
Bayesian Optimization Models for Particle Swarms

Christopher K. Monson
Brigham Young University

Computer Science Department
3361 TMCB, Provo, UT 84602

c@cs.byu.edu

Kevin D. Seppi
Brigham Young University

Computer Science Department
3330 TMCB, Provo, UT 84602

kseppi@cs.byu.edu

ABSTRACT
We explore the use of information models as a guide for
the development of single objective optimization algorithms,
giving particular attention to the use of Bayesian models in
a PSO context. The use of an explicit information model
as the basis for particle motion provides tools for design-
ing successful algorithms. One such algorithm is developed
and shown empirically to be effective. Its relationship to
other popular PSO algorithms is explored and arguments
are presented that those algorithms may be developed from
the same model, potentially providing new tools for their
analysis and tuning.

Track Category
Ant Colony Optimization and Swarm Intelligence

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—
nonlinear programming, unconstrained optimization

General Terms
Algorithms, Theory

Keywords
Swarm Intelligence, Mathematical Models, Optimization

1. INTRODUCTION
Particle Swarm Optimization (PSO) is a social or evolu-

tionary optimization algorithm that was discovered during
experiments with simulated bird flocking [7]. The discovery
was valuable, as it has proven to be a good approach to the
optimization of a useful class of functions. It has the addi-
tional benefit that it is easy to implement and has relatively
few tunable parameters.

As the reader is assumed to have some familiarity with
PSO, the explanation that follows will be brief. Classical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

PSO begins by scattering particles in the function domain
space, often by means of a uniform distribution. Each par-
ticle is a data structure that maintains its current positionbx and its current velocity ḃx. Additionally, each particle re-
members the most fit position it has obtained in the past,
denoted p for “personal best”. The most fit p among all
particles is written g for “global best”.

Each particle updates its location over time using

ḃxt+1 = ḃxt + φ1 U()(p− bxt) + φ2 U()(g− bxt) (1)

bxt+1 = bxt + ḃxt+1 (2)

where usually φ1 = φ2 = 2, U() is drawn from a standard
uniform distribution (either a scalar or a vector of random
values to be applied to each element), and velocities are
constrained to be smaller than some Vmax. Two simple and
popular improvements to the technique are the use of a con-
striction coefficient χ [3] and an inertia weight ω [14], re-
spectively:

ḃxt+1 = χ
`ḃxt + φ1 U()(p− bxt) + φ2 U()(g− bxt)

´
(3)

ḃxt+1 = ωḃxt + φ1 U()(p− bxt) + φ2 U()(g− bxt) . (4)

When using (3), definitions of φ1 and φ2 are different from
above, and they are used to calculate χ.

Though improvements have been made on nearly all as-
pects of PSO, the basic structure of the motion equations
has remained largely uncontested, limiting most motion im-
provements to the addition or tuning of equation coefficients.
While some have deviated significantly from classical motion
with good success [2, 6], few have attempted such a depar-
ture. Indeed, it seems that variants on classical motion are
hard to beat, but in spite of much analysis of convergence
and other motion characteristics [1,3,4,12], as well as some
valuable intuition [8, 10], little is known as to why this is
true.

In a way, the serendipitous origins of classical PSO have
never been fully overcome, leaving room for a more princi-
pled and high level perspective for PSO motion. This paper
presents and motivates a model-oriented approach to par-
ticle motion algorithms, providing tools for the creation of
such algorithms that also aid in their analysis. This ap-
proach makes explicit the information relationships and op-
timization assumptions that go into the design of a swarm
optimization algorithm.

One class of optimization models based on Bayesian in-
fluence networks is presented first. An algorithm is then

193

Observation

True State Estimated State

Place of Better Fitness

g�

g

x

ẋ

bx
ḃx

ξ = g

θ =

„
x
ẋ

« bθ =

„bxḃx
«

Figure 1: Raw information available to swarm opti-
mization

produced by solving one such model. This algorithm has
some deficiencies, which are addressed by making better use
of available information and applying approximations to its
most complex features. The approximate algorithm is shown
to perform well against some recent and successful PSO tech-
niques. Finally, the ramifications of the new algorithm and
the process by which it was created are explored.

