
Neuroevolution of an Automobile Crash Warning System

Kenneth Stanley
Computer Sciences Dept
University of Texas, Austin

Austin, TX 78712-0233

kstanley@cs.utexas.edu

Nate Kohl
Computer Sciences Dept
University of Texas, Austin

Austin, TX 78712-0233

nate@cs.utexas.edu

Rini Sherony
Technical Research Dept
Toyota Technical Center

Ann Arbor, MI 48105

Rroy@ttc-usa.com

Risto Miikkulainen
Computer Sciences Dept
University of Texas, Austin

Austin, TX 78712-0233

risto@cs.utexas.edu

ABSTRACT
Many serious automobile accidents could be avoided if drivers
were warned of impending crashes before they occurred. In
this paper, a vehicle warning system is evolved to predict
such crashes in the RARS driving simulator. The Neu-
roEvolution of Augmenting Topologies (NEAT) method is
first used to evolve a neural network driver that can au-
tonomously navigate a track without crashing. The network
is subsequently impaired, resulting in a driver that occasion-
ally makes mistakes and crashes. Using this impaired driver,
a crash predictor is evolved that can predict how far in the
future a crash is going to occur, information that can be used
to generate an appropriate warning level. The main result
is that NEAT can successfully evolve a warning system that
takes into account the recent history of inputs and outputs,
and therefore makes few errors. Experiments were also run
to compare training offline from previously collected data
with training online in the simulator. While both methods
result in successful warning systems, offline training is both
faster and more accurate. Thus, the results in this paper
set the stage for developing crash predictors that are both
accurate and able to adapt online, which may someday save
lives in real vehicles.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

General Terms
Experimentation

Keywords
neuroevolution, vehicle, warning, NEAT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

1. INTRODUCTION
A significant goal of Artificial Intelligence research is to

reduce human loss of life and injury. In principle, intel-
ligent systems can warn humans and protect them from
potentially dangerous situations. Evolutionary algorithms
have the potential to identify danger where it might other-
wise not be apparent by learning about dangerous situations
through experience. In this paper, artificial neural networks
are evolved to warn drivers in dangerous situations, showing
that, at least in principle, learning may eventually help save
lives.

If cars could warn their drivers that a crash is imminent,
it is possible that many accidents could be avoided. One
approach for building such a warning system is to ask an
expert to describe as many dangerous situations as possible
and formalize that information in an automated reasoner.
However, the circumstances leading to a crash are frequently
subtle and may vary for different drivers. Moreover, it may
not be possible to predict a crash from a static snapshot of
the road; the recent history of the car and other objects on
the road may have to be taken into account as well. It is
difficult to know how long such a history should be or what
objects it should track.

Yet if the car could learn on its own what to track and how
long to keep salient events in memory, these challenges could
be overcome. In addition, cars could be trained with dif-
ferent drivers under different circumstances, creating more
flexible warning systems.

Teaching a car to predict crashes is the goal of the auto-
mobile warning system project at the University of Texas
at Austin, started in November 2003 and funded in part
by Toyota. The NeuroEvolution of Augmenting Topologies
(NEAT; [9, 10]) method was used to evolve crash prediction
neural networks. NEAT is a natural choice for the learning
method because it evolves the network topology in addition
to the weights, and therefore can develop arbitrary recur-
rent neural networks that keep a variable length of prior
history in memory. In other words, an expert does not need
to decide how long the warning window should be or what it
should take into account, because evolution makes this de-
termination in selecting the appropriate recurrent topology.
In addition, NEAT has shown promise in control tasks such

1977

as pole balancing and a simulated robot duel, suggesting it
could make effective judgments about the danger of vehicle
circumstances [9, 10]. Because NEAT matches the complex-
ity of the neural network with the complexity of the task, it
can find the right level of representation for warning under
different conditions.

In order to evolve crash-predictor networks, a large set of
examples of bad driving must be available. While it would
be difficult to obtain such a set from human drivers, one
convenient way is to evolve the drivers in simulation before
evolving the warning networks. In fact, past successes with
evolving controllers suggests that robust and varied driving
behavior can be obtained in this manner, forming a solid
foundation for evolving the warning networks. This is the
approach taken in this paper.

