary 
because the configuration of supports is one-dimensional and it is 
fully determined by its design embryo.   

Figure 4b illustrates the process of development of a steel 
structural system in a tall building from its generative 
representation.  Specifically, the configurations of a wind bracing 
subsystem and a beam subsystem are generated from their 
corresponding design embryos.  The design embryos specify the 
configurations of first stories of the wind bracing subsystem and 
the beam subsystem, respectively.  The configurations of 
subsequent stories are determined by the iteration of the 
corresponding design rules which are based on 1D cellular 
automata (CAs) [12].  

 
Figure 4. Generative representation of a structural system in a 

tall building based on multiple 1D CAs 

 
Figure 5. Graphical representation of a design rule based on 

1D CA rule and several steps of a developmental process  
A graphical illustration of a design rule based on 1D CA rule and 
initial steps of the developmental process during which a design 
of a wind bracing subsystem is built are presented in Figure 5. It 
shows the structure of the design rule encoded in the second part 
of genome (encoding of the design rule in Figure 4b which 
develops the bracing subsystem).  The bottom row of cells shows 
all possible combinations of the local neighborhoods of size 3 
with 2 types of wind bracing elements (empty cell representing no 
bracing and X bracing).  The top row of cells in Figure 5a 
presents the outcome values of the 1D CA rule, i.e., the values 
attained by the central cell in a given local neighborhood at the 
next time step (here at the next story in a tall building).  If we 
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assume a fixed ordering of the local neighborhoods then we can 
represent any design rule based on 1D CA rule by its outcome 
values.  Hence, the design rule for the wind bracing subsystem 
(the second part of genome in Figure 4b), can be fully represented 
by 8 outcome values shown in the top row in Figure 5a. 
Several initial steps of the developmental process during which a 
design of a wind bracing subsystem is gradually built are 
presented in Figure 5b. Bottom part of Figure 5b (t=0) shows the 
configuration of the design embryo (first part of the genome 
shown in Figure 4b). The process of developing the configuration 
of the next story of the wind bracing subsystem (t=1) from this 
design embryo involves several operations. First, a set of local 
neighborhoods of size 3 is constructed by taking each cell from 
the design embryo together with its left and right neighbors and 
placing them respectively in the middle, left, and right of the 
lattice defining each local neighborhood (see the set of 6 local 
neighborhoods of size 3 placed above the design embryo in 
Figure 5b).  In this instance, so-called periodic boundary 
conditions are used, meaning that the rightmost cell in the design 
embryo becomes the left neighbor of the leftmost cell in the 
design embryo, and vice versa (denoted by dashed lines in Figure 
5b). Second, the local neighborhoods created that way are 
compared to the local neighborhoods which define the conditions 
of the design rule (see the bottom row in Figure 5a).  When the 
two match, the value shown in the top row in Figure 5a defines 
the new value of the central cell in the configuration of the next 
story of the wind bracing subsystem. This process is repeated for 
each local neighborhood and the obtained values are placed in 
appropriate positions of the configuration of the next story (t=1). 
In this way, the second story is fully defined and at the same one 
iteration (step) of a design rule is completed. This process is 
repeated as many times as to define configurations of all stories of 
the wind bracing subsystem.  A more detailed description of this 
type of representations can be found in [6]. 
The 16-story building with 6 bays shown in Figure 4 is 
represented by a genome consisting of 35 genes.  In this case, 2 
types of wind bracing elements, 2 types of beams, 2 types of 
supports, and design rules based on elementary CAs (i.e., with 
binary cell values and the local neighborhood of size 3) are 
considered.  14 genes encode the design embryo and the design 
rule generating the wind bracing subsystem, 14 genes encode the 
design embryo and the design rule generating the beam 
subsystem, and 7 genes encode the design embryo representing 
supports.  When the number of possible types of wind bracing 
elements grows to 7 (as in Figure 2), then the length of the 
genome increases to 370.  There is a way to significantly reduce 
the length of the genome by using design rules based on totalistic 
CAs [12].  In this case, the length of the genome decreases to 42. 