2. BAYESIAN OPTIMIZATION MODELS
Even though “No Free Lunch” (NFL) theorems dictate

that no single algorithm can be used to efficiently optimize
every class of functions [15], any optimization problem can
be modeled. The purpose of such a model is to sort out all
of the information available during the optimization process
and to make use of that information in a principled way.
That it is always possible to apply a model neither ignores
nor negates NFL, but rather indicates that the model must
somehow explicitly specify the class of functions that are
interesting.

Many such optimization models are possible, but this pa-
per will define and restrict itself to a limited class of these
models, hereafter referred to as Bayesian Optimization Mod-
els (BOMs). In a BOM, the optimization problem is framed
as inference in a Dynamic Bayesian Network (DBN) where
information relationships are characterized as conditional
probability distributions [13]. While no assertion is made
that DBNs are the only appropriate modeling tool for PSO,
some class of models must be chosen, and DBNs have some
particularly convenient properties.

The use of DBNs instead of a more general class of mod-
els represents an approximation that is open to debate. It is
a fact, however, that an approximation of some kind must
be made, since a fully expressive model of every detail of all
possible information relationships would not be tractable for
descriptive or computational purposes. Throughout this pa-
per many choices will be made for the sake of approximation,
and all of them will be explicit. In the interest of coherent
exposition, however, a detailed discussion of those choices
will be deferred until Section 6.

DBNs are frequently used to characterize time-sensitive
relationships between observable (ξ) and hidden (θ) vari-
ables or states. Usually the hidden variables represent de-
sired information and are considered to cause or influence
the state of the observable variables. For example, deter-
mining the location of an airplane given a blip on a radar
screen fits this model: the true location of the plane is un-
known or hidden, it causes an observable blip, and the data
is time-sensitive. Provided that a useful observation model

θt−1 θt

ξt−1 ξt

F

HH

Figure 2: Hidden Markov Model

is available to characterize the noise and other behavior of
the radar, the true state can be inferred with some accuracy
from a series of observed blips.

In swarm optimization, each particle may observe g and p.
In the context of a BOM, these observations are influenced
by some state θ encoding desirable but hidden information,
in this case instructions as to what the particle should do to
get to a place of even better fitness g�.

Ignoring p for the time being, Figure 1 illustrates the
use of hidden states and the raw information available to a
swarm optimization algorithm. At each time step, a parti-

cle has a current estimate bθ of its hidden state θ. Since the
particle is trying to track the trajectory toward g�, this es-
timate is encoded in the actual position and velocity of the
particle and is gleaned from data available in the form of
g. The hidden state θ represents where the particle ideally
should have been (x) and the direction in which it should be
going (ẋ) to get directly to a place of even better fitness g�.

Just as a radar’s observation model is required in order
to estimate a plane’s true location given a blip, the rela-
tionship between θ and ξ must be specified for a particle
to effectively estimate a trajectory toward g�. Figure 2 il-
lustrates one of the simplest possible models for the various
relationships in this system. In this case what is depicted
is actually an instance of a Hidden Markov Model (HMM)
where the hidden state θ influences the observable state ξ
using a known observation model H and changes over time
according to some transition model F .

In the radar example, F might be a model of how a plane
is expected to move. Large planes do not change speed or
direction very quickly and therefore might use a constant
velocity transition model, treating deviations from constant
velocity as admissible noise. In the context of PSO, the
transition model describes the way that g is expected to
move over time. It also describes, however, the way that
particles prefer to move, since they will make use of F as
they attempt to track the trajectory of g over time. The F
chosen will therefore depend on the best swarm behavior for
the class of functions subject to optimization. In this paper,
we will focus on a constant velocity F for the sake of sim-
plicity and for historical reasons, though other relationships
are certainly possible.

The model also indicates that g� influences the observed g
since hidden state influences observations. This influence is
inherently noisy because it is unreasonable to believe with
absolute certainty that the observation of g precisely pin-
points g�. Noise is thus used as a model of subjective uncer-
tainty about the usefulness or accuracy of an observation. In
a function with local smoothness, a Gaussian distribution is
a good model of uncertainty. For example, a high-variance
Gaussian with mean g indicates that g is a useful indicator

194

of g�, but that our belief or confidence in that result is not
very strong. Similarly, a low variance would indicate greater
confidence that g is a likely place to look for g�.