An important question is whether the warning system
should be evolved online while the car is running, or offline
with prerecorded data. This question is important because
it may be necessary to train the system online in order to
adapt to particular drivers and driving conditions. On the
other hand, it would be easier and less expensive to train a
warning network for the real world if driving data could be
recorded from real drivers and later used for training. To
determine whether these two training scenarios lead to dif-
ferent performance, warning networks were trained in both
ways in this paper. In online training, the networks were
evaluated by predicting crashes for cars as they drove inside
the simulator. In offline training, a driver was first recorded
for a certain amount of time in the simulator, and warning
networks were later evaluated offline during evolution from
the prerecorded training data. The results demonstrate that
while both online and offline training can be used, learning
from offline data is faster and produces more accurate warn-
ings during testing. This suggests that an effective system
can therefore be constructed through offline training and
later adapted to particular conditions as necessary through
online training.

The next section describes the RARS driving simulator
used in the experiments. The NEAT neuroevolution method
is described in section 3. Section 4 explains how automated
drivers were trained, and Section 5 demonstrates how these
drivers were used to evolve crash predictors. Finally, Section
6 describes the experimental results and Section 7 discusses
the benefits of online and offline training and outlines future
work.

2. THE ROBOT AUTO RACING
SIMULATOR (RARS)

Since learning requires experience, it is necessary for the
learning system to gain experience through driving and pre-
dicting crashes. Because crashing cars in the real world
would be dangerous and expensive, it is necessary to do it
in simulation. RARS (http://rars.sourceforge.net; Fig-
ure 1), a public domain racing simulator designed for testing
Artificial Intelligence (AI) methods for real-time control, is
ideally suited for this purpose.

RARS is supported by an active community that provides
documentation and software maintenance. The software was
written with AI in mind, so it is easy to modify existing
drivers and introduce new ones. Vehicle dynamics are accu-
rately simulated, including skidding and traction. Multiple
automobiles controlled by different automated drivers can

(a) 3-D Overhead View

(b) 2-D Overhead Display

(c) The “clkwis” track

Figure 1: Screenshots of the RARS driving simulator.

The screenshots show three views of a race in RARS.

(a) In the 3-D view, lines projecting in front of the cars

show their current trajectories. (b) The 2-D view shows

more of the track at the same time, and also a full map

and current rankings. (c) A 2-D view of the “clkwis”

track used for this research described in this paper. All

of these views can represent the same race, which can in-

clude any number of cars operated by independent con-

trollers. Because RARS is a popular platform that ac-

curately simulates vehicle physics and supports multiple

simultaneous drivers, it makes a good simulation testbed

for evolving warning systems.

1978

http://rars.sourceforge.net

Figure 2: Rangefinder sensors in RARS. Simulated

rangefinders project lines to the edges of the road and

measure the distance to the turns, giving the car a sense

of its position and the road’s curvature. RARS’ native

data structures were converted into rangefinder data so

that neural networks could be trained with a realistic

egocentric input.

race at the same time. The software automatically provides
information like the distance between the driver and other
vehicles and the direction of the road that can be used as
the basis for simulated sensors.

RARS driving data was converted into a rangefinder sen-
sor representation that was provided to the neural network
to sense road edges. Rangefinder sensors project rays at sev-
eral angles relative to the car’s heading to the edge of the
road (Figure 2). The rangefinders give the car an indication
of its position and heading relative to the sides of the road,
and also of the curvature of the road.

It is sensible to ask whether this sensor configuration is a
reasonable approximation of the real world, i.e. can similar
information be extracted from real sensors? In fact, signifi-
cant research has gone into detecting lanes in the real world
[1]. Data from such systems could be processed and fed into
the neural networks in a similar form to the sensors used in
these experiments. Of course, in the future it will also be
desirable to simulate more sophisticated processed sensors
such as vehicle trackers [5, 11], but the current sensors form
a reasonable, realistic starting point.

RARS provides a virtual gas pedal, brake, and steering
wheel that can receive their values from the outputs of a
neural network. The gas pedal and brake are interpreted
as a requested tire speed relative to the bottom of the car.
There is no limit to how high the request can be, and RARS
tries to match the request within the physical constraints of
the car. In addition, if the request is lower than the cur-
rent speed, RARS attempts to slow the car down by brak-
ing. The steering request is treated similarly: the lateral
force generated by the same turn angle request increases
the higher the current speed. Thus, the driving controls in
RARS work like a real automobile.