4. DESIGN EXPERIMENTS 
We chose two complex conceptual design problems in structural 
engineering for our initial empirical comparison of design 
representations: design of a wind bracing system (Problem I) and 
design of an entire steel structural system in a tall building 
(Problem II).  The first problem was further subdivided into the 
following 3 subproblems: 

 Problem Ia - design of a wind bracing system composed of 
simple X bracings and no bracings (empty cells) only. 

 Problem Ib – design of a wind bracing system composed of 
K bracings and no bracings (empty cells) only. 

Table 1. Parameters of the design problems and their values 

Domain Parameter Value(s) 
Number of stories 30 
Number of bays 5 
Bay width 20 feet (6.01 m) 
Story height 14 feet (4.27 m) 
Structural analysis method 1st order 
Beams pinned, fixed (Problem II) 
Column fixed 
Supports pinned, fixed (Problem II) 

Wind bracings no, diagonal (/), diagonal (\), 
K, V, simple X, and X 

 
 Problem Ic – design of a wind bracing system composed of 

all 7 types of wind bracing elements shown in Figure 2. 
This was motivated by the fact that (sub)optimal solutions for 
each of these subproblems exhibit dramatically different structural 
shaping patterns, i.e., the best designs are not only quantitatively 
and but also qualitatively different [6]. 

The parameters of the design problems and their values are 
presented in Table 1.  It shows that a wind bracing system and an 
entire steel structural system of a 30-story building with 5 bays 
were the subject of design.  For problems Ia, Ib, and Ic the 
topology (the configuration of structural members) of only a wind 
bracing system was evolved.  On the contrary, for problem II the 
topologies of subsystems of wind bracings and beams as well as 
the configuration of supports were optimized.  The topology of a 
column subsystem was not evolved in any case and all column 
members in steel structures were assumed the same during the 
entire design process, similarly as it was done in [10]. 

When the topology/configuration of the wind bracing system 
(problems Ia-Ic), or the entire steel structural system (problem II), 
were defined, the sizing optimization algorithm implemented in 
SODA was used to determine the optimal cross-sections of all 
structural members in the entire steel structural system. SODA is 
a commercial computer system developed for the analysis, design, 
and optimization of steel structural systems.  In our case, it was 
used as a behavior simulator which evaluates generated designs.  

In the reported research, the sizing optimization was conducted 
for all structural members, including wind bracings, beams, and 
columns. The optimal cross-sections of structural members were 
selected from the catalog of standard shapes specified in [1].  In 
the 1st-order structural analysis conducted by SODA, standard 
types of loads, load magnitudes, and types of load combinations 
were considered as specified by the relevant design codes.  

4.1 Representational Characteristics 
Table 2 shows the values of the representational parameters used 
in the design experiments.  In the reported research two types of 
design representations were investigated: parameterized and 
generative. Moreover, two types of design rules were employed in 
the case of generative representations: based on standard CAs and 
totalistic CAs.  The radius of the local neighborhood was either 
equal to 1 or 2 and periodic boundary conditions were used in all 
design experiments with generative representations.  The lengths 
of the genomes for all types of design representations and all 
design problems considered in this paper are presented in Table 2. 
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Table 2. Representation parameters and their values 

Representation Parameter Value(s) 
Parameterized:  

- number of gene values 2, or 7 
- length 150(Ia, Ib, Ic), or 306(II) 

Generative:  
- type of CAs standard, or totalistic 
- radius of the local 

neighborhood 1, or 2 

- CA boundaries periodic 
- number of cell values 2, or 7 
- length:  

standard CAs, radius 1 13(Ia, Ib), 348(Ic), or 367(II) 

standard CAs, radius 2 37(Ia, Ib), 16812(Ic), or 
16855(II) 

totalistic CAs, radius 1 9(Ia, Ib), 24(Ic), or 39(II) 
totalistic CAs, radius 2 11(Ia, Ib), 36(Ic), or 53(II) 

 

4.2 EA Characteristics 
The details of the evolutionary computation parameters are 
presented in Table 3.  It shows that the design experiments were 
divided into two major groups depending on the termination 
criteria used in individual evolutionary runs: short-term 
experiments (1,000 fitness evaluations) and long-term 
experiments (10,000 fitness evaluations).  This distinction is 
important from the structural design point of view because 
evaluations of generated design concepts are usually very 
expensive (more than 99% of computational time). 