Regardless of the particular distribution chosen to repre-
sent belief, the use of a BOM defines the goal of optimization
as the inference of a belief distribution over θ. Ideally, that
distribution will converge over time to a delta function (or
in the Gaussian case, a distribution with variance approach-
ing zero) centered at the global minimum, but the amount
of information available does not often allow for so much
precision or certainty. The goal becomes one of finding a
distribution that gets as close as possible to the truth and
that represents as much confidence as possible in that es-
timate. This clarifies the role of the network in Figure 2:
if the influences shown can be characterized, noise and all,
then standard approaches to solving HMMs may be used to
estimate a distribution over θ (the best action a particle can
take) at each time step.

Every choice made in the creation of this particular BOM,
and even the use of a BOM in the first place, represents some
assumptions about the class of functions to be optimized.
Sometimes the connection is readily evident and other times
it is more subtle. The choice of a constant velocity model,
for example, indicates that velocity contains information.
A consequence of this is that fitness and distance from the
global minimum should be correlated; if velocity contains
information then in some sense distance must as well. Also,
a Gaussian noise model introduces the assumption of some
local smoothness in the function, since the belief distribution
assigns similar weight to nearby regions.

Whatever the specific details, an optimization model will
encompass raw information and intuition as illustrated in
Figure 1 as well as explicit information relationships as il-
lustrated in Figure 2. Together, these give an algorithm
designer an opportunity to be explicit about not only the
available information and what it means, but about the re-
lationships that exist within it. The choice of BOMs in par-
ticular allows designers of swarm optimization algorithms to
leverage the considerable body of existing knowledge about
DBNs and HMMs to generate particle motion.

It should be reiterated that although this paper focuses al-
most exclusively on HMMs as models of swarm optimization,
this restriction is not a requirement. Much richer models,
probabilistic or otherwise, may also be applied.

3. A BOM MOTION ALGORITHM
Solution methodologies for HMMs are plentiful, but per-

haps none is so easily applied as the Kalman Filter. The
Kalman Filter is directly applicable to the solution of an
HMM like that in Figure 2, imposing the additional con-
straints of linear relationships and additive Gaussian noise
[5, 9, 13]. This restricted subclass of HMMs is commonly
known as Linear Dynamic Systems (LDSs).

This suggests that the Kalman Filter might be applied to
PSO as a means of moving particles around, an idea that
was introduced earlier in the KSwarm algorithm [11]. Its
original presentation was unmotivated, however, making it
difficult to determine whether and in what situations it may
be sensibly applied. The BOM developed thus far supplies
the needed motivation, since the application of a Kalman
Filter to the model produces an algorithm very much like
KSwarm. To assist in further development of this idea, the
basics of the original KSwarm will be presented briefly.

The purpose of the Kalman Filter is to estimate a mean
θ̄t and covariance Σt for the hidden state of an HMM given
a series of observations ξt, which in this case correspond to
measurements of g. The mean may be viewed as the esti-
mate of the hidden state and the covariance as a measure
of confidence in that estimate. This estimate can be ob-
tained through recursive application of the following equa-
tions, which find themselves at the heart of KSwarm:

Kt = (FΣt−1F
�+Σθ)H

�̀ H(FΣt−1F
�+Σθ)H

�+Σξ

´−1

(5)

θ̄t = Fθ̄t−1 +Kt(ξt −HFθ̄t−1) (6)

Σt = (I−KtH)(FΣt−1F
� +Σθ) . (7)

A single sample from the distribution over a prediction
provides the new state of a particle, comprising a position
and velocity:

bθt+1 =

„bxt+1ḃxt+1

«
∼ Normal(Fθ̄t,Σt) . (8)

The value of ξ is obtained from observations, but several
other values must be specified before the algorithm can pro-
ceed. For example, a transition matrix F and observation
matrix H must be specified, as well as a prior mean θ̄0.
A constant velocity transition model makes the assumption
that the trajectory traced by successive values of g will tend
to take a straight line path toward the global minimum, and
a skew-free observation model is used because it is unrea-
sonable to assume that g is not a good estimate of g� in
the absence of more information. Additonally, the priors
are taken directly from the initial location and velocity of
the particle. These specifications are given together here:

F =

„
I I
0 I

«
(9)

H =
`
I 0

´
(10)

θ̄0 =

„bx0ḃx0

«
. (11)

Each of these values carries with it a corresponding covari-
ance matrix, denoted Σθ, Σξ, and Σ0, respectively. Given
a vector w of side lengths of the “feasible rectangle” (usu-
ally provided with the target function) and a small constant
ε (≈ 0.001), the original KSwarm attempts to simplify the
creation of useful covariances by defining diagonal matrices
for these values, thus:

Σθ = ε diag

„
w
w

«
(12)

Σξ = ε diag(w) (13)

Σ0 = ε diag

„
w
w

«
. (14)

Though KSwarm’s published implementation outperforms
one version of constricted PSO on a number of common
benchmark functions, it has not been shown to be competi-
tive with more recent or well-tuned PSO algorithms.