Races can be set up in RARS with one or more drivers. A
natural way to begin training drivers and warning systems
is on an open road without other cars. The experience and
data gained from starting in this way can be used to support
training more sophisticated warning systems with obstacles
and other cars in the future.

The next section describes the evolutionary algorithm used
to train both neural network drivers and warning systems.

3. NEUROEVOLUTION OF AUGMENTING
TOPOLOGIES (NEAT)

It is not known how complex either a driving or warning
network needs to be or even what kind of topology it should
have. Searching in too large a space, i.e. a space of highly
complex networks, would be intractable while searching in
too simple a space would limit solution quality. Moreover,
it is not known how many or where recurrent connections
should exist in the network to allow it to react to past states.
For example, if the car is skidding to one side, each snapshot
of the sensory input looks perfectly normal. A skid can only
be identified by combining the observations over the last
several time steps.

The NeuroEvolution of Augmenting Topologies (NEAT)
method [9], which automatically evolves network topology
to fit the complexity of the problem, is designed to solve
these problems. NEAT combines the usual search for the ap-
propriate network weights with complexification of the net-
work structure. It starts with simple networks and expands
the search space only when beneficial, allowing it to find
significantly more complex controllers than fixed-topology
evolution. This approach is highly effective: NEAT out-
performs other neuroevolution (NE) methods on complex
control tasks like the double pole balancing task [9, 8] and
the robotic strategy-learning domain [10]. These properties
make NEAT an attractive method for evolving neural net-
works in complex tasks. In this section, the NEAT method is
briefly reviewed; see [9, 8, 10] for more detailed descriptions.

NEAT is based on three key ideas. First, evolving net-
work structure requires a flexible genetic encoding. Each
genome in NEAT includes a list of connection genes, each of
which refers to two node genes being connected. Each con-
nection gene specifies the in-node, the out-node, the weight
of the connection, whether or not the connection gene is ex-
pressed (an enable bit), and an innovation number, which
allows finding corresponding genes during crossover. Muta-
tion can change both connection weights and network struc-
tures. Connection weights are mutated in a manner similar
to any NE system. Structural mutations, which allow com-
plexity to increase, either add a new connection or a new
node to the network. Through mutation, genomes of vary-
ing sizes are created, sometimes with completely different
connections specified at the same positions.

Each unique gene in the population is assigned a unique
innovation number, and the numbers are inherited during
crossover. Innovation numbers allow NEAT to perform cross-
over without the need for expensive topological analysis.
Genomes of different organizations and sizes stay compatible
throughout evolution, and the problem of matching different
topologies [7] is essentially avoided.

Second, NEAT speciates the population so that individ-
uals compete primarily within their own niches instead of
with the population at large. This way, topological innova-
tions are protected and have time to optimize their structure
before they have to compete with other niches in the pop-
ulation. The reproduction mechanism for NEAT is explicit
fitness sharing [2], where organisms in the same species must
share the fitness of their niche, preventing any one species
from taking over the population.

Third, unlike other systems that evolve network topologies
and weights [4, 12], NEAT begins with a uniform population
of simple networks with no hidden nodes. New structure is

1979

Driver Lap Time

Apex8 1:39
SmoothB2 1:33
NEAT 1:31
Felix16 1:22
Bulle2 1:18

Table 1: Driving times for hand-coded and evolved

drivers. Hand-coded drivers and a driver evolved by

NEAT were timed on the “clkwis” track (Figure 1c) pro-

vided with RARS. The code for driver Apex8 was writ-

ten by Maido Remm, Bulle2 by Marc Gueury, Felix16

by Doug Eleveld, and SmoothB2 by Dennis Lew. Each

driver was timed on a single lap around the empty track.

Even though the goal was not to evolve the fastest pos-

sible driver, NEAT’s time is on par with the best hand-

coded drivers.

introduced incrementally as structural mutations occur, and
the only structures that survive are those that are found to
be useful through fitness evaluations. In this manner, NEAT
searches through a minimal number of weight dimensions
and finds the appropriate complexity level for the problem.

In the automobile warning project, NEAT was used both
to train drivers and crash predictors, as described in the
next two sections.

4. TRAINING DRIVERS
Training warning networks requires a driver from which to

learn. It is important, however, that the driver used to train
warning networks makes occasional mistakes and provides
the warning networks with some real crash experience. Such
a driver can easily be obtained by slightly perturbing the
weights of a successful evolved neural network driver. This
section explains how such drivers were evolved.