Extensive sensitivity analysis was conducted during the short-
term experiments. They involved the following evolutionary 
computation parameters: mutation rates, crossover rates, sizes of 
parent and offspring populations, the type of the generational 
model, and the type of an evolutionary algorithm. Optimal 
settings for these parameters were sought and, once found, later 
utilized in the long-term experiments.  The performance analysis 
of ED processes was conducted for both the short-term and the 
long-term experiments. 

The results produced by the parameterized and generative 
representations were subsequently compared using two 
performance criteria: 

 Average performance improvement – fitness improvement 
of an average design at the end of an experiment compared 
to an average design from an initial population 

 Best performance improvement – fitness improvement of 
the best design at the end of an experiment compared to the 
best design from an initial population 

5. EXPERIMENTAL RESULTS 
We used the experimental settings described above to run a large 
number of design experiments.  Their results, grouped with 
respect to the parameter being investigated, are described below. 

5.1 Mutation and Crossover Rates 
Initial experiments focused on finding the optimal rates of 
mutation and crossover operators understood here as the rates 
which produced the best progress of ED processes.  An extensive 
parameter search was conducted to determine the optimal rates.  It 
involved 12 combinations of mutation and crossover rates (see 
Table 3).   

Table 3. EC parameters and their values 

EC Parameter Value(s) 
EA ES, GA 

Pop. sizes  
(parent, offspring) 

(1,5), (1,25), (5,25), (5,125) or 
(50,250) for ES 

(5,25), or (50,50) for GA 
Generational 
model 

Overlapping for ES(µ+λ), 
Nonoverlapping for ES(µ,λ) and GA 

Selection  
(parent, survival) 

(uniform stoch., truncation) for ES, 
(fitness prop., uniform stoch.) for GA 

Mutation rate 0.025, 0.1, 0.3, or 0.5 
Crossover rate 0, 0.2, or 0.5 

Fitness Total weight of the structural system 
(determined by the 1st-order analysis) 

Initial. method random 
Constraint 
handling method 

death penalty (infeasible designs 
assigned 0 fitness) 

Termination 
criterion  

1000 evaluations (short-term), or 
10,000 evaluations (long-term) 

Number of runs 5 (in each experiment) 
 
The obtained results differed for the two types of design 
representations considered.  Figure 6 shows typical results 
obtained in experiments with parameterized representations. 
Specifically, it presents average best-so-far fitness values and 
95% confidence intervals (vertical lines) calculated using 
Johnson’s modified t test and obtained in a series of design 
experiments (problem Ia) with ES(5+25).  In these experiments, 
the rate of uniform crossover was equal to 0.2. 

In Figure 6 a clear pattern can be identified regarding the impact 
of the mutation rate on the fitness of produced design concepts: 
lower mutation rates produce better fitness (i.e., lower because it 
is a minimization problem) of design concepts.  This pattern was 
observed in all design experiments involving ES with various 
parent and offspring population sizes, and crossover rates, as it is 
illustrated graphically in Figure 7.  

Figure 7 clearly shows that the best performance of ES(µ+λ) in 
the short-term ED processes with parameterized representations 
was obtained for the lowest mutation rate equal to 0.025.  The 
same pattern was observed for all design problems considered in 
this paper, i.e., Ia-Ic, and II. 

 
Figure 6. Impact of the mutation rate on the progress of 

evolutionary processes with parameterized representations 

2011



 
Figure 7. Average fitness obtained after 1,000 evaluations in 

design experiments with parameterized representations 

 
Figure 8. Average fitness obtained after 1,000 evaluations in 

design experiments with generative representations 
The design experiments with generative representations showed, 
however, a dramatically different pattern.  Here, higher mutation 
rates generally produced better results than lower mutation rates 
as it is illustrated in Figure 8.  It specifically shows average 
fitness values obtained after 1,000 evaluations for the problem Ia 
and produced in the ED experiments with ES(5+25) and 
generative representations based on standard and totalistic CAs 
with the radius r of the local neighborhood equal to 1 and 2. 