195

θt−1 θt

gtgt−1

ptpt−1

F

Figure 3: Belief network with p included

4. TAKING THE NEXT STEP
KSwarm was produced from a BOM, making available a

large number of existing tools for its analysis. It is, however,
not perfect, and several improvements immediately suggest
themselves. First, KSwarm ignores the existence of p, which
is commonly considered to be an important piece of infor-
mation in PSO [6, 8]. Second, the computational complex-
ity of KSwarm is O(D3) while other popular algorithms are
O(D). Unfortunately, its performance does not warrant this
increase in complexity. This section addresses both of these
problems.

4.1 Incorporating Personal Best
There are several ways to introduce p into the HMM pre-

viously outlined. Perhaps the simplest is to combine p and g
into a single observation before applying the Kalman Filter.
Thus, ξt = C(g,p), where C is some function that combines
the two pieces of information in a useful way.

If p is considered to be dependent on g, the new network
is represented in Figure 3. Combining g and p into a single
observation is equivalent to letting p temper the perception
of g, which is accomplished by finding the posterior distri-
bution G′(g|p) by application of Bayes’ Law:

C(g,p) ∼ G′(g|p) =
P ′(p|g)G(g)

P (p)
(15)

where G and G′ are the prior and posterior distributions
over g, and P and P ′ are the marginal and conditional dis-
tributions over p. When using multivariate Gaussian distri-
butions, G′(g|p) is parameterized by mean b̄ and covariance
Σb, the values of which are well known:

W = Σp(Σp +Σg)−1 (16)

b̄ = (I−W)p+Wg (17)

Σb = (I−W)Σp (18)

where Σp and Σg represent uncertainty about the utility of
p and g as estimates of g�, respectively.

Substituting b̄ and Σb for ξt and Σξ in (5), (6), and (7)
yields these equations for the “p-augmented KSwarm”:

Kt = (FΣt−1F
�+Σθ)H

�̀ H(FΣt−1F
�+Σθ)H

�+Σb

´−1

(19)

θ̄t = Fθ̄t−1 +Kt

`
(I−W)p+Wg −HFθ̄t−1

´
(20)

Σt = (I−KtH)(FΣt−1F
� +Σθ) . (21)

The equations do not change the order of polynomial com-
plexity of the original KSwarm, but they do require the spec-
ification of yet another covariance matrix.

4.2 The Necessity of Approximations
The use of the Kalman Filter incurs some costs. It was

mentioned briefly that although it tests well against a ver-
sion of constricted PSO, it does not test as well against more
recent improvements. This may be due to the difficulty in-
herent in tuning an algorithm whose parameters are all large
matrices. In fact, even though some intuition may be applied
to the specification of covariance matrices, the dimensional-
ity of the parameter space far exceeds the dimensionality of
the function to be optimized!

In addition, the increased computational complexity must
be addressed. Fortunately, it is possible to address both
issues simultaneously by crafting an approximation to the
p-augmented KSwarm algorithm. Of particular interest is
(20) which can be rewritten as follows:

θ̄t = (I−KtH)Fθ̄t−1 +Kt(I−W)p+KtWg . (22)

To simplify things further, it may be assumed that H = I
and that observation vectors are appropriately augmented
with a velocity estimate:„
x̄t
¯̇xt

«
= (I−Kt)F

„
x̄t−1
¯̇xt−1

«

+Kt(I−W)

„
p

p− bxt−1

«

+KtW

„
g

g− bxt−1

«
. (23)

Because a new position may be trivially computed given
the previous position and a new velocity, (23) may be fur-
ther simplified by dropping all portions of the equation that
directly calculate a position. Recalling from (9) that F pre-
serves velocity allows it to be dropped entirely from the cal-
culation of the mean filtered velocity ¯̇xt:

¯̇xt = (I−Kt,v)¯̇xt−1

+Kt,v(I−Wv)(p− bxt−1)

+Kt,vWv(g − bxt−1) . (24)

Thus, ¯̇xt looks like a convex combination of ¯̇xt−1, g, and p.
Even more simplification is possible if the gains K and W
are assumed to be the constant scalars a and b instead of
dynamic matrices:

¯̇xt = (1 − a)ḃxt−1 + ab(p− bxt−1) + a(1 − b)(g− bxt−1)
(25)

where ¯̇xt−1 is approximated by ḃxt−1. This bears some re-
semblance to (4), the equation for inertia-weighted PSO.

196

Table 1: Common benchmark functions

Sphere(x) =
DX

i=1

x2
i

Griewank(x) =
1

4000

DX
i=1

x2
i −

DY
i=1

cos

„
xi√
i

«
+ 1

Rosenbrock(x) =

D−1X
i=1

100(xi+1 − x2
i)

2+(xi − 1)2

DeJongF4(x) =
DX

i=1

ix4
i

Rastrigin(x) =

DX
i=1

x2
i + 10 − 10 cos(2πxi)

The variance vector is all that remains to be determined
to make the algorithm concrete. A fairly common trick when
adding noise at the end of a PSO calculation is to let the
variance be a scalar based on the magnitude of the mean
velocity [2,6]. Without further motivation, a similar trick is
applied here:

ḃxt ∼ Normal

„
¯̇xt, ψ

‖¯̇xt‖2

D
I

«
(26)

where ψ scales the calculated variance by some fixed amount,
usually a small number like 0.05. The dimensional scaling
attempts to counter an explosion of the Gaussian support
volume as dimensionality increases.

Given the mean as defined in (25) and variance from (26),
a new velocity may be created by sampling once from a
Gaussian distribution. This approach is the basis of the
“p Approximate Kalman Swarm” (PAKS) algorithm, which
restores O(D) complexity and substantially reduces the size
of the parameter space.

The performance of this algorithm is compared with some
popular PSO enhancements on several benchmark functions
in Figure 4. The benchmarks are defined in Table 1. The
results were obtained for minimization in 30 dimensions,
α = 0.45, β = 0.5, ψ = 0.05, and a non-reflexive “star”
topology (fully connected but without self links) with 20
particles where applicable. TRIBES began with a single par-
ticle. In the case of TRIBES, the x-axis represents the best
value after every 20 function evaluations to make the results
directly comparable. As can be seen, PAKS either outper-
forms or remains competitive with TRIBES and BareBones.
Although it is only an approximation, it always outperforms
KSwarm, presumably because it is much easier to tune.

Although PAKS does require more tuning than TRIBES
or BareBones, even the most naive parameter settings pro-
duced good behavior. Setting β = 0.5 naively assumes that
g and p are equally reliable sources of information. This
was also tried as the value of α, but velocity explosion re-
quired it to be lowered slightly. The only parameter that
really required any significant attention was ψ, which was
reasonably robust once the right range was found.

More significant than the naive and simplistic nature of
the tuning is the fact that it could easily have been more
principled. The use of a BOM as the basis for PAKS pro-

vides a clear and explicit path from a statistical model to a
concrete algorithm. That it has roots in a model allows bet-
ter tuning to occur before the algorithm has ever been exe-
cuted. The coefficients, for example, are rooted in subjective
variance, which was never overtly used. It is conceivable that
some experiments could shed light on appropriate variances
and thus on appropriate choices of coefficients, something
that would not be possible without the use of the model as
a starting point. Even without such analysis, it is significant
that a simple algorithm using a topology not noted for its
exploration capabilities can perform so favorably.

5. APPLICATIONS OF A BOM
BOMs are useful tools for specifying motion algorithms,

but they represent just one possible class of models. Per-
haps even more interesting than the presented BOM is the
accompanying process that was used to generate useful par-
ticle swarm motion; the model is the starting point, the
solution methodology creates a real algorithm, and the final
approximation makes that algorithm tractable. Together
these ideas represent a unified framework for function op-
timization that provides insights into how to tune the new
algorithm and why it behaves the way that it does. All of
the behavior of the algorithm may be traced back to one or
more of the choices made during this process, all of which
are explicit, allowing any desired change to be affected by
revisiting those choices.