The drivers were evolved with seven rangefinder sensors.
During evolution, each neural network in the population was
evaluated over three trials. Each trial lasted 1,000 simulated
timesteps, which is long enough to go around the track once.
The network’s fitness was the average score over the three
trials. The score S for a single trial was

S = 2d− b, (1)

where d is the distance traveled and b is the damage incurred
during the trial. Damage is computed by RARS internally,
and is proportional to time off the track. This fitness func-
tion penalizes crashing and rewards speed. The rest of the
evolution parameters are described in section 6.1.

Using this methodology, skilled open road drivers were
evolved that never crash. Although the purpose of this
project is to evolve warning networks and not fast drivers,
lap times for evolved drivers turned out to be comparable to
the best hand-coded drivers provided with RARS (Table 1).
Figure 3 shows the trajectory of a champion vehicle on the
track at two different stages of evolution. The first successful
networks to evolve learned to follow the inside of the track
without going off the track. This method is effective but not
particularly fast. Interestingly, later on drivers were evolved
that utilized the entire width of the track, entering and exit-
ing turns from the outside. Such a strategy allows drivers to
maneuver the car through turns at higher speeds and leads

(a) Early Evolution

(b) Late Evolution

Figure 3: Discovering intelligent driving through a turn.

(a) Early in evolution, the car hugs the inside of the turn,

a naive strategy that minimizes driving distance but re-

sults in slow overall speed. (b) After approximately 400

generations, the driver learns to anticipate the turn by

steering to the outside so it can attain maximum accel-

eration coming out of the turn. Notice the car takes

an almost straight line through the most curvy section

of the road. Although this behavior is counter-intuitive

and hard even for humans to learn, it was discovered

automatically through evolution.

1980

to faster lap times. However, it increases the distance that
the car must travel, and is therefore not an obvious strategy
to learn. This surprising result shows that NEAT optimizes
nontrivial behavior and discovers sophisticated techniques
on its own.

After a skilled driver was evolved, it was intentionally
impaired in order to obtain a driver that behaved mostly
rationally but crashed intermittently. The weights of the
champion driver were perturbed using uniform random noise
between -0.4 and 0.4. The resulting driver could still nav-
igate the track, but occasionally made erroneous decisions
and ended up crashing. This driver was then be used to
establish a good training environment for learning to warn
about impending crashes.

5. TRAINING CRASH PREDICTORS
The crash predictor neural network receives the same in-

puts as the driving network. However, instead of outputting
driving control requests, its task is to predict whether and
when a crash is going to happen. This prediction is based on
the sensor inputs over several time steps, describing the dy-
namics of the situation. If the predictor has a good model of
the driver’s behavior, it can make realistic predictions about
what the driver is likely to do in the current situation, and
therefore predict whether a crash is likely to happen.

Importantly, the networks evolve to determine on their
own how many timesteps in the past are necessary to ob-
serve. The recurrent structures are selected during evolution
based on how well they support the predictions.

The simplest kind of prediction is a binary output that
predicts whether or not a crash will happen in some fixed
number of timesteps. While such a system is useful, a more
sophisticated prediction can be made if the network also de-
termines when it expects the crash. By predicting a time,
the network is in effect constantly outputting a danger level:
the sooner the predicted crash, the more dangerous the sit-
uation. Such a graded warning system is likely to be more
useful to human drivers, allowing e.g. different warning sig-
nals to be used depending on their urgency.

The temporal prediction network is given the same range-
finder inputs as the driving networks (Figure 2). The net-
work has a single output that is interpreted as a predicted
time to crash between zero (i.e. imminent crash) and a max-
imum time m. In general, when the network outputs the
maximum value, it means there is no present danger. Fit-
ness is computed as the mean squared error E, accumulated
while the impaired driver drives around the track. Let It be
the correct prediction at timestep t and ot be the prediction
output by the network. In the event a crash is more than m
timesteps in the future, It is set to m. In computing E, It

and ot, which range between zero and m, are scaled between
zero and one. The mean squared error E over n timesteps
is then:

E =

Pn
t=1 (ot − It)

2

n
. (2)