No such patterns were observed for crossover rates.  In some 
cases the best results were obtained for high rates of crossover 
operator and sometimes when the crossover operator was not used 
at all.  This result was obtained for both the parameterized and 
generative representations.   

5.2 Generational Model 
In this group of design experiments, the impact of the type of the 
generational model on the fitness of produced design concepts 
was investigated.  Here, two kinds of ES were employed: 
ES(5,25) with the nonoverlapping generation model and 
ES(5+25) with the overlapping generational model.  All other 
parameters’ values were kept the same. 

Figure 9 shows typical results obtained in these experiments.  
Here, generative representations based on standard CAs were 

 
Figure 9. Average fitness obtained after 1,000 evaluations in 

design experiments with generative representations 

 
Figure 10. Impact of the population sizes on the progress of 
evolutionary processes with parameterized representations 

employed for design problem Ia. It clearly shows that ES with the 
overlapping and nonoverlapping generational models produced 
almost identical results in terms of both the average best-so-far 
fitness and the variance of produced results.   Essentially the same 
results were obtained in experiments with parameterized 
representations. 

5.3 Population Sizes 
Another group of experiments focused on the determination of  
the optimal sizes of populations of parents and offspring.  Five 
different combinations of sizes of parent and offspring 
populations were considered for ES and two combinations for 
GAs (see Table 3).   

Typical results obtained for ES are presented in Figure 10. It 
shows the results of the ED experiments (problem II) in which 
three combinations of the parent and offspring population sizes 
were used, including ES(1+5), ES(5+25), and ES(50+250).  
Mutation and crossover rates were kept the same in all 
experiments and equal to 0.025 and 0.2, respectively.  

It is clear that ES using large population sizes (i.e., ES(50+250)) 
produced inferior results compared to the other two ES with 
smaller population sizes.  On the other hand, it also produced the 
smallest variance.  The other two ES with smaller population 
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sizes achieved almost the same progress in terms of the average 
best-so-far fitness of the produced designs.  However, ES(1+5), 
i.e., the ‘greedy’ ES which preserves only the very best individual 
to the next generation, exhibited larger variance compared to 
ES(5+25) which preserves the top 5 individuals to the next 
generation.  Thus, in this case parallel search conducted by 
ES(5+25) reduced the variance of the obtained results without 
decreasing the performance of the algorithm.  On the other hand, 
when the size of the populations was increased too much (e.g., as 
in ES(50+250)), the reduction of variance came at a cost of a 
substantial decrease of the performance of the algorithm.  These 
results were consistent for all problems considered in this paper. 

Slightly different results were obtained in the experiments with 
generative representations.  Here, four combinations of parent and 
offspring population sizes were considered: ES(1+5), ES(1+125), 
ES(5+25), and ES(5+125).  Figure 11 shows typical results 
obtained in these experiments.  Specifically, the generative 
representations based on totalistic CAs were used for problem II. 
All other EC parameters were kept the same in all experiments 
whose results are shown in this figure.  

Figure 11 clearly shows that the best results were produced with 
the parent population size equal to 5 and the offspring population 
size equal to 25.  On the other hand, the worst results were 
produced by the ‘greedy’ ES(1+25).  Thus, in the case of 
generative representations the parallel search conducted by 
ES(5+25) not only reduced variance of the obtained results, as it 
was the case with parameterized representations, but is also 
improved the actual performance of evolutionary processes. 

The impact of parent and offspring population sizes was 
dramatically different for ED processes utilizing GAs.  For both 
combinations of parent and offspring population sizes (see Table 
3), i.e., GA(5,25) and GA(50,50), the performance of the 
algorithms was almost identical.  The only difference between the 
two curves is the reduction of variance for the algorithm with 
larger population sizes, i.e., for GA(50,50), as it was also 
observed for ES.   

5.4 Evolutionary Algorithm 
Design experiments reported in this paper have also investigated 
the impact of the type of EA on the fitness of produced designs.  