The full impact of this idea becomes evident when work-
ing backwards from existing motion methodologies to find
appropriate models. In many cases, the very same BOM
may be obtained in this manner. Consider, for example, the
similarities between PAKS and other popular techniques for
computing a new particle velocity:

Constricted [3]:

χ
`ḃxt + φ1 U()(p− bxt) + φ2 U()(g− bxt)

´
Inertia-weighted [14]:

ωḃxt + φ1 U()(p− bxt) + φ2 U()(g− bxt)

Noisy Classical [2]:

χ
`ḃxt + G(p− bxt, I

‖p− bxt‖2

4
) + G(g − bxt, I

‖g − bxt‖2

4
)
´

PAKS (mean velocity):

(1 − a)ḃxt + ab(p− bxt) + a(1 − b)(g − bxt)

(G(·, ·) produces a sample from a Gaussian with the supplied
mean vector and covariance matrix).

The similarity of the algorithms is striking, as each per-
forms a noisy and linear combination of the same informa-
tion. In the case of PAKS, it is clear why this is the case:
Bayesian reasoning, linearity, and Gaussian noise were elec-
tive constraints during the design process. That it is similar
to other popular PSO algorithms implies similarity in their
underlying model and solution methodology. Consequently,
all of these algorithms are describable as approximations of
p-augmented KSwarm. The differences are limited to tuning
or noise insertion and are generally superficial.

197

10-30
10-25
10-20
10-15
10-10
10-5
100
105

100 101 102 103

Batch Updates

PAKS
TRIBES

BareBones
KSwarm

(a) Sphere

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100
102
104

100 101 102 103

Batch Updates

PAKS
TRIBES

BareBones
KSwarm

(b) Griewank

100
101
102
103
104
105
106
107
108
109

1010
1011

100 101 102 103

Batch Updates

PAKS
TRIBES

BareBones
KSwarm

(c) Rosenbrock

10-50

10-40

10-30

10-20

10-10

100

1010

100 101 102 103

Batch Updates

PAKS
TRIBES

BareBones
KSwarm

(d) DeJongF4

101

102

103

100 101 102 103

Batch Updates

PAKS
TRIBES

BareBones
KSwarm

(e) Rastrigin

Figure 4: Average fitness of PAKS compared with KSwarm, TRIBES, and BareBones

198

Knowing the model that can produce these algorithms
makes available a wealth of information about them that
was not as easily accessible before. Consider, for example,
the problem of a varying inertia coefficient (ω) for inertia-
weighted PSO. If we view inertia-weighted PSO as an ap-
proximation to KSwarm, some interesting things can be said
about ω, which corresponds directly to the I−K term in the
Kalman Filter equations. Because Σt converges over time
to a fixed point, a large Σ0, corresponding to low confidence
in the initial estimate, will cause Σt to decrease over time.
This decreasing variance corresponds to an asymptotically
increasing inertia weight, unlike the linearly decreasing val-
ues so commonly used. While this violates some popular
intuition, the superiority of an increasing inertia weight has
already been empirically observed [16].

That the noise models are not precisely equivalent is no
barrier to forging a connection between existing algorithms
and PAKS, especially in consideration of the Central Limit
Theorem. Some of them use uniform distributions on the
coefficients themselves, but a sum of uniform random vari-
ables is Gaussian in the limit, a notion verified empirically in
other works [2,6]. Additionally, a sum of Gaussian variables
produces a new Gaussian variable, so taking a single sample
at the end is not fundamentally different from taking sam-
ples on each coefficient. Perhaps the most compelling reason
to suggest that all of these algorithms use a Gaussian noise
model is the fact that they all combine information linearly,
a consequence of the closure of Gaussians under Bayes’ Law.
Any other noise model would produce a more complex com-
bination of information.

The use of BOMs also applies to motion that does not
share as much in common with PAKS as the above algo-
rithms. For example, BareBones, which performs a simple
position computation based on p and g [6], may be pro-
duced from the model shown in Figure 3 by removing the
time-sensitive links and dropping velocity from the approxi-
mation rather than position. Similar modifications are pos-
sible for other algorithms not discussed here.