Warning networks were evaluated both offline from prere-
corded training data and online using the RARS simulator
for each evaluation. Offline data was generated from the
same impaired driver that drove in online evaluation. In the
offline case, E is computed by comparing each prediction to

a precomputed set of ideal prediction targets I1 through In.
In the online case, predictions are stored in a queue while
the driver runs in the simulator. At every timestep, the
network output is pushed onto this prediction queue, which
becomes a moving window of past predictions. Ideally, if a
crash happens, the prediction queue has low-level warnings
farther back in time and high-level warnings more recently
(Figure 4). Each time a crash occurs, the correct predictions
are computed for each of the previous m timesteps and com-
pared with the stored predictions. This process is repeated
until the end of the evaluation. In this way, both offline and
online training can use the same fitness criterion.

Using temporal predictions, it is possible to evolve net-
works that vary their warning level. The next section speci-
fies the major research questions, describes the experiments
that were set up to answer them, and presents the results.

6. EXPERIMENTS
The primary aim of this research is to show that networks

can be evolved to reliably warn about imminent crashes.
Both online and offline training could be useful in construct-
ing such a warning system. Offline training using a pre-
recorded dataset could be used to ensure that the system
achieves an acceptable performance in most common situa-
tions; online training could allow the system to adapt to new
drivers and conditions. The problem with online training is
that since it is so noisy, a standalone online learning sys-
tem may not be given consistent enough feedback to be able
to successfully train precise crash predictors. On the other
hand, there may not be enough variation in offline training
to allow robust and accurate warning networks to develop.

Showing that a warning system can be learned in either
case and answering some preliminary questions about how
the two approaches differ sets the groundwork for future
research in automated warning systems. The following sec-
tions describe the experiments used to evaluate both online
and offline training and presents results showing how the
two approaches fared.

6.1 Experimental Setup
During offline runs, sensor values, outputs, and crash times

were recorded from the impaired champion driver. A total
of 8541 timesteps and 150 crashes were collected. The data
was then processed so that a target time-to-crash, It, was
associated with each timestep. In other words, if a crash oc-
curred within the maximum time m = 75, It was the number
of timesteps until the crash. Otherwise, It was set to 75 (i.e.
about the time it takes to traverse 5% of the track), denot-
ing that the crash is far in the future. During training, the
output of the neural network was compared to It (scaled
between zero and one) at each timestep in order to compute
an error. As described in Section 5, the mean squared error
over all the training data was then taken as the network’s
fitness.

The entire 8541 timestep dataset was randomly split into
three subsets: one for training (70% of the dataset), one for
validation (20%), and one for testing (10%). Each subset
was composed of contiguous data because the data points
represent a chronology of events. In order to perform 10-
fold cross-validation, 10 such three-way splits were made,
each chosen randomly. The validation set was used to de-
termine which generation champion to use during testing. If
there was no improvement in performance on the validation

1981

relatively low danger Increasing warning level Imminent danger!

Figure 4: Representing an impending crash through the prediction queue. The most recent warning appears on the

right of the queue and the higher bars represent increasing urgency. In other words, the less time to a predicted crash,

the higher the bar is. As the car moves closer to crashing into the side of the road, the warning bars increase in size.

The prediction queue allows training neural networks to predict not only that a crash is going to occur, but the time

to crash as well.

set in 50 generations, the champion from the first of those
generations was utilized for testing.

In contrast to the offline runs, in the online runs each neu-
ral network attempted to make predictions during the live
RARS simulation. The same impaired driver was used in
online training as in offline training, and the mean squared
error was computed just as in the offline runs by keeping
data in a queue (Section 5). Since RARS is not determin-
istic (because of noise added to the actuators), the same
controller on the same track will not always perform exactly
the same. Commands to move the steering wheel or increase
the gas can have slightly variable consequences, just as in
the real world, and the crashes are likely to occur in dif-
ferent places. Thus, the main difference between training
offline and online is that online evaluations varied even with
the same driver. After training, the online champion net-
works were tested with the same testing sets as the offline
networks.

Because population dynamics can be unpredictable over
hundreds of generations, a target of 5 species in the pop-
ulation of 100 networks was assigned to NEAT evolution.
The champion of each species with more than five networks
was copied into the next generation unchanged. The inter-
species mating rate was 0.05, the probability of adding a new
node was 0.03, and the probability of a new link mutation
was 0.05. These parameters were found through systematic
experimental search.