 

 
Figure 11. Impact of the populations sizes on the progress of 

evolutionary processes with generative representations 

Figure 12 shows a comparison of the behavior of the two 
algorithms on problem Ia.  Two average best-so-far curves in the 
upper part of Figure 12 correspond to GAs with two combinations 
of parent and offspring population sizes, i.e., GA(5,25) and 
GA(50,50).  They are compared to the average best-so-far 
performance produced by ES with the overlapping ES(5+25) and 
nonoverlapping ES(5,25) generational model.  Optimal mutation 
and crossover rates, found in previous experiments, were used for 
ES and GAs. Figure 12 clearly shows that ES outperformed GAs 
in our problem domain.  ES produced designs, on average, 5-8% 
better than designs produced by GAs. 

5.5 Length of Evolutionary Design Processes 
In the final group of design experiments, the impact of the length 
of evolutionary processes on the fitness of produced designs was 
investigated.  In order to do that the results of the long-term 
evolutionary processes (10,000 evaluations) were compared to the 
ones obtained in the short-term experiments (1,000 evaluations). 

Figure 13 compares the average best-so-far fitness curves 
obtained in the long-term design experiments (problem II) with 
generative representations and parameterized representations. EC 
parameters used in these experiments involved the ‘optimal’ 
values identified in the short-term processes. This figure shows 
distinct performance of evolutionary processes utilizing different 
design representations.  

 
Figure 12. Comparison of the performance of GAs and ES 

 
Figure 13. Comparison of the performance of the short-term 

and the long-term evolutionary design processes 
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It is clear that generative representations achieved higher average 
performance improvement in the initial stages of evolution than 
parameterized representations. In particular, totalistic CAs 
identified very quickly (in less than 1,000 evaluations) optimal 
solutions for this problem domain.  Similar behavior was 
observed in the vast majority of conducted design experiments.  

6. CONCLUSIONS 
The conducted research provided several answers regarding the 
issues of applicability of parameterized and generative 
representations in evolutionary design.  It also identified the most 
important EC parameters understood here as the parameters 
having the biggest impact on the behavior of evolutionary design 
processes.  The ‘optimal’ values of these parameters were also 
found for both types of design representations. 

First, generative representations (especially those based on 
totalistic CAs) proved to scale well with the size of the considered 
design problems. This was, however, not the case with standard 
CAs in which cells could have a larger set of possible values 
(problems Ic and II).  Here, the genomes were significantly longer 
than those encoding the parameterized representations. 

Second, generative representations significantly outperformed 
parameterized representations in problem domains where optimal 
solutions exhibited certain regular (and sometimes hidden) 
patterns (e.g., problems Ia, Ic, and II).  They also identified the 
optimal regions in these design spaces much faster than 
parameterized representations. 

Third, the design experiments identified the following EC 
parameters as having the largest impact on the success of 
evolutionary design processes for both types of design 
representations: the mutation rate, the size of the population of 
parents, and the type of an evolutionary algorithm. 

The optimal mutation rates for both types of design 
representations were, however, significantly different.  The best 
evolutionary progress for parameterized representations was 
achieved for a very low rate of mutation (i.e., 0.025).  On the 
contrary, generative representations produced best results when 
the high rate of mutation was employed (i.e., 0.3).  

Small population sizes were generally preferred by ES.  However, 
too small population sizes increased the variance of the obtained 
results (both representations) and produced inferior results for 
generative representations.  Good results in terms of both 
performance and variance were produced when moderate sizes of 
population sizes were employed, e.g., 5 in the case of the parent 
population and 25 in the case of the offspring population.  The 
impact of the sizes of parent and offspring populations on the 
performance of GAs seemed to be negligible and related only to 
the variance reduction for the obtained results.  It didn’t influence 
the actual performance of the algorithm on these problem 
domains.  The conducted experiments have also shown that ES 
produced generally superior results than GAs for all design 
problems considered in this paper. 

The research presented in this paper will be continued, including 
the extension of the scope of the empirical studies to other 
structural design problems. Also, more sophisticated types of 
generative encodings based on CA, e.g., utilizing non-uniform 
CAs or encodings with a self-adaptation mechanism, will be 
investigated and applied to several structural engineering 
problems. 
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