6. MODELING AND APPROXIMATIONS
While progressing from an optimization model to a con-

crete PSO algorithm, several modeling decisions and ap-
proximations were made along the way. Every one of these
decisions was explicit, which is one of the more important
benefits of using the design framework outlined here: ex-
plicit decisions are easy to analyze and adjust. In spite of
the clarity resulting from this process, however, some of the
specific decisions and approximations made here have subtle
consequences and merit further discussion.

6.1 Bayesian Modeling
Although DBNs do not represent the only class of models

that can be used to describe information relationships, it has
been made clear that simplicity and tractability were the
reasons behind using that class of models. What is perhaps
not as clear is the intuitive meaning of the hidden processes
in Figures 1 and 2 and the approximations made in ignoring
some of the possible information relationships.

Because PSO is a known and concrete algorithm, the only
truly hidden process is the target function itself. The HMM
presented here approximates all of the hidden characteris-
tics of the target function as a sequence of trajectories. In-
tuitively, this means that the features of the target function

deemed most important by the model are described by paths
of improving fitness from each point in space, making a par-
ticle’s goal one of finding the next step along such a path
from its current location. Inherent in this is the assumption
that greedy improvements to g form a noisy trajectory that
will eventually lead to the global optimum. This assump-
tion provides a partial specification of the class of functions
for which this PSO algorithm is expected to be effective:
it will work well on functions that can be described as uni-
modal with noise, an idea born out in the results for Sphere,
DeJongF4, and Griewank.

In addition to approximating a hidden process, the pro-
posed HMM ignores a number of possible information rela-
tionships. While adding more information links is certainly
possible, limiting them to a select few is common when deal-
ing with Bayesian networks since specifying all possible rela-
tionships is not often tractable. The underlying assumption
is that noise is an adequate substitute for some of the less
consequential relationships.

6.2 Adding New Information
The question naturally arises as to whether the approach

to adding new information detailed in Section 4.1 is truly
representative of what the information means. Is, for exam-
ple, p really dependent upon g? One could certainly argue
that it is not, since no such dependency is built into PSO
or into optimization in general. In fact, it is much easier
to argue that such a relationship would work the other way,
since g is actually the p of some particle.

This is readily addressed by looking at the model as a de-
scription of observed behavior rather than of a known pro-
cess. While g does not cause the observation of p, it can be
observed that p tends to be close to g during a run of PSO.

The dependency of p on g can also be viewed as a speci-
fication of behavior. This observation of correlation or clus-
tering among p and g is, in a sense, a self-fulfilling prophecy:
the model says that clustering occurs, the same model drives
the motion of particles, and therefore clustering is observed.

This brings up an interesting side point. Many choices
were made in this paper not only because they were simple
and convenient, but because they led to an algorithm that
was similar to existing PSO algorithms. This allowed the
framework to be developed in a familiar context and pro-
vided a means of rethinking popular motion algorithms in
terms of a useful model. Remarkably little foresight was
required to do this since some of the approximations made
were rather obvious and naive. For these reasons, the seem-
ingly counterintuitive dependency of p on g is actually not
at all unreasonable; it is descriptive, prescriptive, and effec-
tively models the behavior of existing algorithms.

6.3 Other Approximations
Other notable approximations in Section 4.2 include drop-

ping position instead of velocity and ignoring the Kalman
variance calculation in (21).

Position was dropped instead of velocity to better facil-
itate the connection between PAKS and other algorithms,
especially inertia-weighted PSO. It would definitely be pos-
sible to drop velocity instead, producing something more
like BareBones, as previously discussed.

As for PAKS variance, the corresponding Kalman equa-
tions were ignored for simplicity and space. This amounted
to replacing useful information with a trick adapted from

199

the literature, highlighting the fact that significant approx-
imations are often made while building a PSO algorithm.
In the case of PAKS, it was clear that the correct variance
calculation was ignored, but it was only obvious because
the underlying model was already known. Many PSO algo-
rithms, on the other hand, commonly make equally sweeping
assumptions without any context for their objective evalua-
tion. Indeed, it is difficult if not impossible to provide such
context without the use of a model.

7. CONCLUSIONS AND FUTURE WORK
The single-objective optimization problem is one of using

available information to find the global minimum. In order
to do this, it is useful to specify in explicit terms what that
information is and the relationships between various pieces
of the available information. Bayesian Optimization Models
are a class of models that make this specification systematic
and principled, simultaneously lending valuable intuition to
the process.