6.2 Results
Successful predictors evolved in all simulation runs. In

some situations, the warning network predicted crashes that
could not be predicted only from the current state of the car.
For example, when the car skids into the side of the road,
its heading is in a direction that could be interpreted as
safe. Yet the evolved network still predicts a crash, showing
that it is using memory to integrate a sequence of states
into its prediction. The warning system can also be eval-
uated subjectively by having a human drive the car with

the warning system on. Human drivers generally found the
warnings accurate and helpful. Figure 5 shows actual predic-
tion queues generated in real-time during human-controlled
driving tests.

As expected, training offline was significantly faster than
online training. On a Pentium 4 1.8GHz processor, offline
training took on average about 400 minutes to compete 500
generations, compared to 1, 400 minutes for online training.
The overhead of running the simulator online accounts for
the difference.

In order to make sure that the performance levels achieved
by both offline and online learning were not the result of
trivial strategies such as never warning or warning all the
time, those trivial strategies were also evaluated on the test
dataset. In addition, a predictor that guesses a uniform
random time to crash between 0 and 75 was included in the
comparisons.

Figure 6 summarizes the results. First, both online and
offline training performed significantly better than the three
trivial baseline strategies (p =< 0.001). The main result is,
therefore, that learning indeed produces meaningful warning
behavior in both cases. Second, the mean squared error for
predictors trained offline was on average 0.054 less than for
those trained online training. This difference is significant
(p < 0.001), suggesting that the natural variation in online
training is slightly detrimental in this task.

An analysis of error over time confirms this conclusion.
The average generation in which performance on the valida-
tion set stops improving is 93.6 (sd = 31.0) in online training
and 342.3 (sd = 118.5) in offline training. In other words,
offline learning continues an average of 248.7 generations
longer. This difference is significant with p < 0.001. Af-
ter the most basic warnings have been learned, the noise in
the online training prevents minor improvements from be-
ing evaluated accurately, and evolutionary progress stops.
In contrast, offline training provides consistent evaluation
from generation to generation, thereby allowing even minor

1982

(a) Direct crash

(b) Skidding

Figure 5: Warning examples. The real-time predic-

tion queues are shown at the top of each image with the

most recent prediction on the right. The height of the

bars represents the seriousness of the warning. (a) As

the car drives directly into the side of a turn, the warn-

ing switches from mild to severe. (b) Judging by the

car’s heading alone, there would be no reason to predict

a crash in this scenario. However, as can be seen by

the white trajectory line preceding the car, it has been

skidding sideways for some time. The predictor network

was able to make the right warning by integrating the

information over several timesteps.

improvements to enter the population. This result is inter-
esting because noisy simulations have previously been shown
to lead to more robust behaviors [3, 6]. The conclusion is
that in order to obtain robust and accurate warnings, vari-
ation in training scenarios has to be carefully controlled, as
proposed in the next section.

7. DISCUSSION AND FUTURE WORK
Evolving automobile warning systems is a promising goal

for evolutionary computation because the task is based on
subtle but learnable correlations, and any improvement over
random guessing can potentially save lives and property.
NEAT is a natural choice for generating such systems be-
cause it can evolve both drivers and predictors, and it can
automatically determine what information is useful in mak-
ing the decisions. Results in this paper also uncovered an
important difference between learning while driving is hap-
pening and learning from data collected offline.

Since offline training proved both faster and produced
higher quality results, the question arises whether training
in a simulator, or even in a real car, is ever going to be
useful. The answer is that it serves a different purpose.
While offline training can be used for generating a robust

Always
 Warn

Never
 Warn

Learned
 Online

Learned
 Offline

0.434

0.346

0.221

0.091

Method

Random

M
ea

n
sq

ua
re

d
er

ro
r

0.036

Figure 6: Performance of online and offline training

methods compared to baseline strategies. Ten runs

using each method were performed; the graph shows the

mean squared error, E, and one standard deviation for

all methods. In online training, all evaluations during

training took place inside the slightly non-deterministic

simulator. In offline training the examples were collected

earlier and were fixed throughout evolution. The per-

formance of three trivial baseline strategies are also re-

ported: Random made a uniform random guess for the

time to crash at every timestep, never warn always pre-

dicted that no crash was imminent, and always warn con-

sistently warned that a crash was about to occur. The

differences between offline and online methods, and be-

tween both offline and online and the baseline methods,

are statistically significant (p < 0.001). The main results

are that evolution was able to generate meaningful warn-

ings and that offline evolution performed better than on-

line evolution.

and general warning system, it is not possible to anticipate
all possible situations while collecting data. The system still
needs to be augmented and refined, depending on the needs
of each particular case. The cars, conditions, and driver
ability vary, but each individual case provides an evaluation
that is relatively consistent. It should therefore be possible
to customize the warning system through online learning.

Two types of errors contribute to the total error of the
crash predictor: Either a crash is predicted that never oc-
curs, or a crash occurs that was not predicted. An inter-
esting opportunity for future research is to weigh the two
types of errors differently so that the system is biased to-
wards making fewer of the more expensive kind of mistake
at the cost of making more of the less expensive type. For
example, hearing a beep in an otherwise safe situation is
little more than irritating, but not being warned before a
serious crash can be fatal. Because evolutionary algorithms
can weight different error components differently in the fit-
ness function, they can potentially calibrate the system to
have a bias towards being safe over sorry.

1983

In the future, the warning system will be trained in more
complex environments including obstacles and other cars on
the road. As of the writing of this paper, a driver has already
been evolved that can weave around stationary cars parked
on a track. Once impaired, this driver will be used to train
the crash predictor about dangerous situations with other
cars. Ultimately, as the technology progresses, systems like
the crash predictor in this paper may be deployed in the real
world.

8. CONCLUSION
The NEAT neuroevolution method was used to evolve

both drivers and crash predictors on the open road in the
RARS driving simulator. Crash predictors output an esti-
mated time to crash that can be used to gauge the current
danger level. The best predictors were evolved from driving
data collected offline, exhibiting a strong performance of on
average under 0.04 mean squared error in predicted time to
crash. Successful crash predictors were also evolved online
in simulation suggesting that online evolution could be used
to customize the warning system to particular cars, drivers,
or conditions. The main conclusion is that automatic crash
prediction is possible, and may someday save lives in the
real world.

9. ACKNOWLEDGMENTS
The authors would like to thank all of the programmers

that contributed to the open-source RARS project, which is
available at http://rars.sourceforge.net. This research
was supported in part by a grant from Toyota, USA.

10. REFERENCES
[1] E. Dickmanns and B. Mysliwetz. Recursive 3-D road

and relative ego-state recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
14(2):199–213, 1992.

[2] D. E. Goldberg and J. Richardson. Genetic algorithms
with sharing for multimodal function optimization. In
J. J. Grefenstette, editor, Proceedings of the Second
International Conference on Genetic Algorithms,
pages 148–154. San Francisco: Kaufmann, 1987.

[3] F. J. Gomez and R. Miikkulainen. Transfer of
neuroevolved controllers in unstable domains. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2004), Berlin,
2004. Springer Verlag.

[4] F. Gruau, D. Whitley, and L. Pyeatt. A comparison
between cellular encoding and direct encoding for
genetic neural networks. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 81–89, Cambridge, MA,
1996. MIT Press.

[5] M. Haag and H.-H. Nagel. Combination of edge
element and optical flow estimates for 3d-model-based
vehicle tracking in traffic image sequences.
International Journal of Computer Vision,
35(3):295–319, 1999.

[6] S. Nolfi and D. Floreano. Evolutionary Robotics. MIT
Press, Cambridge, 2000.

[7] N. J. Radcliffe. Genetic set recombination and its
application to neural network topology optimization.
Neural computing and applications, 1(1):67–90, 1993.

[8] K. O. Stanley and R. Miikkulainen. Efficient
reinforcement learning through evolving neural
network topologies. In Proceedings of the Genetic and
Evolutionary Computation Conference
(GECCO-2002), San Francisco, 2002. Kaufmann.

[9] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127, 2002.

[10] K. O. Stanley and R. Miikkulainen. Competitive
coevolution through evolutionary complexification.
Journal of Artificial Intelligence Research, 21:63–100,
2004.

[11] F. Thomanek, E. D. Dickmanns, and D. Dickmanns.
Multiple object recognition and scene interpretation
for autonomous road vehicle guidance. In Intelligent
Vehicles Symposium ’94, 1994.

[12] X. Yao. Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423–1447, 1999.

1984

http://rars.sourceforge.net