That this approach can serve as the foundation of a num-
ber of PSO motion algorithms, including those developed
here, makes it useful as a tool for high level analysis of both
new and existing PSO algorithms. It would be interest-
ing to apply in greater detail the model and approximation
techniques presented here to existing PSO algorithms. This
could provide more insights into their differences in behavior
on various functions.

Other DBN models may be used besides the HMM sug-
gested here, and other solution methodologies, such as par-
ticle filters, may be applied. More information than g and
p could also be made available to any chosen model, and
methods of combining information should be explored more
fully. Additionally, the approximation process outlined for
PAKS could be changed to make better use of the model to
make coefficient tuning more principled.

In this work, the application of a BOM has only affected
each particle individually, but it is possible to create a richer
model that includes the notion of sociometry and the infor-
mation flow between particles in the swarm. Though com-
plex, the study of such influences is at least possible using a
model, and its use may provide new topological insights.

The algorithm design framework developed around BOMs
actually exists independently of them, suggesting that any
model, Bayesian or otherwise, may be used in the frame-
work. The only requirement is that such a model make in-
formation relationships explicit and provide a means for in-
ferring desired information from available information. The
exploration of alternative models would be an interesting
pursuit.

The introduction of a BOM and its success in creating a
competitive PSO algorithm highlights the utility of the as-
sociated algorithm design framework. The framework is not
only valuable as a tool for the synthesis of PSO algorithms,
but also for their analysis. This work has presented the
framework and model-based approach as a way of thinking
about optimization and this perspective suggests new ways
of approaching the problem.

8. REFERENCES
[1] M. Clerc. The swarm and the queen: Towards a

deterministic and adaptive particle swarm
optimization. In Proceedings of the IEEE Congress on

Evolutionary Computation (CEC 1999), pages
1951–1957, Piscataway, New Jersey, 1999.

[2] M. Clerc. TRIBES - un exemple d’optimisation par
essaim particulaire sans paramètres de contrôle. In
Optimisation par Essaim Particulaire (OEP 2003),
Paris, France, 2003.

[3] M. Clerc and J. Kennedy. The particle swarm:
Explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions
on Evolutionary Computation, 6(1):58–73, February
2002.

[4] R. C. Eberhart and Y. Shi. Comparing inertia weights
and constriction factors in particle swarm
optimization. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2000), pages 84–88,
San Diego, California, 2000.

[5] R. E. Kalman. A new approach to linear filtering and
prediction problems. Transactions of the
ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[6] J. Kennedy. Bare bones particle swarms. In
Proceedings of the IEEE Swarm Intelligence
Symposium 2003 (SIS 2003), pages 80–87,
Indianapolis, Indiana, 2003.

[7] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In International Conference on Neural
Networks IV, pages 1942–1948, Piscataway, NJ, 1995.
IEEE Service Center.

[8] J. Kennedy and R. C. Eberhart. Swarm Intelligence.
Morgan Kaufmann Publishers, 2001.

[9] C. T. Leondes, editor. Theory and Applications of
Kalman Filtering. Number 139 in AGARDograph.
North Atlantic Treaty Organization, Advisory Group
for Aerospace Research and Development, 1970.

[10] R. Mendes, J. Kennedy, and J. Neves. Watch thy
neighbor or how the swarm can learn from its
environment. In Proceedings of the IEEE Swarm
Intelligence Symposium 2003 (SIS 2003), pages 88–94,
Indianapolis, Indiana, 2003.

[11] C. K. Monson and K. D. Seppi. The Kalman swarm.
In Proceedings of the Genetic and Evolutionary
Computation Conference, volume 1, pages 140–150,
Seattle, Washington, 2004.

[12] E. Ozcan and C. K. Mohan. Particle swarm
optimizaton: Surfing the waves. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC
1999), Washington, D.C., 1999.

[13] S. Russel and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, Englewood Cliffs,
New Jersey, second edition, 2003.

[14] Y. Shi and R. C. Eberhart. A modified particle swarm
optimizer. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 1998), Piscataway,
New Jersey, 1998.

[15] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, April 1997.

[16] Y. Zheng, L. Ma, L. Zhang, and J. Qian. Empirical
study of particle swarm optimizer with an increasing
inertia weight. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC 2003), pages
221–226, Canbella, Australia, 2003.

200

